JPH02125883A - Method for drying magnesia for separation agent at annealing - Google Patents

Method for drying magnesia for separation agent at annealing

Info

Publication number
JPH02125883A
JPH02125883A JP27809788A JP27809788A JPH02125883A JP H02125883 A JPH02125883 A JP H02125883A JP 27809788 A JP27809788 A JP 27809788A JP 27809788 A JP27809788 A JP 27809788A JP H02125883 A JPH02125883 A JP H02125883A
Authority
JP
Japan
Prior art keywords
annealing
magnesia
temp
grain
forsterite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27809788A
Other languages
Japanese (ja)
Inventor
Kenichi Yatsugayo
健一 八ケ代
Masayoshi Mizuguchi
水口 政義
Noriyuki Kamata
鎌田 憲幸
Yoichi Zaizen
洋一 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27809788A priority Critical patent/JPH02125883A/en
Publication of JPH02125883A publication Critical patent/JPH02125883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To obtain a separation agent at annealing for grain-oriented electrical sheet free from moisture liberation in the course of temp. rise at the time of finish annealing by subjecting magnesia containing water of hydration to predrying at a temp. in a forsterite film-forming temp. region. CONSTITUTION:Magnesia containing water of hydration used at the time of the finish annealing of grain-oriented electrical sheet is predried at a temp. in a forsterite film-forming temp. region (about 920-1100 deg.C). When the annealing of grain-oriented electrical sheet is carried out by using the above magnesia as a separation agent at annealing, no moisture is liberated until forsterite film formation is initiated in the course of temp. rise and necessary moisture is liberated in the course of film formation. By this method, the forsterite film free from the occurrence of detects, such as oxidation and inferior nitriding, and having superior quality can be formed, and the magnetically stable grain- oriented electrical sheet can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、方向性電磁鋼板の仕上げ焼鈍に際して、板間
の焼付きを防止し、フォルステライト被膜を形成するた
めに鋼板表面に塗布される焼鈍分離剤の主成分として使
用されるマグ不ソアの乾燥方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method of applying a forsterite film to the surface of a grain-oriented electrical steel sheet in order to prevent seizure between the sheets and form a forsterite film during final annealing of the grain-oriented electrical steel sheet. The present invention relates to a method for drying mag unsoar used as a main component of an annealing separator.

〔従来の技術〕[Conventional technology]

方向性電磁鋼板は、熱延鋼板をたとえば焼鈍冷延、脱炭
した後、コイル状に巻き取り、仕上げ焼鈍している。こ
のとき、仕上げ焼鈍時の高温により板間に焼付きが生じ
ることを防止するため、鋼板の表面にマグ2、シア系を
主成分とする焼鈍分離剤が塗布されている。この焼鈍分
離剤は、鋼板表面に生成している5102系のサブスケ
ールと反応して、絶縁被膜として有効なフォルステライ
ト(Mga s : 01>を生成する役割をももつ。
A grain-oriented electrical steel sheet is obtained by subjecting a hot rolled steel sheet to, for example, annealing, cold rolling, decarburization, winding into a coil, and final annealing. At this time, in order to prevent seizure between the plates due to the high temperature during finish annealing, the surface of the steel plate is coated with MAG 2, an annealing separator whose main component is a shear type. This annealing separator also has the role of reacting with the 5102 series subscale produced on the surface of the steel sheet to produce forsterite (Mgas: 01>), which is effective as an insulating film.

この焼鈍分離剤は、マク不ンアと各種添加物とをスラリ
ー状に調整し、湿式で鋼板の表面に塗布している。その
ため、仕上げ焼鈍時の昇温過程で水和したマグネシアか
ら水分が放出される。この放出された水分は、鋼板の酸
化を促進させ、また鋼板表面に形成されるフォルステラ
イト被膜にバラツキを発生させる原因にもなる。特に、
雰囲気ガスから窒素を鋼板に吸収させ、窒化物系のイン
ヒビターを形成させる方向性電磁鋼板の製造方法にあっ
ては、放出水分により窒素の吸収が阻害され、二次再結
晶が不良となる。
This annealing separator is prepared by preparing a slurry of Macunure and various additives, and wet-applying the slurry to the surface of the steel sheet. Therefore, water is released from hydrated magnesia during the temperature rising process during final annealing. This released moisture promotes oxidation of the steel sheet and also causes variations in the forsterite film formed on the surface of the steel sheet. especially,
In a method for manufacturing a grain-oriented electrical steel sheet in which nitrogen is absorbed from an atmospheric gas into the steel sheet to form a nitride-based inhibitor, the released moisture inhibits the absorption of nitrogen, resulting in poor secondary recrystallization.

そこで、放出水分の影響を無くすた必、高温で焼成し水
和水の少ないマグネノアを主成分とする焼鈍分離剤を使
用することが特開昭53−15205号公報、特開昭5
9−96278号公報等で提案されている。
Therefore, in order to eliminate the influence of released water, it is necessary to use an annealing separator mainly composed of Magnenoa, which is fired at high temperature and has little hydration water, as disclosed in JP-A-53-15205 and JP-A-5.
This method has been proposed in Japanese Patent No. 9-96278 and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高温焼成されたマグネシアを使用するとき、水分放出に
起因する欠陥をある程度抑制することができる。しかし
、この焼鈍分離剤を方向性電磁鋼板に塗布する際には、
鋼板に対する付着性、塗布の一様化等のために、焼鈍分
離剤を一旦水と混合し、スラリー状にする。そのため、
水分の持込みを避は難く、前述の問題を解決するに至っ
ていないのが実情である。
When using high-temperature fired magnesia, defects caused by moisture release can be suppressed to some extent. However, when applying this annealing separator to grain-oriented electrical steel sheets,
In order to improve adhesion to the steel plate and ensure uniform application, an annealing separator is mixed with water to form a slurry. Therefore,
The reality is that it is difficult to avoid moisture being brought in, and the above-mentioned problem has not yet been solved.

そこで、本発明は、かかる問題を解決するものであって
、仕上げ焼鈍時の昇温過程における水分の放出を抑制し
、しかもフォルステライト被膜形成時にはMgO&Si
O2との反応遂行に必要な水分を放出することができる
焼鈍分離剤を得ることを目的とする。
Therefore, the present invention solves this problem by suppressing the release of moisture during the temperature rising process during final annealing, and in addition, when forming a forsterite film, MgO & Si
The object is to obtain an annealing separator capable of releasing the moisture necessary for carrying out the reaction with O2.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の乾燥方法は、その目的を達成するために、水和
水分を含有するマグネシアを、フォルステライト被膜形
成温度域で予備乾燥させることを特徴とする。
In order to achieve the object, the drying method of the present invention is characterized in that magnesia containing hydrated water is pre-dried in a forsterite film forming temperature range.

〔作用〕[Effect]

マグネシアの水和水分量は、第1図に示すように高温に
なるほど低下する。そのため、従来のようにマグネシア
をスラリー状にして塗布した鋼板を加熱するとき、フォ
ルステライト被膜形成開始温度(たとえば約950℃)
以前の段階で水和水分が焼鈍分離剤から放出される。こ
の水分が、コイルの板間に滞留し、前述したように鋼板
を過度に酸化させる原因となる。また、雰囲気ガスの窒
素分圧を下げ、板幅方向に窒素吸収量を変動させること
にもなる。
As shown in FIG. 1, the hydrated water content of magnesia decreases as the temperature increases. Therefore, when heating a steel plate coated with magnesia in the form of slurry as in the past, the forsterite film formation starting temperature (for example, about 950°C)
Hydration water is released from the annealing separator in a previous step. This moisture accumulates between the plates of the coil, causing excessive oxidation of the steel plate as described above. Moreover, the nitrogen partial pressure of the atmospheric gas is lowered, and the amount of nitrogen absorption is varied in the width direction of the plate.

そこで、本発明においては、マグネシアをフォルステラ
イト被膜形成温度域で予め加熱乾燥させる。この処理に
よって、焼鈍分離剤を静電塗布した鋼板を仕上げ焼鈍す
るとき、予備乾燥温度に至るまで、焼鈍分離剤から水分
が放出することがなくなる。そのため、雰囲気ガスが放
出水分による悪影響を受けることなく、コイルの昇温が
行われる。
Therefore, in the present invention, magnesia is previously heated and dried in the forsterite film forming temperature range. This treatment prevents moisture from being released from the annealing separator until the pre-drying temperature is reached when finishing annealing a steel plate to which the annealing separator has been electrostatically applied. Therefore, the temperature of the coil can be increased without the atmospheric gas being adversely affected by the released moisture.

また、焼鈍分離剤が予備乾燥温度を超えて昇温するとき
、残余の水和水がマグネシアから分離して放出される。
Also, when the annealing separator is heated above the pre-drying temperature, residual water of hydration is separated from the magnesia and released.

この放出水より生成するOH基がMgO粒子の表面に吸
着され、陽イオン空位が形成され、またこれが離脱する
と陰イオン空位を生じるが、このような空位濃度の増大
によって拡散が促進され、焼結反応が促進され進行し、
フォルステライト被膜が形成される。すなわち、予備乾
燥されたマグネシアを主成分とする焼鈍分離剤では、過
酸化や窒化反応抑制を生じるような水和水分がなく、一
方、フォルステライト被膜形成に必要な永和分が確保さ
れている。
The OH groups generated from this released water are adsorbed on the surface of the MgO particles, forming cation vacancies, and when they are released, anion vacancies are created, but this increase in vacancy concentration promotes diffusion, leading to sintering. The reaction is accelerated and progresses,
A forsterite film is formed. That is, the annealing separation agent containing predried magnesia as a main component does not contain hydration water that would inhibit peroxidation or nitriding reactions, and on the other hand, maintains the permanent content necessary for forming a forsterite film.

このようにして、本発明に従って乾燥されたマグネシア
を主成分とする焼鈍分離剤は、仕」−げ焼鈍時における
鋼板の昇温過程のフォルステライト被膜形成開始まで水
分を放出するこさなく、被膜形成過程では必要な水分を
放出する。その結果、酸化、窒化不良等の欠陥を発生さ
せることなく、優れた品質のフォルステライト被膜が形
成され、磁性的にも安定した方向性電磁鋼板が得られる
In this way, the annealing separator mainly composed of magnesia dried according to the present invention can form a film without releasing moisture until the formation of a forsterite film during the heating process of the steel sheet during finish annealing. In the process, necessary water is released. As a result, a forsterite coating of excellent quality is formed without defects such as oxidation and nitridation defects, and a grain-oriented electrical steel sheet that is magnetically stable is obtained.

この焼鈍分離剤は、非水和のマグネシアと併用すること
ができる。非水和のマグネシアは、水和水分が皆無とい
われるほどであるので、水和水の持込みが無く、過酸化
等の問題を生じない。しかし、フォルステライト被膜形
成時に、5IO2との反応性に劣る。この一長一短のた
めに、非水和マグネシア単味ては良好なフォルステライ
ト被膜の形成は難しい。この非水和マグネシアを本発明
の高温焼成したマグネシアと混合して使用すると、フォ
ルステライト被膜の形成時に必要な水分が確保され、且
つ非水和マグネシアの特性も活かされて、優れたフォル
ステライト被膜が形成される。
This annealing separator can be used in combination with non-hydrated magnesia. Non-hydrated magnesia is said to have almost no hydration water, so it does not carry over hydration water and does not cause problems such as overoxidation. However, it has poor reactivity with 5IO2 when forming a forsterite film. Because of these advantages and disadvantages, it is difficult to form a good forsterite film using only non-hydrated magnesia. When this non-hydrated magnesia is used in combination with the high-temperature calcined magnesia of the present invention, the moisture necessary for forming a forsterite film is secured, and the properties of non-hydrated magnesia are also utilized, resulting in an excellent forsterite film. is formed.

また、雰囲気ガスからの窒素吸収を促進させ、二次再結
晶を安定化させるために、窒化クロム窒化チタン、窒化
バナジウム、窒化マンガン等の窒化物を添加することも
できる。
Furthermore, nitrides such as chromium nitride titanium nitride, vanadium nitride, manganese nitride, etc. can be added in order to promote nitrogen absorption from the atmospheric gas and stabilize secondary recrystallization.

水和マクネシアの予備乾燥温度は、鋼板の仕上げ焼鈍時
におけるフォルステライト被膜形成温度域、すなわち焼
鈍分離剤中のマグネシアと鋼板表面の酸化層S + 0
2が反応し、被膜を形成する温度域である。この温度域
は、鋼板表面にある酸化層の組成、雰囲気ガスの露点、
不可避的不純物も含めた焼鈍分離剤への添加物等により
変動するが、通常920〜1100℃の範囲にある。
The pre-drying temperature of hydrated magnesia is the forsterite film formation temperature range during final annealing of the steel sheet, that is, the magnesia in the annealing separator and the oxidized layer S + 0 on the surface of the steel sheet.
This is the temperature range where 2 reacts and forms a film. This temperature range depends on the composition of the oxide layer on the surface of the steel sheet, the dew point of the atmospheric gas,
Although it varies depending on additives to the annealing separator including unavoidable impurities, it is usually in the range of 920 to 1100°C.

〔実施例〕〔Example〕

C005%、Si3.2%、 Mn 0.12% 30
.08%、A10.03%、 N O,05%を含有す
る熱延鋼板を1120℃で3分間焼鈍した後、板厚0.
3mmに冷間圧延し、850℃で3分間水素雰囲気中で
脱炭焼鈍した。この焼鈍板に焼鈍分離剤を塗布して、幅
1000mm、 内径600關の10トンコイルに巻き
取って、8275%、N225%の雰囲気中で1150
℃X30時間仕上げ焼鈍した。得られた製品の特性を、
次の表に示す。
C005%, Si3.2%, Mn 0.12% 30
.. After annealing a hot-rolled steel plate containing 0.08%, A10.03%, and NO.05% at 1120°C for 3 minutes, the plate thickness was reduced to 0.08%.
It was cold rolled to a thickness of 3 mm and decarburized annealed at 850° C. for 3 minutes in a hydrogen atmosphere. This annealed plate was coated with an annealing separator, wound into a 10-ton coil with a width of 1000 mm and an inner diameter of 600 mm, and heated to 1150 mm in an atmosphere of 8275% and N225%.
Finish annealing was performed at ℃ for 30 hours. The characteristics of the obtained product,
Shown in the table below.

なお、数表における実施例では、水と混じえて水和した
マグネシアを950℃で予備乾燥したものを基材とし、
これにMnOを5%、TiOを2%添加したものを焼鈍
分離剤として使用し、6g/m″の割合で焼鈍板に静電
塗布した。他方、比較例では、予備乾燥しないマグネシ
アを使用する外は、実施例と同様の条件下で焼鈍分離剤
を焼鈍板に塗布した。また、二次再結晶は、結晶方位の
集積度(ゴス方位からのズレ角度)によって判定し、被
膜密着性は、10mm径曲げ時の被膜の剥離度合によっ
て判定した。
In addition, in the examples in the table, the base material is magnesia hydrated by mixing with water and pre-dried at 950 ° C.
A mixture containing 5% MnO and 2% TiO was used as an annealing separator and electrostatically applied to the annealed plate at a rate of 6 g/m''.On the other hand, in a comparative example, magnesia without pre-drying was used. An annealing separator was applied to the annealed plate under the same conditions as in Examples.Secondary recrystallization was determined by the degree of crystal orientation accumulation (deviation angle from Goss orientation), and film adhesion was determined by , the degree of peeling of the coating upon bending to a diameter of 10 mm was determined.

この表から明らかなように、予備乾燥したマグネシアを
使用した本実施例では、鋼板に対する密着性に優れた被
膜が形成され、磁気特性も大幅に向上している。しかも
、磁束密度、鉄損共にバラツキが少なく、安定した品質
をもつ電磁鋼板が得られた。
As is clear from this table, in this example using pre-dried magnesia, a film with excellent adhesion to the steel plate was formed, and the magnetic properties were also significantly improved. Furthermore, an electrical steel sheet with stable quality and little variation in magnetic flux density and iron loss was obtained.

これに対し、比較例では得られた被膜の密着性は低く、
一部に剥離が見られた。また、磁束密度及び鉄損共に低
い値を示しており、しかもバラツキの大きなものであっ
た。
In contrast, the adhesion of the film obtained in the comparative example was low;
Peeling was observed in some parts. Furthermore, both magnetic flux density and iron loss showed low values, and there were large variations.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、フォルステ
ライト形成温度域でマク不シアを予備乾燥させ、これを
方向性電磁鋼板用焼鈍分離剤の主成分としている。その
ため、仕上げ焼鈍時の昇温過程において焼鈍分離剤から
水分を放出することなく、フォルステライト被膜形成段
階でMgOと310、と反応を促進させる水分を放出し
ている。
As explained above, in the present invention, makushia is pre-dried in the forsterite forming temperature range, and this is used as the main component of the annealing separator for grain-oriented electrical steel sheets. Therefore, moisture is not released from the annealing separator during the temperature raising process during final annealing, but water that promotes the reaction with MgO and 310 is released during the forsterite film formation stage.

そのため、焼鈍された鋼板にスケール、被膜のバラツキ
、二次再結晶不良等が発生ずることなく、安定した品質
をもつ電磁鋼板を製造することが可能となる。
Therefore, it is possible to produce an electrical steel sheet with stable quality without causing scale, film variation, secondary recrystallization defects, etc. in the annealed steel sheet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、水和マグネシアの水和水分量を温度との関係
において表したグラフである。 特許出願人    新日本製鐵 株式會社代  理  
人      小  堀   益 (ほか2名)第 図 温度 ℃
FIG. 1 is a graph showing the hydrated water content of hydrated magnesia in relation to temperature. Patent applicant Nippon Steel Corporation Representative
Masu Kobori (and 2 others) Figure temperature ℃

Claims (1)

【特許請求の範囲】[Claims] 1、水和水分を含有するマグネシアを、フォルステライ
ト被膜形成温度域で予備乾燥させることを特徴とする焼
鈍分離剤用マグネシアの乾燥方法。
1. A method for drying magnesia for use as an annealing separating agent, which comprises pre-drying magnesia containing hydrated water in a temperature range for forming a forsterite film.
JP27809788A 1988-11-01 1988-11-01 Method for drying magnesia for separation agent at annealing Pending JPH02125883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27809788A JPH02125883A (en) 1988-11-01 1988-11-01 Method for drying magnesia for separation agent at annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27809788A JPH02125883A (en) 1988-11-01 1988-11-01 Method for drying magnesia for separation agent at annealing

Publications (1)

Publication Number Publication Date
JPH02125883A true JPH02125883A (en) 1990-05-14

Family

ID=17592595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27809788A Pending JPH02125883A (en) 1988-11-01 1988-11-01 Method for drying magnesia for separation agent at annealing

Country Status (1)

Country Link
JP (1) JPH02125883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505664A (en) * 2015-12-18 2019-02-28 ポスコPosco Annealing separator for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505664A (en) * 2015-12-18 2019-02-28 ポスコPosco Annealing separator for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
US11505843B2 (en) 2015-12-18 2022-11-22 Posco Annealing separator for oriented electrical steel sheet, oriented electrical steel sheet, and manufacturing method of oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
US5082509A (en) Method of producing oriented electrical steel sheet having superior magnetic properties
US3930906A (en) Method for forming an insulating glass film on a grain-oriented silicon steel sheet having a high magnetic induction
US3941623A (en) Method for producing a grain-oriented electrical steel sheet using separators comprising metal nitrides
US4775430A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic properties
KR101796751B1 (en) Annealing separating agent composition, method for manufacturing the same, and method for manufacturing steel sheet using the same
JP2620171B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet without glass coating
JPH02125883A (en) Method for drying magnesia for separation agent at annealing
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP3021241B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH0762440A (en) Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPH0949028A (en) Production of grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating
JPH06336616A (en) Production of grain-oriented silicon steel sheet
JP2671088B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties and remarkably excellent iron core workability, and manufacturing method thereof
JPH11158555A (en) Production of separation agent for annealing and grain oriented silicon steel sheet
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP2762111B2 (en) Method for producing unidirectional silicon steel sheet for forming good forsterite insulating film in coil state
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
KR100245032B1 (en) Process for producing directional sheet excellent in glass coating and magnetic properties
JPH01119622A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
JP2634847B2 (en) Method of drying annealing separator for grain-oriented electrical steel sheets
JP4559865B2 (en) Method for producing grain-oriented electrical steel sheet
JPS5915988B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent iron loss