JPH02123700A - Apparatus for making radiographic image visible - Google Patents

Apparatus for making radiographic image visible

Info

Publication number
JPH02123700A
JPH02123700A JP63277078A JP27707888A JPH02123700A JP H02123700 A JPH02123700 A JP H02123700A JP 63277078 A JP63277078 A JP 63277078A JP 27707888 A JP27707888 A JP 27707888A JP H02123700 A JPH02123700 A JP H02123700A
Authority
JP
Japan
Prior art keywords
ray
image
probe
sensitive body
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63277078A
Other languages
Japanese (ja)
Inventor
Hideo Hirose
秀男 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63277078A priority Critical patent/JPH02123700A/en
Publication of JPH02123700A publication Critical patent/JPH02123700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To make it possible to photograph with super high resolution by x-ray by forming an electric image on an x-ray sensitive material surface by x-ray irradiation and making the image visible through a probe plane-scanning the electric image closely. CONSTITUTION:Samples S are put on an x-ray sensitive material 1, keeping about 0.1mm microdistance each other and an x-ray image is formed by x-ray radiated from an x-ray source G. A pinnacle probe 5 with 1000Angstrom tip radius of curvature is placed to face vertically to the opposite side of the surface to be irradiated by the x-ray, keeping some 10Angstrom between them, and the probe 5 is XY-scanned in parallel to the surface by an operation controlling circuit 7. The x-ray image formed in the other surface of the x-ray sensitive material 1 in the opposite to the probe 5 is made visible by a CRT as an electric scanning image with super high resolution by the probe with the x-ray photoelectron and Auger electron.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明はX線像を可視化する装置、得にX線像を拡大し
て可視化する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an apparatus for visualizing an X-ray image, and particularly to an apparatus for enlarging and visualizing an X-ray image.

(従来の技術) 通常のX線透視像は以前はX線フィルムを用いて撮像す
る方法が主であったが、近時半導体放射線検出素子の二
次元アレイ素子を用い、CRTによって透視像を映出す
る方法が用いられるようになってきた。Xl111顕微
鏡は微小X線源を用い、試料の拡大透視像を得るもので
、XAII像の可視化には上述した普通のX線透視像撮
偉方法と基本的には同じ方法が用いられている。X線顕
微鏡は試料の透視像が得られると云うことの他に、X線
が可視光より短波長であるため光学顕微鏡より高い分解
能が得られると云う原理的な利点があるが、実際には次
の理由から分解能は光学顕微鏡に及ばない。それはXn
顕微鏡はX線の点状線源を用い、試料を腺源近くに置き
、試料より充分層して撮像面を置くことにより拡大され
た影絵を得る構成であるから、分解能は点状IiI源の
大きさによって制限されるが、充分小さなX線源を得る
ことができないことである。この点に関しては近時X線
の結像素子としてフレネルゾーンプレートが作られるよ
うになり、フレネルゾーンプレートを用いてXvl、源
を減少結像して試料面を走査する走査型X線顕微鏡によ
り分解能を高める可能性が出てきたが、X線用フレネル
ゾーンプレートは製作がかなり困難であり、装置構造も
複雑なものとなる。影絵方式のX線顕微鏡では影絵の投
影倍率を小さ(する(X線源を試料より遠ざけ、撮像面
を試料に近づけ或は密着させる)ことで線源が比較的大
きくても相当な分解能を得ることができるが、拡大像を
得るためには撮像手段の分解能が問題になる。X線フィ
ルムを用いる場合は余り拡大はできず、またリアルタイ
ムで画像が得られないと云う欠点がある。半導体アレイ
素子を用いて撮像し、CRTで拡大表示するとか、イメ
ージプレートでX線像を可視光像に変換し、光学的に拡
大する等の方法を用いるとリアルタイム11が得られ、
顕微鏡としての機能が向上するが、この場合、イメージ
プレートを用いても分解能は1〜10μmであるから倍
率としては10〜1000倍程度が限度で、電子顕微鏡
の倍率には及ばない。
(Prior art) Conventional X-ray fluoroscopic images used to be mainly captured using X-ray film, but recently two-dimensional array elements of semiconductor radiation detection elements have been used to capture fluoroscopic images using CRT. This method has come to be used. The Xl111 microscope uses a minute X-ray source to obtain an enlarged fluoroscopic image of a sample, and basically the same method as the above-mentioned ordinary X-ray fluoroscopic imaging method is used to visualize the XAII image. In addition to being able to obtain transparent images of samples, X-ray microscopes have the principle advantage of providing higher resolution than optical microscopes because X-rays have a shorter wavelength than visible light, but in practice The resolution is not as good as that of an optical microscope for the following reasons. That is Xn
The microscope uses a point source of X-rays, and is configured to obtain an enlarged shadow picture by placing the sample near the gland source and placing the imaging surface at a sufficient layer above the sample, so the resolution is similar to that of the point IiI source. Limited by size, it is not possible to obtain a sufficiently small X-ray source. Regarding this point, Fresnel zone plates have recently been manufactured as X-ray imaging elements, and using Fresnel zone plates, Xvl and scanning X-ray microscopes scan the sample surface by reducing the image of the source and scanning the sample surface. However, it is quite difficult to manufacture Fresnel zone plates for X-rays, and the device structure is also complicated. In shadow puppet X-ray microscopes, by reducing the projection magnification of the shadow picture (by moving the X-ray source further away from the sample and bringing the imaging surface closer to or in close contact with the sample), considerable resolution can be achieved even when the source is relatively large. However, in order to obtain an enlarged image, the resolution of the imaging means becomes a problem.When using X-ray film, it cannot be enlarged very much, and the disadvantage is that images cannot be obtained in real time.Semiconductor array Real-time 11 can be obtained by using methods such as capturing an image using a device and enlarging it on a CRT, or converting an X-ray image into a visible light image using an image plate and enlarging it optically.
Although the function as a microscope is improved, in this case, even if an image plate is used, the resolution is 1 to 10 μm, so the magnification is limited to about 10 to 1000 times, which is lower than the magnification of an electron microscope.

(発明が解決しようとする課題) X線顕微鏡で高分解能高倍率を得るのに、Xfl源を必
要なだけ任意に小さくすることができないため、X線源
が特に小さくなくても高分解能を得る方法として試料と
撮像面とを密着或はそれに近い状態に置いて撮像手段の
分解能を高めることが考えられる。こ\で撮像手段とし
て0.01μm〜0.1μmの分解能を有するものが得
られ\は数万倍の拡大像を得ることも可能であり、リア
ルタイムで走査型電子顕微鏡に匹敵するX線顕微鏡が得
られることになる。
(Problem to be solved by the invention) In order to obtain high resolution and high magnification with an X-ray microscope, it is not possible to arbitrarily make the Xfl source as small as necessary, so high resolution can be obtained even if the X-ray source is not particularly small. One possible method is to place the sample and the imaging surface in close contact or in a close state to improve the resolution of the imaging means. With this, an imaging means with a resolution of 0.01 μm to 0.1 μm was obtained, and it was also possible to obtain images tens of thousands of times larger, making it possible to use an X-ray microscope comparable to a scanning electron microscope in real time. You will get it.

従って本発明はX線像の超高分解能撮像手段を(準るこ
とを目的とする。
Therefore, it is an object of the present invention to provide ultra-high resolution imaging means for X-ray images.

(課題を解決するだめの手段) 絶縁i′iフィルムのX線照射側と反対側の面に近接さ
せて鋭い先端を有する導電性材料の探針を対向させ、上
記フィルムにX I (iを投射しながら上記探針で上
記フィルム面を2次元的に走査し、探針に流れる電流信
号をCRT上に映像表示させるようにした。
(Another means to solve the problem) A probe made of a conductive material with a sharp tip is placed close to the surface opposite to the X-ray irradiation side of the insulating i'i film, and is While projecting, the probe scanned the film surface two-dimensionally, and the current signal flowing through the probe was displayed as an image on a CRT.

或はX線照射によって帯電し或は導電性を呈する材料の
表面にX線を照射したとき形成される静′rr!、潜像
を上記材料の表面に近接対向させた鋭い先端を持つ探針
により上記材料表面を2次元的に走査し、このとき探針
に流れる電気的信号く電流信号2電圧信号。静電気力の
検出信号〉或は上記材料に発生する光の検出信号をCR
’T’に映像表示させるようにした。
Alternatively, static 'rr!' formed when X-rays are irradiated on the surface of a material that is charged or exhibits conductivity due to X-ray irradiation. The surface of the material is scanned two-dimensionally by a probe having a sharp tip with a latent image closely opposed to the surface of the material, and at this time an electric signal, a current signal, and two voltage signals flow through the probe. CR detection signal of electrostatic force or detection signal of light generated in the above material
I made it possible to display the image on 'T'.

(作用) どのような物質でもX線を照射するとX線光電子とかオ
ージェ電子を放出する。X線光電子とがオージェ電子は
元素の種類とか結合の仕方で出方が異るので、不均質な
材料の表面から放出される光電子等を位置分解して検出
して映像化しても、単に材料の組織構造を示すパターン
が得られるだけであるが、非晶質均一材料の場合1まぞ
の面に投射されたX線像を表わすことになる。X線を照
射される物質が適当に薄いフィルムである場合、X線光
電子とかオージェ電子はフィルム裏面からも放出され、
その放出量は表面の投射X線像に一致しており、像のぼ
けはない。このフィルム裏面に鋭い針を近づけると針の
先端付近の光電子とかオージェ電子による電子雲が針に
吸収されて針に電流が流れる。この電流は針先近傍の電
子によるものであるから、針によってフィルム裏面を2
次元的に走査すれば投射されたX線像の映像信号が得ら
れ、CRTによって拡大表示できる。探針はトンネル顕
微鏡等で用いられている圧電素子による走査装置を用い
て10A程度の精度で2次元走査できるから、0.01
〜0.1μmの分解能は容易に得られる。
(Function) When any substance is irradiated with X-rays, it emits X-ray photoelectrons or Auger electrons. X-ray photoelectrons are different from Auger electrons, which differ depending on the type of element and the way they are bonded. However, in the case of an amorphous homogeneous material, it represents an X-ray image projected onto a single plane. If the material being irradiated with X-rays is a suitably thin film, X-ray photoelectrons and Auger electrons are also emitted from the back side of the film.
The amount of emission corresponds to the projected X-ray image of the surface, and there is no blurring of the image. When a sharp needle is brought close to the back of this film, the electron cloud caused by photoelectrons or Auger electrons near the tip of the needle is absorbed by the needle, causing a current to flow through the needle. Since this current is caused by electrons near the needle tip, the back side of the film is
Dimensional scanning yields a video signal of the projected X-ray image, which can be enlarged and displayed on a CRT. The probe can perform two-dimensional scanning with an accuracy of about 10A using a scanning device using a piezoelectric element used in tunneling microscopes, etc., so 0.01
Resolutions of ˜0.1 μm are easily obtained.

強電界のか\った絶縁性物質をX線照射するとXvA照
射の結果生じた電子或は正孔が同物質の表面に移動する
ことによりその物質は帯電し、絶縁性であるのでこの帯
電の結果物質面に投射されたX線像は静電像となって物
質面に保持される。
When an insulating material under a strong electric field is irradiated with X-rays, the electrons or holes generated as a result of the XvA irradiation move to the surface of the material, causing the material to become electrically charged.Since it is an insulator, the result of this charging is The X-ray image projected onto the material surface becomes an electrostatic image and is retained on the material surface.

従ってこの静電像を上述した探針走査によって電気的信
号1こ変えればCRT1″:、より拡大映像化すること
ができ、分解能は上の場合と同程度になる。
Therefore, if this electrostatic image is changed by one electric signal by the above-mentioned probe scanning, a more enlarged image can be created on the CRT1'', and the resolution will be about the same as in the above case.

材料が1尽性を有するときは探針から材料側に電子が流
入したとき蛍光を発するから、その光を検出して映像信
号とすることもできる。
When a material is monolithic, it emits fluorescence when electrons flow into the material from the probe, so the light can be detected and used as a video signal.

(実施例) 第1図は本発明の一実施例の全体を示す。lはX線感応
膜で厚さ約1μmのプラスチックフィルムで台板2の窓
3に張設されており、台板2は接地しである。窓3は1
mm角程度である。4はデツキガラスで厚さ0.2mm
、表面に試料Sを付着させX線感応膜1に0.1mm程
度の隙間をあけて近接配置される。この隙間は小さい方
が良いがデツキガラスが膜1に接触すると膜が変形する
おそれがあるで、接触はしないようにしているのである
。Gは点状X線源で試料を図で左方から照射する。5は
探針で先端を曲率半径1000八程度に尖らせたタング
ステンの針で、膜1の裏面(図で右側表面)に数10A
の距離を隔て\対向され、膜1の裏面に平行してxy2
方向に2次元的に駆動される。6は探針5の駆動装置で
探針をx、y+ z3軸方向に駆動する3軸方向の3つ
の圧電素子よりなっており、駆動制御回路7からの信号
により探針5を駆動する。台板2の後側(図で右側)に
は窓3と同軸上に窓を有する電極板8が配置され、正電
位が与えられていて、1摸1から放出された電子を吸引
するようにしである。膜1はプラスチック製でX!aが
当ると光電子を放出し、自身は正iこ帯電する。膜1の
前面に試料があるので膜1上には試料のX線による影絵
像が形成されており、試料が膜に近接しており、X線源
Gが点線源であるから、この影絵像自体はきわてめ高分
解能を持っており、X線源Gが格別微小であることは要
しない。膜1からの光電子放出量・はこの影絵像の濃淡
に応じている。膜lは1μm程度で薄く、X線源が点線
源で試料から相当距l1lI離れている浜、膜1に入射
したX線の膜内での拡りは無視でき、膜裏面における光
電子放出量の大小による像は試料の影絵像と同じでぼや
けは全くない。X線光電子は膜1の両面から放出される
が、膜の前面では放出された光電子が濃い電子雲を形成
して光電子の放出を抑制しており、裏面では光電子は電
極8に吸引されているので膜表面の電子雲はきわめて希
薄になっている。探針5はこのような中で膜1の裏面に
数10Aの距離で対向しているので、探針に数Vの電圧
を与えておくと、探針5の先端に対向している膜1裏面
の数10A径程の範囲から放出された光電子だけが探針
5に吸込まれ、探針電流を形成し、これがX線像の映像
(Embodiment) FIG. 1 shows an entire embodiment of the present invention. 1 is an X-ray sensitive film which is stretched over the window 3 of the base plate 2 with a plastic film having a thickness of about 1 μm, and the base plate 2 is grounded. window 3 is 1
It is about mm square. 4 is a deck glass with a thickness of 0.2mm
, a sample S is attached to the surface and placed close to the X-ray sensitive film 1 with a gap of about 0.1 mm. It is better if this gap is small, but if the deck glass comes into contact with the membrane 1, there is a risk that the membrane will be deformed, so contact is avoided. G is a point X-ray source that irradiates the sample from the left side in the figure. Reference numeral 5 is a tungsten needle with a tip tip sharpened to a radius of curvature of about 1000 mm, and a surface of several tens of amps is attached to the back surface of the membrane 1 (the right surface in the figure).
xy2 parallel to the back surface of membrane 1.
is driven two-dimensionally in the direction. Reference numeral 6 denotes a driving device for the probe 5, which is composed of three piezoelectric elements arranged in three axes for driving the probe in three axes of x, y+z, and drives the probe 5 in response to a signal from a drive control circuit 7. An electrode plate 8 having a window coaxially with the window 3 is arranged on the rear side of the base plate 2 (on the right side in the figure), and is given a positive potential so as to attract electrons emitted from the plate 1. It is. Membrane 1 is made of plastic and is X! When hit by a, it emits photoelectrons and becomes positively charged. Since the sample is in front of the membrane 1, an X-ray shadow image of the sample is formed on the membrane 1, and since the sample is close to the membrane and the X-ray source G is a point source, this shadow image The X-ray source G itself has an extremely high resolution, and the X-ray source G does not need to be particularly small. The amount of photoelectrons emitted from the film 1 depends on the shading of this shadow image. The film 1 is thin, about 1 μm, and the X-ray source is a point ray source, which is an equivalent distance l1lI away from the sample. The size-based image is the same as the shadow image of the sample, and there is no blurring at all. X-ray photoelectrons are emitted from both sides of the membrane 1, but on the front side of the membrane, the emitted photoelectrons form a dense electron cloud to suppress the emission of photoelectrons, and on the back side, the photoelectrons are attracted to the electrode 8. Therefore, the electron cloud on the film surface is extremely thin. In this situation, the probe 5 faces the back surface of the membrane 1 at a distance of several tens of amperes, so if a voltage of several volts is applied to the probe, the membrane 1 facing the tip of the probe 5 Only photoelectrons emitted from a range of several tens of amps in diameter on the back surface are absorbed into the probe 5, forming a probe current, which is an X-ray image.

信号となる。膜1裏面側の電子雲が濃いと探針には周囲
広い範囲の空間から電子が吸寄せられ、映像信号の距離
分解能が低下することになる。探針5に流入した電子電
流は抵抗9の両端に電圧降下を生じ、この電圧が増幅さ
れてCRTloに輝度信号として入力され、駆動制御回
路7からのxy駆動信号がCRTlof:xy走査信号
として印加されて、CRT上に試料のX線像が表示され
る。
It becomes a signal. If the electron cloud on the back side of the film 1 is dense, electrons will be attracted to the probe from a wide range of surrounding space, resulting in a decrease in the distance resolution of the video signal. The electron current flowing into the probe 5 causes a voltage drop across the resistor 9, and this voltage is amplified and inputted to the CRTlo as a brightness signal, and the xy drive signal from the drive control circuit 7 is applied as the CRTlof: xy scanning signal. The X-ray image of the sample is displayed on the CRT.

探針5の走査範囲は1×1μmから100×100μm
2の範囲で可変であり、走M線1000本で走査範囲を
走査する。走査はXn照射下で行われ、1回の走査は約
1秒で完了するので、CRTに残光性のものを用いるこ
とにより、■7I止画像を見ることができる。その画像
を見ながら試料を微動して適当な画像が得られた所で、
−走査分の映像信号を画像メモリ11に格納し、これを
TVモードでCRTに再生表示させることもできる。
The scanning range of the probe 5 is from 1 x 1 μm to 100 x 100 μm.
It is variable within a range of 2, and the scanning range is scanned with 1000 M lines. Scanning is performed under Xn irradiation, and one scan is completed in about 1 second, so by using a CRT with afterglow properties, it is possible to view still images. While looking at the image, move the sample slightly to obtain a suitable image.
- It is also possible to store the video signal for scanning in the image memory 11 and reproduce and display it on a CRT in TV mode.

探針5は膜面に数10Aまで近接させて走査が行われる
が、探針5の膜1表面方向(2方向)の位置制御は次の
ように行われる。試料を置かないでX線照射を行いつ\
、探針5を走査始点位置にして探針に数十Vの正電圧を
かけ探針を2軸方向に駆動しなから探針電流を検出し、
これが所定値になった所でxy方向走査を行い、走査期
間中探針電流が上記所定値を保っているように2軸方向
の位置制御を行う。探針電流は当初殆んどOであるが先
端がIll 1裏面に近づくと探針電流が増加して来る
。そこで適当探針電流の所で探針を膜1裏面に近づける
のを止め、その電流値を保つようにxy駆動を行う。X
線は均一照射になっているので、このようにすると探針
5はDI 1裏面から一定の距離を保ってxy定走査れ
る。この定歪期間中に走査範囲内の幾つかの点における
2方向位置駆動信号の値を検出し、これを記憶しておき
、試料像走査時にはこの記憶に基き、走査範囲の上記幾
つかの点の間は直線内挿によって探針5の2軸方向制御
を行うのである。12は上述した制御を行うマイクロコ
ンピュータである。
Scanning is performed with the probe 5 brought close to the membrane surface up to several tens of amps, and the position control of the probe 5 in the direction (two directions) of the surface of the membrane 1 is performed as follows. Performing X-ray irradiation without placing a sample
, with the probe 5 at the scanning starting point position, apply a positive voltage of several tens of V to the probe, drive the probe in two axes, and then detect the probe current;
When this reaches a predetermined value, scanning is performed in the x and y directions, and position control in two axes is performed so that the probe current remains at the predetermined value during the scanning period. Initially, the probe current is almost O, but as the tip approaches the back surface of Ill1, the probe current increases. Therefore, when a suitable probe current is reached, the probe is stopped from approaching the back surface of the membrane 1, and xy drive is performed to maintain the current value. X
Since the line is uniformly irradiated, by doing this, the probe 5 can be kept at a constant distance from the back surface of the DI 1 and scanned in a constant x and y direction. During this constant distortion period, the values of the two-direction position drive signal at several points within the scanning range are detected and stored, and when scanning the sample image, the values of the two-direction position drive signals are detected at several points within the scanning range based on this memory. During this period, the probe 5 is controlled in two axes by linear interpolation. 12 is a microcomputer that performs the above-mentioned control.

第2図は本発明の他の実施例の要部を示す。第1図の例
はXn照射を行いながら撮像する方式であったが、この
実施例はX 1?パルスで照射を行ってX線感応面に試
料の静電潜像を形成させ、X線照射後この静電潜像を走
査して映像信号を読出しCRT表示を行うものである。
FIG. 2 shows the main parts of another embodiment of the invention. The example shown in FIG. 1 is a method of imaging while performing Xn irradiation, but this embodiment uses X1? The irradiation is performed in pulses to form an electrostatic latent image of the sample on the X-ray sensitive surface, and after the X-ray irradiation, this electrostatic latent image is scanned to read out video signals and display them on a CRT.

全体的構造は上例とはV同じであるので異っている点I
こついてのみ説明する。X411感応体lは平面研摩し
たアルミニウム板1m上にセレン層Seを蒸着したもの
で、Se届は非晶質Se層を形成しており、光導電性を
有する。この光導電性はX4!i!照射によっても得ら
れる。X線感応体1をSeの側をX線源Gと反対倒に向
けて固定し、まずチャージャーCを感応体1上に進出さ
せ、チャージャーCの先端からコロナ放電を行わせて感
応体1のSe表面に正電荷を帯電させる。その後この感
応体のアルミニウム側表面上に直接或はガラス板等を介
してヱ料を位置させX線源GによってX線パルスの照射
を行う。照射後感応体ISeの側を探針5に対向させる
。Se面にはXvAの強く当った所程帯電電荷か失われ
て静電潜像が形成されている。探針5を負電位に保って
お(と、静電溝1象でX線の弱く当った所では残留正電
荷が多く高電位であるから探針先端との間に放電が行わ
れ放電電流が抵抗9を流れ、その電圧降下により映像信
号が得られる。この映像信号は画像メモリ11に格納さ
れた後、CRTIOによりTVモードで画像表示される
。探針5のZ方向制御はX線照射しつ\、探針に十数V
の電圧をかけてSe面に近づける。Se板は一様に導電
性になっており、探針との間に放電電流が流れ、その電
流は探針先端とSe面との距離が近づくと急に大きくな
るから、適当電流の所で探針のZ方向駆動を止め、その
電流を保つようにxy定走査行って、Z方向制御値を記
憶するようにすること等は第1図の実施例と同じである
The overall structure is the same as the above example, so the difference is I
I will only explain the tricks. The X411 sensitizer 1 is made by depositing a selenium layer Se on a 1 m planar polished aluminum plate, and the Se layer forms an amorphous Se layer and has photoconductivity. This photoconductivity is X4! i! It can also be obtained by irradiation. Fix the X-ray sensitive body 1 with the Se side facing away from the X-ray source G, first advance the charger C onto the sensitive body 1, and cause corona discharge to occur from the tip of the charger C to charge the sensitive body 1. The Se surface is positively charged. Thereafter, a material is placed on the aluminum side surface of the sensitive body directly or via a glass plate or the like, and an X-ray pulse is irradiated with the X-ray source G. After irradiation, the side of the sensitive body ISe is made to face the probe 5. The more strongly the XvA hits the Se surface, the more the charged charge is lost and an electrostatic latent image is formed. When the probe 5 is kept at a negative potential (in the electrostatic groove 1), where the X-rays weakly hit the area, there is a lot of residual positive charge and the potential is high, so a discharge occurs between the tip of the probe and the discharge current. flows through the resistor 9, and a video signal is obtained by the voltage drop.This video signal is stored in the image memory 11, and then displayed as an image in TV mode by the CRTIO.Z-direction control of the probe 5 is performed by X-ray irradiation. Shitsu\, more than 10 V on the probe
Apply a voltage of 100 mL to bring it close to the Se surface. The Se plate is uniformly conductive, and a discharge current flows between it and the probe, and the current suddenly increases as the distance between the tip of the probe and the Se surface approaches. This is the same as the embodiment shown in FIG. 1, such as stopping the drive of the probe in the Z direction, performing constant x and y scanning while maintaining the current, and storing the Z direction control value.

この実施例ではXn感応体に光導電性材料を用いたが、
絶縁材料を用い、X線光電子の放出による帯電でX線の
静電潜像を作るようにしてもよい。或はX線に対して蓄
光性を有する蛍光材料で1尽性を有するものを用いX線
による励起状態でX!l!it像を保持させ、探針から
の放電でこの励起状態を解消するときの1尽性発光を光
電子増倍管で検出して映像信号とすることもできる。X
 &’!感応体表面に形成されている電気的なX線像を
電気的信号として取出す場合、上例では探針に流れる電
流信号を取出しているが、探針の電位変化を信号として
取出してもよく、成は探針とX線感応体表面との間に働
(静電気力のX線感応体表面の電気的像の濃淡による変
化を圧電素子等によって検出するようにしてもよい。
In this example, a photoconductive material was used for the Xn sensitizer, but
An insulating material may be used and an electrostatic latent image of X-rays may be created by charging due to the emission of X-ray photoelectrons. Alternatively, using a monolithic fluorescent material that has a luminescence property against X-rays, X! l! It is also possible to hold the IT image and use a photomultiplier tube to detect single-shot light emission when the excited state is canceled by discharge from the probe and use it as a video signal. X
&'! When extracting the electrical X-ray image formed on the surface of the sensitive body as an electrical signal, in the above example, a current signal flowing through the probe is extracted, but changes in the potential of the probe may also be extracted as a signal. The electrostatic force acts between the probe and the surface of the X-ray sensitive body (changes in the density of the electrical image on the surface of the X-ray sensitive body due to the electrostatic force may be detected by a piezoelectric element or the like.

(発明の効果) 本発明によれば、X線感応体にX線像を投射することに
よりX線像をX線感応体表面における電気的像に変換し
、上記X4!i!感応体表面に尖鋭な探針を近接させて
同面を2次元的に走査してX線像の映像信号を得るもの
であるから、X線像をきわめて高い空間分解能で可視可
することができ、かつXMIフィルムを用いる方式と異
りXvA像の可視可に即時性が得られる。
(Effects of the Invention) According to the present invention, by projecting the X-ray image onto the X-ray sensitive body, the X-ray image is converted into an electrical image on the surface of the X-ray sensitive body, and the X4! i! Since the X-ray image signal is obtained by bringing a sharp probe close to the surface of the sensitive body and scanning the same surface two-dimensionally, the X-ray image can be visualized with extremely high spatial resolution. , and unlike the method using XMI film, the XvA image can be visualized immediately.

【図面の簡単な説明】 第1図は本発明の一実施例の構成を示す図、第2図は本
発明の他の実施例の構成を示す図である。 1・・・X線感応体のプラスチックフィルム、2・・・
台板、3・・・窓、4・・・デツキガラス、S・・・試
料、G・・・X111I源、5・・・探針、6・・・探
針駆動装置、7・・・駆動制御回路、8・・・電極板、
9・・・抵抗、10・・・CRTlll・・・画像メモ
リ、12・・・コンピュータ。 代理人  弁理士 縣  浩 介 !111 図 2′6社 6石動系!
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the configuration of one embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of another embodiment of the present invention. 1... Plastic film of X-ray sensitive material, 2...
Base plate, 3... Window, 4... Deck glass, S... Sample, G... X111I source, 5... Probe, 6... Probe drive device, 7... Drive control Circuit, 8... Electrode plate,
9...Resistor, 10...CRT1ll...Image memory, 12...Computer. Agent: Patent Attorney Kosuke Agata! 111 Figure 2'6 company 6 stone movement system!

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性フィルムのX線照射側と反対側の面に近接
させて鋭い先端を有する導電性材料の探針を対向させ、
上記フィルムにX線像を投射しながら、上記探針で上記
フィルム面を2次元的に走査し、探針に得られる電気的
信号を映像表示させることを特徴とするX線像可視化装
置。
(1) A probe made of a conductive material with a sharp tip is placed close to the surface opposite to the X-ray irradiation side of the insulating film, and
An X-ray image visualization device characterized in that, while projecting an X-ray image onto the film, the probe scans the surface of the film two-dimensionally, and displays an electrical signal obtained by the probe as an image.
(2)X線感応体表面に鋭い先端を有する探針を近接対
向させて同表面を2次元的に走査し、上記探針に得られ
る電気信号を映像表示させる手段を有し、上記X線感応
体としてX線照射により帯電し或は導電性を呈する材料
を用い、その表面にX線像を投射することにより静電潜
像を形成させ、その静電潜像を上記手段により映像信号
に変換するようにしたことを特徴とるずX線像可視化装
置。
(2) means for two-dimensionally scanning the surface of the X-ray sensitive body by placing a probe having a sharp tip in close opposition to the surface of the X-ray sensitive body and displaying an electric signal obtained by the probe as an image; A material that is charged or conductive by X-ray irradiation is used as the sensitive body, an electrostatic latent image is formed by projecting an X-ray image onto the surface of the material, and the electrostatic latent image is converted into a video signal by the above-mentioned means. A Ruzu X-ray image visualization device characterized by being adapted to perform conversion.
(3)X線感応体表面に鋭い先端を有する探針を近接対
向させて同表面を2次元的に走査し、上記探針と上記X
線感応体表面との間の放電により上記X線感応体から発
せられる光を検出して映像信号とし映像表示させる手段
を有し、上記X線感応体としてX線照射により蓄光して
電気的刺激により蓄光エネルギーを光として放出する揮
尽性物質を用い、その表面にX線像を投射してX線像を
蓄光像として保持させ、この蓄光像を上記探針からの放
電により発光させ映像信号化するようにしたことを特徴
とするX線像可視化装置。
(3) A probe with a sharp tip is closely opposed to the surface of the X-ray sensitive body, and the surface is scanned two-dimensionally, and the probe and the
It has a means for detecting light emitted from the X-ray sensitive body by discharge between the surface of the X-ray sensitive body and converting it into a video signal to display an image, and the X-ray sensitive body accumulates light by X-ray irradiation and generates electrical stimulation. Using a volatile substance that emits phosphorescent energy as light, an X-ray image is projected onto the surface of the volatile substance, the X-ray image is retained as a phosphorescent image, and this phosphorescent image is emitted by discharge from the probe to generate a video signal. An X-ray image visualization device characterized in that it is configured to visualize images.
JP63277078A 1988-10-31 1988-10-31 Apparatus for making radiographic image visible Pending JPH02123700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277078A JPH02123700A (en) 1988-10-31 1988-10-31 Apparatus for making radiographic image visible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277078A JPH02123700A (en) 1988-10-31 1988-10-31 Apparatus for making radiographic image visible

Publications (1)

Publication Number Publication Date
JPH02123700A true JPH02123700A (en) 1990-05-11

Family

ID=17578470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277078A Pending JPH02123700A (en) 1988-10-31 1988-10-31 Apparatus for making radiographic image visible

Country Status (1)

Country Link
JP (1) JPH02123700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464977A (en) * 1993-03-10 1995-11-07 Nikon Corporation Scanning optical detection apparatus and method, and photoelectric conversion medium applied thereto
JP2008077978A (en) * 2006-09-21 2008-04-03 Hitachi Medical Corp X-ray bulb, x-ray camera, and electrostatic charge measuring device of vacuum insulation equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464977A (en) * 1993-03-10 1995-11-07 Nikon Corporation Scanning optical detection apparatus and method, and photoelectric conversion medium applied thereto
JP2008077978A (en) * 2006-09-21 2008-04-03 Hitachi Medical Corp X-ray bulb, x-ray camera, and electrostatic charge measuring device of vacuum insulation equipment

Similar Documents

Publication Publication Date Title
US6078643A (en) Photoconductor-photocathode imager
SE441786B (en) RADIO EXPOSURE HEATING DEVICE
EP0028645B1 (en) Method of impressing and reading out a surface charge on a multilayered detector structure
US5084619A (en) X-ray diagnostics installation having a solid-state transducer
KR19980702393A (en) Flat Panel Detectors and Image Detectors
US4763002A (en) Photon detector
JPS63114455A (en) Electrostatic image sensor
US4399360A (en) Transmission electron microscope employing sequential pixel acquistion for display
JPH02123700A (en) Apparatus for making radiographic image visible
JPH08313544A (en) Electron microscope and sample observing method using it
JPH0745230A (en) Image recording method and device by electric field ion microscope or field emission microscope
US4493096A (en) Method of X-ray imaging using slit scanning with controlled target erase
Oatley et al. The development of the scanning electron microscope
JPH03200100A (en) X-ray microscope
JPS6037582A (en) Method and apparatus for displaying and reading image
Pease The determination of the area of emission of reflected electrons in a scanning electron microscope
JPH04152289A (en) Image type x-ray detector
WO2016203667A1 (en) High-speed image-capturing device
JP2807668B2 (en) Electron beam defect inspection method and apparatus
Haine et al. An image intensifier for the electron microscope
JPH07170456A (en) Image pickup device
JPH0718960B2 (en) X-ray microscope
JPH0676771A (en) Scanning type image pickup device, image pickup method, and image pickup plate used therefor
AU536855B2 (en) Realtime radiation exposure monitor and control apparatus
JPH08228313A (en) Image pickup device