JPH04152289A - Image type x-ray detector - Google Patents

Image type x-ray detector

Info

Publication number
JPH04152289A
JPH04152289A JP2277434A JP27743490A JPH04152289A JP H04152289 A JPH04152289 A JP H04152289A JP 2277434 A JP2277434 A JP 2277434A JP 27743490 A JP27743490 A JP 27743490A JP H04152289 A JPH04152289 A JP H04152289A
Authority
JP
Japan
Prior art keywords
probe
photo electron
ray
generated
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2277434A
Other languages
Japanese (ja)
Inventor
Kunio Nakajima
邦雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2277434A priority Critical patent/JPH04152289A/en
Publication of JPH04152289A publication Critical patent/JPH04152289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To obtain space resolution at an order of nano meter, and enable a detector to be made compact by providing a photo electron screen for generating photo electron upon receipt of an X-ray, and a conductive probe for detecting the generated photo electron. CONSTITUTION:An X-ray 1 such as a ray in the predetermined wavelength zone passes a pinhole 2 and arrives at a photo electron screen body 4 after permeation through and absorption of a sample 3. Photo electron generated on a photo electron screen due to exposure to then X-ray 1 gives a tunnel phenomenon with a metal probe 5 driven by an actuator 6 for scanning on the screen. The actuator 6 to cause the probe 5 to scan in X- and Y-axis directions is controlled with an X- and Y-direction scanning circuit 7. Also, the probe 5 is controlled with a moving servo circuit 8 in respect of a Z-axis direction. Tunnel current generated between the photo electron screen body 4 and the probe 5 is amplified by a tunnel current amplifier 9, and fed back to the circuit 8. The tunnel current value is synchronized with control values for circuits 7 and 8, and saved in memory 10. The generated photo electron or voltage change is converted to image data on a display device 12 via the processing circuit of a microcomputer 11.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明はXklA像を従来よりも高分解能で検出する
検出器で、医用放射線画像および工業用非破壊検査に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a detector for detecting XklA images with higher resolution than conventional ones, and relates to medical radiation images and industrial non-destructive testing.

〔発明の概要〕[Summary of the invention]

この発明はXvAの入射エネルギーにより発生する光電
子と導電性探針(例えば、細い金属の針)とのトンネル
現像を利用することにより、従来の発生した光電子を加
速、集束、結像し、蛍光面で電子線を可視光化する方法
に比べて、高い分解能を有する。
This invention uses tunnel development between photoelectrons generated by incident energy of XvA and a conductive probe (e.g., a thin metal needle) to accelerate, focus, and image the photoelectrons generated conventionally, and This method has higher resolution than the method of converting electron beams into visible light.

この発明のイメージ型X線検出器の特徴は、(1)光電
表面より飛び出した電子と充電表面からナノメータオー
ダの距離に近づけた先端の細い導電性探針との間に流れ
るトンネル現像流を利用してX&Iを検出および画像化
するため、ナノメータオーダーの分解能が得られる。
The features of the image-type X-ray detector of this invention are: (1) It utilizes a tunnel development flow that flows between electrons ejected from the photoelectric surface and a thin-tipped conductive probe placed at a nanometer-order distance from the charging surface. Since the X&I is detected and imaged using the method, a resolution on the order of nanometers can be obtained.

(2)光電面体と探針の間に加えられる電圧は、1mV
からIV程度と扱い昌い。
(2) The voltage applied between the photocathode and the probe is 1 mV.
It can be treated as a to IV grade.

(3)発生した光電子の加速、集束、結像、電子線の可
視光化のための蛍光面および各種カメラ類を必要とせず
、小型化することができる、等が上げられる。
(3) There is no need for a phosphor screen or various cameras for accelerating, focusing, and imaging the generated photoelectrons and for making the electron beam visible, and the device can be miniaturized.

〔従来の技術〕[Conventional technology]

従来、X線の画像化はX線イメージインテンシファイア
−に代表される。光電面体は、X線によって発光する入
力蛍光面と、その下へ密着して光を光電子に変換し真空
中へ放出させる充電面を備えている。そして、光電子像
は管内部の静電レンズ系により加速されつつ、集束、結
像し、出力蛍光面で電子線を受けて可視光を1次レンズ
およびカメラレンズで画像化する方法が用いられていた
Conventionally, X-ray imaging is typified by an X-ray image intensifier. The photocathode includes an input phosphor screen that emits light by X-rays, and a charging surface that is in close contact with the bottom of the input phosphor screen to convert the light into photoelectrons and emit them into a vacuum. The photoelectron image is accelerated by an electrostatic lens system inside the tube, focused and formed into an image, and an output phosphor screen receives the electron beam, and the visible light is converted into an image using a primary lens and a camera lens. Ta.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように従来の方法は入力蛍光面のX線変換効率およ
び充電面での光電子発生効率の点から、空間分解能10
μm程度にとどまっていた。また、微弱な光電子量のた
めにバンクグランドも大きいなどの欠点があった。
In this way, the conventional method has a spatial resolution of 10 in terms of the X-ray conversion efficiency of the input phosphor screen and the photoelectron generation efficiency of the charging surface.
It remained at about μm. In addition, there were drawbacks such as a large bank ground due to the weak amount of photoelectrons.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、上記の欠点を除去すべくなされたもので、
真空紫外からγ線の波長領域で、光電子像の加速、集束
、結像、出力蛍光面での可視光化、各種カメラレンズで
画像化する代わりに、光電子と細い導電性探針とのトン
ネル現象を利用することによって、高い空間分解能でX
線像を画像化するイメージ型X線検出器を提供すること
を目的としている。
This invention was made to eliminate the above-mentioned drawbacks.
In the wavelength range from vacuum ultraviolet to γ-rays, instead of accelerating, focusing, and imaging photoelectron images, making them visible on an output phosphor screen, and creating images with various camera lenses, tunneling phenomenon between photoelectrons and thin conductive probes. By using
The object of the present invention is to provide an image-type X-ray detector that converts a ray image into an image.

〔作用〕[Effect]

X線検出器は、光電面と導電性探針の間の距離がナノメ
ータオーダーであるため、光電子は光電面に対してほぼ
垂直に発生するため、ナノメータの空間分解能を得るこ
とができる。しかも、流れるトンネル電流が1nA前後
で測定や制御は困難ではなくS/N比良く出力できる。
In an X-ray detector, since the distance between the photocathode and the conductive probe is on the order of nanometers, photoelectrons are generated almost perpendicularly to the photocathode, so that a spatial resolution of nanometers can be obtained. Moreover, since the tunnel current flowing is around 1 nA, measurement and control are not difficult and output can be achieved with a good S/N ratio.

[実施例〕 以下、この発明の実施例を図面を参照しながら説明する
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図はこの発明に係るイメージ型X線検出器の構成図
を示したものである。X線などこの発明所定の波長領域
の線源1は、ピンホール2を通過し、試料3を通過・吸
収して光電面体4に到達する。X線量に伴って、充電面
より発生した光電子は、アクチュエータ6により充電面
上に走査している金属探針5との間でトンネル現象が生
ずる。
FIG. 1 shows a block diagram of an image type X-ray detector according to the present invention. A radiation source 1 such as X-rays in a predetermined wavelength range of the present invention passes through a pinhole 2, passes through and is absorbed by a sample 3, and reaches a photocathode 4. A tunneling phenomenon occurs between the photoelectrons generated from the charging surface as the X-ray dose increases and the metal probe 5 is scanned by the actuator 6 over the charging surface.

このトンネル現象を用いて光電子の量を検出するために
は、以下の方法がある。
There are the following methods for detecting the amount of photoelectrons using this tunneling phenomenon.

(1)トンネル電流を一定にするもので、光電子の量を
電圧変化として読む、探針と試料の間の距離を制御する
サーボ増幅器8を用いる。
(1) A servo amplifier 8 is used that keeps the tunnel current constant, reads the amount of photoelectrons as a voltage change, and controls the distance between the probe and the sample.

(2)可変電流で光電子の量を読むもので、トンネル電
流t流の変化を光電子量としてみる。
(2) The amount of photoelectrons is read using a variable current, and the change in tunnel current t is considered as the amount of photoelectrons.

探針5をXY方向に走査させるアクチュエータ6は、X
Y走査回路7により制御される。また探針5を2方向(
光電面体4に対して垂直方向)の移動はサーボ回路8に
より制御される。光電面体4と探針5との間に生じるト
ンネルを流はトンネルxi増幅器で増幅され、サーボ回
路にフィードバックされる。トンネル電流値と、XY走
査回路7とサーボ回路8の制御値を同期させてメモリ1
0に記憶させる。
The actuator 6 that causes the probe 5 to scan in the X and Y directions is
It is controlled by the Y scanning circuit 7. Also, move the probe 5 in two directions (
The movement in the direction perpendicular to the photocathode 4 is controlled by a servo circuit 8. The tunnel flow generated between the photocathode 4 and the probe 5 is amplified by the tunnel xi amplifier and fed back to the servo circuit. The memory 1 is synchronized with the tunnel current value and the control values of the XY scanning circuit 7 and servo circuit 8.
Store it as 0.

[311i fLを電圧で微分するもので、電子やフォ
ノン状態密度の充電面内分布を得るもの。
[311i This method differentiates fL with respect to voltage, and obtains the distribution of electron and phonon state densities within the charging plane.

第2図は、この発明に係るイメージ型X線検出器の一実
施例を示した説明図である。光電面体4は基板42、入
力蛍光面43、緩衝膜44および光電面45を順に真空
蒸着法によって形成する。
FIG. 2 is an explanatory diagram showing one embodiment of the image type X-ray detector according to the present invention. The photocathode 4 is formed by sequentially forming a substrate 42, an input phosphor screen 43, a buffer film 44, and a photocathode 45 by vacuum evaporation.

入力蛍光面43は、Cs1(Na)真空蒸着膜は、アル
ミニウム、ガラスおよびシリコン基板上に作製する。真
空蒸着は、10−5〜10−”T o r rの真空度
で基板表面温度を50〜200℃に加熱して、Nalを
10−3〜10−”  モル比だけ混入した試料を蒸発
させ、膜厚50〜300ttmまで成長させ、焼鈍する
。緩衝膜44は発光効率低下と、光電陰極の導電率の不
均一性を取り除くために、S i O,Mn0z  A
ft 03あるいはLiFを約1100n蒸着する。さ
らに光電面45どしてCslあるいはC3s、Sbを3
0〜200nm蒸発する。光電面45と探針5の間に電
圧をかけるバイアス電圧源が介在している。
For the input phosphor screen 43, a Cs1 (Na) vacuum-deposited film is fabricated on an aluminum, glass, and silicon substrate. Vacuum evaporation involves heating the substrate surface temperature to 50 to 200°C under a vacuum degree of 10-5 to 10-" Torr, and evaporating a sample mixed with Nal at a molar ratio of 10-3 to 10-". , grown to a film thickness of 50 to 300 ttm, and annealed. The buffer film 44 is made of SiO, Mn0zA, in order to reduce luminous efficiency and eliminate non-uniformity of conductivity of the photocathode.
Deposit about 1100 nm of ft 03 or LiF. Furthermore, Csl, C3s, and Sb are added to the photocathode 45.
Evaporates from 0 to 200 nm. A bias voltage source that applies a voltage between the photocathode 45 and the probe 5 is interposed.

光電面上をナノメータオーダの距離で走査する細い金属
の針5は、タングステンまたは白金の先端を機械加工あ
るいは電解研磨した探針5で、先端の曲率半径は約11
00nである。探針5を3次元XYZ方向に走査するア
クチュエータ6に圧電素子を使用する。圧電素子の材料
としてチタン酸ジルコン酸鉛などを用いる。走査範囲は
、光電面上を1μmX1μm〜1mmX l mmの領
域で走査できる。
The thin metal needle 5 that scans the photocathode at a distance on the order of nanometers is a probe 5 whose tip is machined or electrolytically polished from tungsten or platinum, and the radius of curvature of the tip is approximately 11
It is 00n. A piezoelectric element is used for the actuator 6 that scans the probe 5 in three-dimensional XYZ directions. Lead zirconate titanate is used as the material for the piezoelectric element. The scanning range is 1 μm×1 μm to 1 mm×1 mm on the photocathode.

発生した光電子は電流あるいは電圧変化として出力され
る。マイクロコンピュータ11の処理回路系を通して表
示装置12へ画像化される。以上によって構成されたイ
メージ型Xi検出器は、光電面45と導電性探針の間の
距離がナノメータオーダであるため、光電子は光電面4
5に対してほぼ垂直に発生するため、ナノメータの空間
分解能を得ることができる。しかも、流れるトンネル電
流が1nA前後で測定や制御は困難ではなくS/N比良
く出力できる。
The generated photoelectrons are output as current or voltage changes. The image is displayed on the display device 12 through the processing circuit system of the microcomputer 11. In the image-type Xi detector configured as described above, since the distance between the photocathode 45 and the conductive probe is on the order of nanometers, photoelectrons are transferred to the photocathode 45.
5, a spatial resolution of nanometers can be obtained. Moreover, since the tunnel current flowing is around 1 nA, measurement and control are not difficult and output can be achieved with a good S/N ratio.

〔発明の効果〕〔Effect of the invention〕

この発明によるイメージ型X線検出器は上述のごとく、
光電面体と発生した光電子を導電性探針で検出する方法
をとっているので、ナノメータオーダの空間分解能を有
する。さらに、光電面体と探針との間にかかる電圧は、
1mV〜1v程度と扱いやすく、また発生した光電子の
加速、集束、結像、電子線の可視光化のための蛍光面お
よびレンズ・カメラ類を必要とせず、小型化することが
できる。このため従来高い空間分解能が要求されていた
X線ホログラフィ−1X&!顕微鏡、X4I透遍装置等
の研究用分Fr装置や工業用検査装置および医用放射線
画像装置の検出器として広く応用できる。
As mentioned above, the image type X-ray detector according to the present invention has the following features:
Since the photocathode and the generated photoelectrons are detected using a conductive probe, it has a spatial resolution on the order of nanometers. Furthermore, the voltage applied between the photocathode and the probe is
It is easy to handle at about 1 mV to 1 V, and can be miniaturized without requiring a phosphor screen, lens, or camera for accelerating, focusing, and imaging the generated photoelectrons, and making the electron beam visible. For this reason, X-ray holography, which conventionally required high spatial resolution - 1X&! It can be widely applied as a detector for research Fr devices such as microscopes and X4I transmissive devices, industrial inspection devices, and medical radiation imaging devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るイメージ型X線検出器の構成を
示すブロック図、第2図はこの発明の実施例を示すブロ
ック図である。 ・X線 、ピンホール ・試料 ・光電面体 ・探針 ・3次元アクチュエータ ・・XY走査回路 ・・サーボ回路 ・トンネル電流増幅器 ・・メモリ ・・マイクロコンピュータ ・・表示装置 ・・基板 ・・蛍光膜 ・・緩衝膜 ・・光1f膜 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助
FIG. 1 is a block diagram showing the configuration of an image type X-ray detector according to the invention, and FIG. 2 is a block diagram showing an embodiment of the invention.・X-ray, pinhole, sample, photocathode, probe, three-dimensional actuator, XY scanning circuit, servo circuit, tunnel current amplifier, memory, microcomputer, display device, substrate, fluorescent film,・Buffer film: Optical 1F film or above Applicant: Seiko Electronic Industries Co., Ltd. Patent attorney: Keinosuke Hayashi

Claims (2)

【特許請求の範囲】[Claims] (1)X線入射により光電子を発生する光電面と発生し
た光電子を検出する導電性探針からなることを特徴とす
るイメージ型X線検出器。
(1) An image-type X-ray detector comprising a photocathode that generates photoelectrons upon incidence of X-rays and a conductive probe that detects the generated photoelectrons.
(2)光電面はX線入射により発光する蛍光面を含む多
層構造であることを特徴とする請求項1記載のイメージ
型X線検出器。 (2)使用波長が真空紫外線からγ線の領域であること
を特徴とする請求項1記載のイメージ型X線検出器。
(2) The image type X-ray detector according to claim 1, wherein the photocathode has a multilayer structure including a fluorescent screen that emits light upon incidence of X-rays. (2) The image type X-ray detector according to claim 1, wherein the wavelength used is in the range from vacuum ultraviolet rays to gamma rays.
JP2277434A 1990-10-16 1990-10-16 Image type x-ray detector Pending JPH04152289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277434A JPH04152289A (en) 1990-10-16 1990-10-16 Image type x-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277434A JPH04152289A (en) 1990-10-16 1990-10-16 Image type x-ray detector

Publications (1)

Publication Number Publication Date
JPH04152289A true JPH04152289A (en) 1992-05-26

Family

ID=17583509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277434A Pending JPH04152289A (en) 1990-10-16 1990-10-16 Image type x-ray detector

Country Status (1)

Country Link
JP (1) JPH04152289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464977A (en) * 1993-03-10 1995-11-07 Nikon Corporation Scanning optical detection apparatus and method, and photoelectric conversion medium applied thereto
US8441474B2 (en) 2008-06-25 2013-05-14 Aristocrat Technologies Australia Pty Limited Method and system for setting display resolution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464977A (en) * 1993-03-10 1995-11-07 Nikon Corporation Scanning optical detection apparatus and method, and photoelectric conversion medium applied thereto
US8441474B2 (en) 2008-06-25 2013-05-14 Aristocrat Technologies Australia Pty Limited Method and system for setting display resolution

Similar Documents

Publication Publication Date Title
US5351278A (en) X-ray tomography method and apparatus thereof
US5177774A (en) Reflection soft X-ray microscope and method
US3594583A (en) Electro-optical devices for detecting images of invisible radiations using interaction of light beams
US5517033A (en) Apparatus for improved image resolution in electron microscopy
JP3490597B2 (en) Mask inspection equipment
JP2001512568A (en) Soft X-ray microscope
JPS63114455A (en) Electrostatic image sensor
JPH0761134B2 (en) Double-sided solid-state image device
JP3687243B2 (en) Pattern inspection device
Bennett et al. High-brightness, high-spatial-resolution, 6.151 keV x-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia’s Z accelerator
JPH04152289A (en) Image type x-ray detector
Green Jr Direct display of x-ray topographic images
US4597017A (en) Scanner system for X-ray plate readout
US4542405A (en) Method and apparatus for displaying and reading out an image
Cheng et al. X-ray shadow projection microscopy and microtomography
JPH03200100A (en) X-ray microscope
US3100817A (en) Image converter and amplifier
Goetze et al. Direct Viewing and Rapid Photographic Recording of X‐Ray Diffraction Patterns
JP3107593B2 (en) Pattern inspection equipment
Arndt et al. An image intensifier-television system for the direct recording of x-ray diffraction patterns
Meieran Video Display of X‐Ray Images: I. X‐Ray Topographs
Aritome et al. An imaging X-ray microscope using a laser-plasma source
JPS61140812A (en) Mask inspecting instrument
JPH02123700A (en) Apparatus for making radiographic image visible
US3284661A (en) Membrane for image converter and amplifier