JPH02116678A - Production of sintered silicon carbide body - Google Patents

Production of sintered silicon carbide body

Info

Publication number
JPH02116678A
JPH02116678A JP63270336A JP27033688A JPH02116678A JP H02116678 A JPH02116678 A JP H02116678A JP 63270336 A JP63270336 A JP 63270336A JP 27033688 A JP27033688 A JP 27033688A JP H02116678 A JPH02116678 A JP H02116678A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
impurities
acid
carbide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63270336A
Other languages
Japanese (ja)
Inventor
Toshikazu Amino
俊和 網野
Susumu Akiyama
晋 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP63270336A priority Critical patent/JPH02116678A/en
Publication of JPH02116678A publication Critical patent/JPH02116678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high-purity and high-strength sintered silicon carbide body at low cost by utilizing inexpensive silicon carbide powder contg. comparatively large amounts of impurities as a raw material and calcining it and thereafter removing the impurities remaining in the produced porous sintered body by pickling. CONSTITUTION:Silicon carbide powder which contains comparatively large amounts of impurities such as iron, aluminum and calcium and can be inexpensively obtained is prepared as a raw material. A sintering auxiliary is blended with this silicon carbide powder in accordance with necessity and this mixture is molded into a prescribed shape and thereafter this molded body is calcined to produce a porous sintered body. Then the impurities remaining in this porous sintered body are washed and removed by an inorganic acid aq. soln. such as hydrochloric acid and nitric acid. The high-purity and high-strength sintered silicon carbide body is obtained by preferably recalcining the porous sintered body and making it dense. Thereby the need for utilizing the high-purity and expensive silicon carbide powder which has been produced by a vapor phace method is eliminated and thereby production cost can be lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は炭化珪素焼結体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a silicon carbide sintered body.

〔従来の技術〕[Conventional technology]

近年、半導体製造用拡散炉に使用されるライチーチュー
ブの構成材料として、強度及び熱伝導性に優れた炭化珪
素焼結体が利用されている。又、一般に炭化珪素焼結体
内に鉄及びカルシュウム等の不純物が残存していると、
その部位が破壊の発生源となると共に、不純物濃度に相
応して強度のバラツキが生じるということが知られてい
る。そこで、高い強度を要求される焼結体を製造する場
合には、気相法等によって製造された高速度の炭化珪素
パウダーが用いられている。
In recent years, sintered silicon carbide, which has excellent strength and thermal conductivity, has been used as a constituent material of Lychee tubes used in diffusion furnaces for semiconductor manufacturing. Additionally, if impurities such as iron and calcium generally remain in the silicon carbide sintered body,
It is known that this region becomes a source of destruction and that the strength varies depending on the impurity concentration. Therefore, when manufacturing a sintered body that requires high strength, high-speed silicon carbide powder manufactured by a vapor phase method or the like is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記のパウダーは高価であるため、焼結体の
製造コストが高騰するという問題がある。
However, since the above-mentioned powder is expensive, there is a problem in that the manufacturing cost of the sintered body increases.

この発明は−E記の問題を解消するためになされたもの
であって、その目的は高純度かつ機械的強度に優れた炭
化珪素焼結体を、不純物を比1咬的多く含む安価なパウ
ダーを使用して、安価に製造することが可能な炭化珪素
焼結体の製造方法を提供することにある。
This invention was made in order to solve the problem described in -E, and its purpose is to make a silicon carbide sintered body of high purity and excellent mechanical strength into an inexpensive powder containing a comparatively large amount of impurities. An object of the present invention is to provide a method for producing a silicon carbide sintered body that can be produced at low cost using the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、この発明では、炭化珪素
パウダーを焼成することによって多孔質焼結体を形成し
、その多孔質焼結体に残存する不純物を酸洗浄によって
除去するようにしている。
In order to achieve the above object, in this invention, a porous sintered body is formed by firing silicon carbide powder, and impurities remaining in the porous sintered body are removed by acid cleaning. .

又、前記不純物が鉄及びカルシュウムを含んでいる場合
、酸はそれらを溶解する無機酸であることが望ましい。
Furthermore, when the impurities include iron and calcium, the acid is preferably an inorganic acid that dissolves them.

更に、前記多孔質焼結体は酸洗浄後に再び焼成されて緻
密化されることが望ましい。
Further, it is preferable that the porous sintered body is sintered again after being acid-washed and densified.

〔作用〕[Effect]

不純物を含んだ炭化珪素パウダーを焼成して多孔質焼結
体を形成する場合、その焼成過程では、粒子間での表面
拡散と体積拡散により粒子のネッキングが生じて結晶化
するが、この時、粒子内の不純物が粒界へ移動して、粒
子間の空隙に露出するものと推察される。この状態で、
酸により多孔質焼結体を洗浄すれば、不純物は酸に溶解
して焼結体から除去される。そして、不純物が鉄及びカ
ルシュウムを含む場合、酸として無機酸が使用される。
When silicon carbide powder containing impurities is fired to form a porous sintered body, during the firing process, necking of the particles occurs due to surface diffusion and volume diffusion between the particles, resulting in crystallization. It is presumed that impurities within the grains migrate to the grain boundaries and are exposed in the voids between the grains. In this state,
When the porous sintered body is washed with acid, impurities are dissolved in the acid and removed from the sintered body. When the impurities include iron and calcium, an inorganic acid is used as the acid.

又、酸洗浄後に、多孔質焼結体を再び焼成して緻密化す
れば、高強度を有する炭化珪素焼結体が得られる。
Moreover, if the porous sintered body is sintered again to make it dense after acid washing, a silicon carbide sintered body having high strength can be obtained.

次に、この発明の詳細な説明する。Next, the present invention will be explained in detail.

市販のα型炭化珪素パウダーSiCは平均粒径が0.3
pm、比表面積が13.5m27g程度のものが焼結に
望ましく、鉄、アルミニュウム及びカルシュウム等の不
純物をそれぞれ数1100pp程度含んでいる。そして
、気相法で製造された炭化珪素パウダー(粒径 0.3
〜0.4 μm)よりも安価に入手できる。
Commercially available α-type silicon carbide powder SiC has an average particle size of 0.3
pm and a specific surface area of about 13.5 m27 g is desirable for sintering, and each contains about 1100 pp of impurities such as iron, aluminum, and calcium. Then, silicon carbide powder (particle size 0.3
~0.4 μm).

上記の炭化珪素パウダーStCに対し、必要に応じて炭
素及び硼素等を焼結助剤として所定の割合で混合し、プ
レス機等によって所定形状に成形する。次に、この成形
体を炉内で焼成することにより、多孔質の炭化珪素焼結
体を得る。この多孔質炭化珪素焼結体をライナーチュー
ブ等のための高強度材料の一次焼成体として使用する場
合、その空隙率は10〜20%であることが望ましい。
The above silicon carbide powder StC is mixed with carbon, boron, etc. in a predetermined ratio as a sintering aid, if necessary, and molded into a predetermined shape using a press or the like. Next, this molded body is fired in a furnace to obtain a porous silicon carbide sintered body. When this porous silicon carbide sintered body is used as a primary sintered body of a high-strength material for a liner tube or the like, the porosity thereof is preferably 10 to 20%.

空隙率が上記の値よりも少なくなると、酸洗浄液が焼結
体の内部まで、浸透せず、洗浄能力が低下し、−上記の
値を超過すると、高強度材料に必要な強度が得られない
If the porosity is less than the above value, the acid cleaning solution will not penetrate into the inside of the sintered body and the cleaning ability will be reduced, and if the porosity exceeds the above value, the strength required for high-strength materials will not be obtained. .

又、前記多孔質炭化珪素焼結体を高純度製品として使用
する場合、強度上の要求が緩和されるため、ホウ素、ア
ルミニウム等の焼結助剤を使用することなく、空隙率は
30〜35%まで増加させて、酸洗浄液の浸入をより一
層容易にするようにしても良い。
In addition, when the porous silicon carbide sintered body is used as a high-purity product, the requirements for strength are relaxed, so the porosity can be reduced to 30 to 35 without using sintering aids such as boron or aluminum. % to make the penetration of the acid cleaning solution even easier.

成形体を多孔質焼結させて、酸洗浄により不純物を除去
し易くするための一次の多孔質焼結化の焼成条件として
は、1200℃までは如何なる昇温カーブであっても良
く、1200 ’Cがらは20℃/分以下の速度で昇温
させることが望ましい。
The firing conditions for the primary porous sintering to make the compact sintered porous and to facilitate the removal of impurities by acid washing may be any heating curve up to 1200°C; It is desirable to raise the temperature of C at a rate of 20° C./min or less.

20℃/分以上の昇温速度で焼成すると、異常粒成長を
起こして、強度不安定なものができたり、又、成形体内
の粒子が均一粒成長をせず、そり等を生じ、部分的に気
孔の少ない場所が形成され、後の酸洗浄が不可能となる
。好ましくは、前記昇温速度で更に1750〜1900
 ”Cにおいて、10分間以上保持することがよ(均質
多孔体化及び金属不純物を後の酸洗浄にて除去し易く有
る。
If fired at a temperature increase rate of 20°C/min or more, abnormal grain growth may occur, resulting in unstable strength, or the particles within the molded object may not grow uniformly, causing warping, etc. areas with few pores are formed, making subsequent acid cleaning impossible. Preferably, the heating rate is further 1750 to 1900
In "C", it is recommended to hold the material for 10 minutes or more (this makes it easier to create a homogeneous porous body and remove metal impurities in the subsequent acid washing).

そして、この発明において、炭化珪素粒子は焼結時にネ
ッキングによって結晶化される。この時、粒子内に存在
する不純物が粒界へ移動されて、粒子間の空隙に露出す
るものと推察される。
In the present invention, silicon carbide particles are crystallized by necking during sintering. At this time, it is presumed that impurities present within the grains are moved to the grain boundaries and exposed in the voids between the grains.

次いで、所要濃度の無機酸水溶液、例えば塩酸硝酸、硫
酸又は弗酸の何れか若しくはそれらを適宜に混合するこ
とによって調製した酸洗浄液に、前記多孔質焼結体を所
定時間にわたって浸漬し、酸洗浄液を空隙へ浸入させて
、焼結体に含浸させる。それにより、前記不純物が酸に
溶解される。
Next, the porous sintered body is immersed for a predetermined time in an acid cleaning solution prepared by an inorganic acid aqueous solution of a required concentration, such as hydrochloric acid, nitric acid, sulfuric acid, or hydrofluoric acid, or an appropriate mixture thereof. permeates into the voids and impregnates the sintered body. Thereby, the impurities are dissolved in the acid.

引き続き、この焼結体に超音’61E勅を与えながら水
洗することにより、洗浄用の酸及び不純物を焼結体から
除去し、その後に乾燥させる。
Subsequently, the sintered body is washed with water while applying ultrasonic '61E pressure to remove the cleaning acid and impurities from the sintered body, and then dried.

以上の工程により、純度の高い多孔質炭化珪素焼結体が
得られる。
Through the above steps, a highly pure porous silicon carbide sintered body is obtained.

更に、上記の多孔質炭化珪素焼結体を再度焼成すると、
気孔が消滅して、緻密な構造の焼結体が得られる。この
焼結体は純度が高く、しかも強度が極めて高いものであ
る。
Furthermore, when the above porous silicon carbide sintered body is fired again,
Pores disappear and a sintered body with a dense structure is obtained. This sintered body has high purity and extremely high strength.

次に具体的な実施例及び比較例について説明する。Next, specific examples and comparative examples will be described.

〔実施例1〕 市販のα型炭化珪素パウダー100重量部に、非晶質硼
素1重量部及びレゾール型フェノールレジン(炭化率約
50%)4重量部を加えて、混合物を調製し、その混合
物100gに300ccのエタノールを加えて調製した
スラリーを、ポリエチレン製ボールミルによって12時
間混合した。
[Example 1] 1 part by weight of amorphous boron and 4 parts by weight of resol type phenol resin (carbonization rate approximately 50%) were added to 100 parts by weight of commercially available α-type silicon carbide powder to prepare a mixture. A slurry prepared by adding 300 cc of ethanol to 100 g was mixed for 12 hours using a polyethylene ball mill.

その後、上記のスラリーを乾燥して粒径約100μmの
顆粒を製造し、その顆粒80gを直径70mmの金型に
よって円盤状(厚さIO+u)に−軸成形した。この成
形品に静水圧プレスにより2t。
Thereafter, the above slurry was dried to produce granules with a particle size of about 100 μm, and 80 g of the granules were negative-axis molded into a disk shape (thickness IO+u) using a mold with a diameter of 70 mm. This molded product was subjected to a 2-ton hydrostatic press.

n / c++Iの圧力を加えて成形体を得た。この成
形体の見掛は密度は1.95g/cJであった。
A molded body was obtained by applying a pressure of n/c++I. The apparent density of this molded body was 1.95 g/cJ.

上記の成形体をアルゴン雰囲気下で、1850℃で、3
0分間無加圧加熱することにより、−次焼結を行い、見
掛は密度が2 、 54 g /crl、空隙率が10
〜20%の多孔質焼結体を得た。この焼結体を17%塩
酸水溶液に約−昼夜浸漬した後、超音波振動を加えなが
ら、蒸留水によって洗浄し、洗浄液のpHが7になるま
でこの処理を繰り返した後に乾燥させた。上記の酸洗浄
に際し、焼結体を浸漬する前後において塩酸水溶液中の
不純物の濃度(ppm単位)をTCPプラズマ発光分光
分析(Inductively Coupled Pl
asma )によって測定した。その結果を表に示す。
The above molded body was heated at 1850°C under an argon atmosphere for 3 hours.
-Next sintering is performed by heating without pressure for 0 minutes, and the apparent density is 2.54 g/crl and the porosity is 10.
~20% porous sintered body was obtained. This sintered body was immersed in a 17% hydrochloric acid aqueous solution for about 24 hours, washed with distilled water while applying ultrasonic vibration, and this process was repeated until the pH of the washing solution reached 7, followed by drying. During the above acid cleaning, the concentration of impurities (ppm unit) in the hydrochloric acid aqueous solution was measured by TCP plasma emission spectrometry (Inductively Coupled Pl) before and after immersing the sintered body.
asma). The results are shown in the table.

表中のTrは痕跡のみの存在を示す。Tr in the table indicates the presence of only traces.

表 上記の洗浄結果によれば、3種類の不純物の内、鉄及び
カルシウムの一部を除去できたことが分かる。
According to the cleaning results shown in the table above, it can be seen that some of the three types of impurities, iron and calcium, were removed.

その後、酸洗浄を施した焼結体をアルゴン雰囲気下で、
2050℃で、30分間無加圧加熱することによって、
二次焼結処理を行った。その結果、焼結体が緻密化され
て、見掛は密度が3.16g/ clになった。又、J
IS、R−1601に準じる供試体を作成し、上記焼結
体の3点曲げによる熱間強度測定を行った。その結果を
第1図のグラフに示す。このグラフによれば、約120
0℃までは一定の曲げ強度を有し、その温度を越えると
、曲げ強度が更に高くなることが分かる。
After that, the acid-washed sintered body was placed under an argon atmosphere.
By heating at 2050°C for 30 minutes without pressure,
Secondary sintering treatment was performed. As a result, the sintered body was densified and had an apparent density of 3.16 g/cl. Also, J
A specimen conforming to IS, R-1601 was prepared, and the hot strength of the sintered body was measured by three-point bending. The results are shown in the graph of FIG. According to this graph, about 120
It can be seen that it has a constant bending strength up to 0°C, and that the bending strength becomes even higher above that temperature.

〔比較例1〕 前記実施例1におけるプレス成形までの工程を実施する
ことによって得られた成形体を、アルゴン雰囲気下、2
050℃で、30分間無加圧加熱することにより、強度
比較用の焼結体を得た。この焼結体の曲げ強度の温度変
化を第1図に示す。
[Comparative Example 1] A molded body obtained by carrying out the steps up to press molding in Example 1 was heated for 2 hours under an argon atmosphere.
A sintered body for strength comparison was obtained by heating at 050°C for 30 minutes without pressure. Figure 1 shows the temperature change in bending strength of this sintered body.

この比較例1における焼結体の強度は1100℃付近か
ら急に低下することが分かる。尚、この焼結体の見掛は
密度は3.17g/c+aであった。
It can be seen that the strength of the sintered body in Comparative Example 1 suddenly decreases from around 1100°C. The apparent density of this sintered body was 3.17 g/c+a.

〔比較例2〕 前記炭化珪素パウダー100重量部に、100重最部の
17%塩酸水溶液を加えてスラリーを調製し、これを−
昼夜放置した後、吸引濾過によってケーキを得た。この
ケーキを蒸留水で洗浄し、洗浄液のpHが7になるまで
、この処理を操り返した後に、乾燥させて、パウダーを
得た。このパウダー中の不純物潤度は、鉄510ppm
、アルミニュウム300ppm、カルシュウム260p
p rnであった。
[Comparative Example 2] A slurry was prepared by adding 100 parts by weight of a 17% aqueous hydrochloric acid solution to 100 parts by weight of the silicon carbide powder.
After standing for a day and night, a cake was obtained by suction filtration. This cake was washed with distilled water and the process was repeated until the pH of the washing solution became 7, followed by drying to obtain a powder. The impurity moisture content in this powder is 510 ppm iron.
, aluminum 300ppm, calcium 260p
It was prn.

上記のパウダーを、前記実施例1と同様に成形した後、
アルゴン雰囲気下で、2050℃で、30分間無加圧加
熱し、見掛は密度が3.17g/cdの強度比較用焼結
体を得た。この焼結体の強度は第1図から明らかなよう
に、1200℃付近から低下している。
After molding the above powder in the same manner as in Example 1,
The material was heated under an argon atmosphere at 2050° C. for 30 minutes without pressure to obtain a sintered body for strength comparison with an apparent density of 3.17 g/cd. As is clear from FIG. 1, the strength of this sintered body decreases from around 1200°C.

〔実施例2〕 比較例2で用いた酸洗パウダー100重量部に焼結助剤
を加えずに、ポリアクリル酸エステル3重量部、ポリビ
ニルアルコール2重量部、計100gをエタノール30
0 ccと共にポリエチレン製ボールミルにて12時間
混合し、乾燥させた。直径70龍のカーボン型で、直径
70龍×厚さ10mmに成形し、ラバープレスにより2
t/cJの圧力を加えて成形体を作成した。この成形体
を無加圧アルゴン雰囲気下8℃/分で昇温させ1850
℃に1時間保持した。得られた多孔体の密度は2゜40
g/cJであった。実施例1と同様に酸洗浄を行い、乾
燥させた多孔体を得た。この多孔体の不純物量(単位p
pm)を下記に示す。
[Example 2] Without adding a sintering aid to 100 parts by weight of the pickling powder used in Comparative Example 2, 3 parts by weight of polyacrylic ester and 2 parts by weight of polyvinyl alcohol, a total of 100 g, were mixed with 30 parts by weight of ethanol.
The mixture was mixed with 0 cc in a polyethylene ball mill for 12 hours and dried. Using a carbon mold with a diameter of 70 mm, mold it to a diameter of 70 mm and a thickness of 10 mm, and use a rubber press to make 2 pieces.
A molded body was created by applying a pressure of t/cJ. This molded body was heated to 1850°C at a rate of 8°C/min in an unpressurized argon atmosphere.
It was kept at ℃ for 1 hour. The density of the obtained porous body was 2°40
g/cJ. Acid cleaning was performed in the same manner as in Example 1 to obtain a dried porous body. The amount of impurities in this porous body (unit: p
pm) is shown below.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明は高純度かつ機械的強度
に優れた炭化珪素焼結体を、安価なパウダーを使用して
、安価に製造することができるという優れた効果を発揮
する。
As described in detail above, the present invention exhibits the excellent effect that a silicon carbide sintered body having high purity and excellent mechanical strength can be manufactured at low cost using inexpensive powder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭化珪素焼結体の強度試験結果を示すグラフで
ある。 特許出願人       イビデン 株式会社代理人 
       弁理士  恩1)博宣表
FIG. 1 is a graph showing the strength test results of silicon carbide sintered bodies. Patent applicant IBIDEN Co., Ltd. Agent
Patent Attorney On 1) Hirosenbiyo

Claims (1)

【特許請求の範囲】 1 炭化珪素パウダーを焼成することによって多孔質焼
結体を形成し、その多孔質焼結体に残存する不純物を酸
洗浄によって除去するようにしたことを特徴とする炭化
珪素焼結体の製造方法。 2 前記不純物は鉄及びカルシュウム等のシリコン以外
の金属物を含み、酸はそれらを溶解する無機酸である請
求項1に記載の炭化珪素焼結体の製造方法。 3 前記多孔質焼結体は酸洗浄後に再び焼成されて緻密
化される請求項1又は2に記載の炭化珪素質焼結体の製
造方法。
[Claims] 1. A silicon carbide characterized in that a porous sintered body is formed by firing silicon carbide powder, and impurities remaining in the porous sintered body are removed by acid cleaning. A method for producing a sintered body. 2. The method for manufacturing a silicon carbide sintered body according to claim 1, wherein the impurities include metals other than silicon, such as iron and calcium, and the acid is an inorganic acid that dissolves them. 3. The method for producing a silicon carbide sintered body according to claim 1 or 2, wherein the porous sintered body is sintered again after acid cleaning to make it dense.
JP63270336A 1988-10-25 1988-10-25 Production of sintered silicon carbide body Pending JPH02116678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63270336A JPH02116678A (en) 1988-10-25 1988-10-25 Production of sintered silicon carbide body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63270336A JPH02116678A (en) 1988-10-25 1988-10-25 Production of sintered silicon carbide body

Publications (1)

Publication Number Publication Date
JPH02116678A true JPH02116678A (en) 1990-05-01

Family

ID=17484836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63270336A Pending JPH02116678A (en) 1988-10-25 1988-10-25 Production of sintered silicon carbide body

Country Status (1)

Country Link
JP (1) JPH02116678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967189A1 (en) * 1998-06-23 1999-12-29 Ngk Insulators, Ltd. A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
US6419757B2 (en) * 1998-12-08 2002-07-16 Bridgestone, Corporation Method for cleaning sintered silicon carbide in wet condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967189A1 (en) * 1998-06-23 1999-12-29 Ngk Insulators, Ltd. A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
US6419757B2 (en) * 1998-12-08 2002-07-16 Bridgestone, Corporation Method for cleaning sintered silicon carbide in wet condition

Similar Documents

Publication Publication Date Title
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
US4346049A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
EP0826646B1 (en) Highly corrosion-resistant silicon carbide product
JPS6048466B2 (en) Manufacturing method of polycrystalline transparent alumina sintered body
JPH0768066B2 (en) Heat resistant composite and method for producing the same
JP3237760B2 (en) Method for producing crack-free silicon carbide diffusion component
US4836965A (en) Method of producing heat treating furnace member
US4424179A (en) Method of manufacturing a sintered silicon carbide ceramic part
JPH02116678A (en) Production of sintered silicon carbide body
US5139719A (en) Sintering process and novel ceramic material
JP2919901B2 (en) Melting crucible equipment
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JPH0359033B2 (en)
JP2798684B2 (en) Purification method of silicon carbide powder
JPH02111663A (en) Porous conductive material
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPH03213142A (en) Method for purifying particulate material
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
JPH053430B2 (en)
JPH10120466A (en) Highly corrosion-resistant siliceous carbide member and its use
JP2001048651A (en) Silicon carbide sintered body and its production
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JPS6256371A (en) Manufacture of silicon carbide sintered body