JPS6256371A - Manufacture of silicon carbide sintered body - Google Patents

Manufacture of silicon carbide sintered body

Info

Publication number
JPS6256371A
JPS6256371A JP60195750A JP19575085A JPS6256371A JP S6256371 A JPS6256371 A JP S6256371A JP 60195750 A JP60195750 A JP 60195750A JP 19575085 A JP19575085 A JP 19575085A JP S6256371 A JPS6256371 A JP S6256371A
Authority
JP
Japan
Prior art keywords
silicon carbide
temperature
sintering
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60195750A
Other languages
Japanese (ja)
Inventor
水谷 敏昭
寛 井上
米澤 武之
佳之 大沼
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60195750A priority Critical patent/JPS6256371A/en
Priority to US06/903,141 priority patent/US4853299A/en
Priority to DE19863630369 priority patent/DE3630369A1/en
Priority to DE3645097A priority patent/DE3645097C2/de
Publication of JPS6256371A publication Critical patent/JPS6256371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高密度の炭化ケイ素焼結体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a high-density silicon carbide sintered body.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

炭化ケイ素焼結体は、例えばガスタービン部品。 Silicon carbide sintered bodies are used, for example, in gas turbine parts.

高温用熱交換器のような高温構造材料として礪め率、優
れた耐酸化性と耐食性、高い熱衝撃性及び常温と高温度
特性を挙げることができる。
As a high-temperature structural material such as a high-temperature heat exchanger, it can be cited for its shrinkage rate, excellent oxidation resistance and corrosion resistance, high thermal shock resistance, and room temperature and high temperature characteristics.

しかしながら炭化ケイ素焼結体の出発原材である81C
粉末は焼結し難い材料であるため、これまで高密度の焼
結体を得よりとする際には、77g圧焼結法が採用され
ていた。しかしながら前記力ロ圧焼結法によれば複雑な
形状の焼結体を製造することが難かしぐ、また生産性も
挙がらないと云う欠点があった・ 前記加圧焼結法の有する欠点を除去、改善するため、在
来種々の提案がなされており、なかでも特開昭50−7
8609号「高密度炭化珪素セラミックの製造方法」1
次に特開昭52−67i6号「炭化ケイ素焼結体」に炭
化ケイ素、ホウ素含有添加剤及び炭素質添加剤からなる
サブミクロン粒度の粉末を成形し、不活性雰囲気中の約
1950〜2300℃で無加圧焼結する方法が開示され
ている。
However, 81C, which is the starting material for silicon carbide sintered bodies,
Since powder is a material that is difficult to sinter, a 77g pressure sintering method has been used to obtain a high-density sintered body. However, according to the force-pressure sintering method, it is difficult to produce sintered bodies with complicated shapes, and the productivity is low. , various proposals have been made in order to improve the
No. 8609 “Method for manufacturing high-density silicon carbide ceramic” 1
Next, submicron particle size powder consisting of silicon carbide, a boron-containing additive, and a carbonaceous additive is molded into JP-A No. 52-67i6 "silicon carbide sintered body" and heated to about 1950 to 2300°C in an inert atmosphere. A method of pressureless sintering is disclosed.

ところで、炭化ケイ素粉粒子は一般に酸化膜で被覆され
ておシ、前記無加圧焼結方法によれば。
By the way, silicon carbide powder particles are generally coated with an oxide film, according to the pressureless sintering method.

前記酸化膜を還元除去して炭化ケイ素粉末粒子間の焼結
性を高めるため炭素を添加する必要がちる。
It is necessary to add carbon to reduce and remove the oxide film and improve the sinterability between silicon carbide powder particles.

しかして、前記無加圧焼結法によれば、炭化ケイ素の重
量に対し0.1〜l、Q W / Oの炭素が使用され
面積を有する炭化ケイ累粉末粒子の全表面を完全に被覆
するには至らない。これを改善するために一般には有機
化合物溶液をもって炭化ケイ素粉末に均一に分散させた
後、不活性雰囲気中で加熱して有機化合物から析出する
炭素によって炭化ケイ累の表面を被覆している前記酸化
膜を還元して除去する方法が提案されているが、この方
法によってもなお析出した炭素粒子は炭化ケイ素粉末粒
子の表面で局部的に分散された状態となり、酸化膜は局
部的にしか還元除去されない。更に加熱処理後の成形体
(脱脂成形体)は一般に大気中で黒鉛製匣鉢に納められ
、焼成炉内に設置され真空又は不活性雰囲気中で焼結さ
れるが、大気にさらされ九時に下記の反応式により容易
lこ s i C+O,→ SiC+ CO↑再酸化されてし
ま5゜ そのため、焼結時には部分的Eこ炭化ケイ素が露出され
るにすぎず、残された酸化膜は炭化ケイ累粉末粒子間で
起きるネック生長を妨害し、かつ焼結体内で介在物と成
り、焼結の進行を場所的に不均一化して、異常粒成長を
助長するため、全体として焼結性を低下させる。
According to the pressureless sintering method, carbon is used in an amount of 0.1 to 1, Q W / O based on the weight of silicon carbide, and the entire surface of the silicon carbide powder particles having an area is completely covered. It's not enough to do that. To improve this, generally an organic compound solution is uniformly dispersed in silicon carbide powder and then heated in an inert atmosphere to coat the surface of the silicon carbide with carbon precipitated from the organic compound. A method has been proposed to remove the film by reducing it, but even with this method, the precipitated carbon particles remain locally dispersed on the surface of the silicon carbide powder particles, and the oxide film can only be reduced and removed locally. Not done. Furthermore, the molded body after heat treatment (degreased molded body) is generally placed in a graphite sagger in the atmosphere, placed in a firing furnace, and sintered in a vacuum or inert atmosphere, but when exposed to the atmosphere, According to the reaction equation below, it is easily re-oxidized. Therefore, during sintering, only a portion of silicon carbide is exposed, and the remaining oxide film is silicon carbide. It obstructs neck growth that occurs between powder particles, and becomes inclusions within the sintered body, making the progress of sintering uneven locally and promoting abnormal grain growth, resulting in a decrease in sinterability as a whole. let

したがりて、従来SiC粉末を無加圧v8結するために
は、2100″C前後の高温焼成が行なわれ、また、約
0.5μm以下の非常に入手し難く、かつ高価なSiC
超微粉末が必要とされている。
Therefore, conventionally, in order to bond SiC powder without pressure, high-temperature firing of around 2100''C is performed, and SiC powder with a diameter of about 0.5 μm or less is very difficult to obtain and expensive.
Ultrafine powder is required.

〔発明の目的〕[Purpose of the invention]

本発明は前記欠点を除去・改善するち密なSiC焼結体
の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a dense SiC sintered body that eliminates and improves the above-mentioned drawbacks.

〔発明の概要〕[Summary of the invention]

焼結時における焼結速度の局所的バラツキ、異常粒成長
及びスケルトン構造の発生原因が、微細なSiC粉末に
不可避な表面酸化膜を除去して清浄fisic粉末表面
を実現した状態で焼結を進行させ得なかつ九ために生じ
たことを見出し、真空昇温過程で生ずる炭素による酸化
皮@還元反応が終了するのを真空計等で確認した後、初
めて焼結が始まる高温域へ昇温させるよう制御したち密
SiC焼結体を製造する方法である。
The causes of local variations in sintering speed, abnormal grain growth, and skeleton structure during sintering are eliminated by removing the inevitable surface oxide film on fine SiC powder and proceeding with sintering to achieve a clean fisic powder surface. After confirming with a vacuum gauge, etc., that the oxidized skin @ reduction reaction due to carbon generated during the vacuum heating process has finished, we decided to raise the temperature to a high temperature range where sintering only begins. This is a method for manufacturing a controlled dense SiC sintered body.

次に本発明を以下詳細に説明する。The present invention will now be described in detail.

本発明によれば出発原料である8iC粉末は平均粒径が
1μm以下又は比表面積が5 m” 711以上である
ことが望まれる。
According to the present invention, it is desired that the starting material 8iC powder has an average particle size of 1 μm or less or a specific surface area of 5 m''711 or more.

その理由は、それより大きい粒度のものを用いふO ると、焼結体の密度が約’crf’tt / c c以
上で、かつ均一な焼結粒径とすることが困難であるから
である。前記SICの結晶系はα型及びβ型の二種に分
別されるが、その何れか、及びそれらの混合物も使用で
きる。前記の如きSiC粉末は各種の方法で製造できる
が、得られたままのSiC粉末には焼と 結性を阻害し、かつ焼結体内の欠陥Yなる遊離炭素、遊
離シリカ及び遊離シリコン等々各種不純物されている。
The reason for this is that if a larger particle size is used, the density of the sintered body will be approximately 'crf'tt/cc or more, and it will be difficult to obtain a uniform sintered particle size. be. The crystal system of SIC is classified into two types, α type and β type, and either type or a mixture thereof can be used. The SiC powder as described above can be produced by various methods, but the as-obtained SiC powder contains various impurities such as free carbon, free silica, and free silicon, which inhibit sintering and sinterability and form defects Y in the sintered body. has been done.

しかし、その後の大気中酸素によるSiC粉末表面の酸
化は通学道けられない。我々は比表面積の異なる各櫨S
iC粉末中の言有液素量を比較検討し、表の結果を得た
。8iC粉末表面に酸化皮膜を形成する酸素原子間距離
の平均値は1.6〜3.2 A OJ間にある。これは
酸化皮膜は2原子層未満であることを意味している。
However, the subsequent oxidation of the SiC powder surface due to atmospheric oxygen makes it impossible to walk to school. We have each oak S with different specific surface area.
The stated amount of liquid element in the iC powder was compared and the results shown in the table were obtained. The average value of the distance between oxygen atoms that forms an oxide film on the surface of the 8iC powder is between 1.6 and 3.2 A OJ. This means that the oxide film is less than two atomic layers.

これ以上の@厚及び酸素含有赦は、綿化不充分によるS
iO2相及びsio、粉末の混在又は金pA酸化物の残
留によυ生じ得るもので、本発明における対象出発原料
には不適である。
Thickness and oxygen content greater than this are due to insufficient cottonization.
This may occur due to the presence of the iO2 phase, sio, powder, or residual gold pA oxide, and is therefore unsuitable as the target starting material for the present invention.

本発明に係る脱脂成形体はSiC粉末と焼結助剤からな
るが、焼結助剤としてはB及びその化合物のように、高
温でSIC粒子内に拡散して空孔を増加させることによ
り、焼結性を向上させる元素を添加し得る0本発明ζこ
於いては、少なくとも焼結助剤としてSIC粉末表面の
酸化皮膜を除去するための炭素が脱脂成形体に含まれて
いなければならない、さらjここの炭素はSiC表面に
均一に分散していることが好ましく、そのためには無定
形炭素でもよいが、更にはフェノール樹脂等非酸化性雰
凹気中で加熱処理により   −6分解し炭素が残留す
るものが優も好ましい。この過剰CはSiC粉末粒子表
面の酸素を次式によりて還元除去するためであフ(S 
i C+20−48 i C+Co↑)その適正量はS
iC中の酸化皮膜珪に依存し、冥用土は。
The degreased molded body according to the present invention is made of SiC powder and a sintering aid, and the sintering aid, like B and its compounds, diffuses into the SIC particles at high temperatures and increases the number of pores. In the present invention, an element that improves sinterability may be added. In this case, the degreased compact must contain at least carbon as a sintering aid for removing the oxide film on the surface of the SIC powder. Furthermore, it is preferable that the carbon here be uniformly dispersed on the SiC surface, and for that purpose, amorphous carbon may be used, but it is also possible to decompose the carbon by -6 decomposition by heat treatment in a non-oxidizing atmosphere such as phenol resin. It is also preferable to have a good residual amount. This excess C is because the oxygen on the surface of the SiC powder particles is reduced and removed by the following formula (S
i C+20-48 i C+Co↑) The appropriate amount is S
Depends on the silicon oxide film in iC, and the soil is.

含有酸累貫貨の1.0〜3. Q、 @が適正値である
Contains acid cumulative amount of 1.0 to 3. Q and @ are appropriate values.

1.0倍未満では全tR素の還元ができない。また。If it is less than 1.0 times, all tR elements cannot be reduced. Also.

3、0倍以上では全酸素の還元が終了した後にも過剰C
が残留し焼結の障害となる。
3. At 0 times or more, excess C remains even after all oxygen has been reduced.
remains and becomes an obstacle to sintering.

成形体の脱脂は不活性雰囲気中でゆるやかに昇温するこ
とによフ、約1000℃以下でのガス放出が無くなるま
で充分になされることが望ましい。
It is desirable that the molded body be degreased sufficiently by slowly raising the temperature in an inert atmosphere until no gas is released at temperatures below about 1000°C.

CbAT−糸切 以上の様にして製作した脱脂済成形体の主要成分は84
C@末粒子、その表面を覆う酸化皮膜及び焼結助剤とし
ての非晶質炭素及びホウ素等々となる。従って焼結は余
計な不純物等の蒸発連敗を図るため真空で昇温させるの
が好ましい。この昇温時に我々は、1350℃〜155
0℃の範囲で真空度が急激に低下する現象を発見した。
CbAT - The main components of the degreased molded body produced by thread cutting and above are 84
C@ powder particles, an oxide film covering the surface thereof, and amorphous carbon and boron as sintering aids. Therefore, during sintering, it is preferable to raise the temperature in a vacuum to prevent unnecessary evaporation of impurities. At this temperature increase, we
We discovered a phenomenon in which the degree of vacuum decreases rapidly in the 0°C range.

その様子は図に示す様に昇温速度及び脱脂成形体の厚さ
に依存することも判明した。これは成形体よりのガス放
出によるものであり、その詳細を明らかにするため、我
々は各種8iC粉末について実験を行い表の如き結果を
得た。
As shown in the figure, it was also found that the behavior depended on the temperature increase rate and the thickness of the degreased molded body. This is due to gas release from the compact, and in order to clarify the details, we conducted experiments on various 8iC powders and obtained the results shown in the table.

重量減少二ガス放出量 ガス放出量はSiC原料粉末に2ける含有酸素量の1.
6〜2.5倍の重量に相当している。
Weight reduction 2 Gas release amount The gas release amount is 1.2% of the amount of oxygen contained in the SiC raw powder.
This corresponds to 6 to 2.5 times the weight.

我々は8iC粉末表面に於て次式の様な還元反応が進行
していると推定した。
We inferred that a reduction reaction as shown in the following equation is proceeding on the surface of the 8iC powder.

■ sio+zc→、 S ic+co↑■  SiO
−+  SiO↑ SiC粉末表面に物理的又は化学的に吸着された酸素は
皮膜を形成し、sic粒子間の直接接触を妨げ、粒界拡
散を抑制するので完全に除去することが望ましい、しか
るに昇温速度が速いと酸化皮膜が部分的に除去され未だ
還元反応が進行中で、ガス放出中の状態で高温に達して
、焼結が始まりてしまり、するとSiC粉末表面でも清
浄な部分では焼結反応が速く進むが、酸化皮膜が残留し
ている部分では焼結反応速度が抑制される。このため焼
結反応の進行が場所的に不均一となシ異常粒成長及び柱
状−板状粒成長を誘起し、スケルトン構造が形成されち
密化が進まなくなることを確認した。
■ sio+zc→, S ic+co↑■ SiO
-+ SiO↑ Oxygen physically or chemically adsorbed on the SiC powder surface forms a film that prevents direct contact between SIC particles and suppresses grain boundary diffusion, so it is desirable to completely remove it. If the heating rate is high, the oxide film is partially removed and the reduction reaction is still in progress, and the high temperature is reached while gas is being released and sintering begins. Although the reaction proceeds quickly, the sintering reaction rate is suppressed in areas where the oxide film remains. For this reason, it was confirmed that the progress of the sintering reaction was locally non-uniform, inducing abnormal grain growth and columnar-plate grain growth, forming a skeleton structure and preventing densification from proceeding.

我々は昇温中に真空度を監視し、  1350℃〜15
50℃周辺のガス放出によシ真空度が低下する領域を緩
やかに昇温させ、大麗部材であるため中心部からのガス
放出に時間を要する成形体では更に約1550℃付近で
温度を保持させることにより、ガス放出による真空度の
低下が完全に回復する迄待りた・ この様にしてSiC粉末粒子表面の酸化皮襖を完全に除
去し、清浄面にし念状態で、 1800℃〜2200揮
散が発生するので、真空よりもAr等の不活性雰囲気を
導入する方がより好ましい。
We monitor the degree of vacuum during temperature rise, from 1350℃ to 15
The temperature is gradually increased in the area where the degree of vacuum decreases due to gas release around 50°C, and the temperature is further maintained at around 1550°C in the molded product, which takes time to release gas from the center because it is a Dairei member. The oxidized skin on the surface of the SiC powder particles was completely removed in this way, and the vacuum was heated to 1800°C to 2200°C while keeping the surface clean. Since volatilization occurs, it is more preferable to introduce an inert atmosphere such as Ar than a vacuum.

本発明の好ましい態様をまとめれば以下の如くになる。Preferred embodiments of the present invention can be summarized as follows.

■SIC原料粉として平均粒径1μm以下、比表面積5
mχ/I以上のものを用いる。
■As SIC raw material powder, average particle size is 1μm or less, specific surface area is 5
Use one having mχ/I or more.

■脱脂を非酸化性雰囲気中で1000℃以下の温度で行
なう、(ガス放出がなくなるまでン■1350〜155
0℃の温度で脱脂済のStC成形体を保持する。この時
、         酸化皮部の除去の判定をco、c
o、等の放出による真空度■焼結(1800〜2200
℃2 時にAr、He、Ne。
■ Degreasing is carried out in a non-oxidizing atmosphere at a temperature below 1000℃ (keep until no gas is released ■1350~155℃)
The degreased StC molded body is held at a temperature of 0°C. At this time, the removal of the oxidized skin part is judged as co, c.
Vacuum degree due to release of o, etc.■ Sintering (1800-2200
Ar, He, Ne at 2°C.

CO等の非酸化性ガス、不活性ガスを導入する。Introduce a non-oxidizing gas such as CO or an inert gas.

〔発明の実施例〕[Embodiments of the invention]

出発原料として比表面′!jI15m”/jl、全酸素
含有量1.Qwlo 、その他不純物は全てQ、 l 
w / o未満であるα型8iC粉末を選び、非晶質B
 (0,3W10 )とC源となるノボラック樹脂(3
,5w10)を加え。
Specific surface as a starting material! jI15m"/jl, total oxygen content 1.Qwlo, all other impurities are Q, l
Select α-type 8iC powder that is less than w/o, amorphous B
(0,3W10) and novolac resin (3
, 5w10) was added.

アセトンを分散媒にして湿式混合後、乾燥造粒し九* 
43.5X33.5mm”  の金型を使い、造粒粉よ
り20jl/P及び60g/Pの試料を多数、加圧成形
(1ton /c♂)した、これら試料を窒素雰囲気中
で700℃まで8時間をかけて加熱することにより、脱
脂済成形体を得た。この成形体を黒鉛匣鉢に入れて焼成
炉に納めた。RT(室温ンよシ約1350℃までは手動
で通電加熱した。1350℃〜1550″C同辺では顕
著なガス放出が認められた。この付近における昇温速度
(dT/dt)と真空度の変化は図の如くであり、昇温
速度が遅いと1400℃の近傍に鋭いガス放出ピークが
現れるが昇温速度が速くなるとガス放出ピークは高温*
#c遷移し、低く幅広くなりた。また60Jl/Pよシ
も2ON/Pの試料の方がガス放出ピークは鋭い形状と
なった。尚1通常のDTA 、TGAでの解析を試みた
が、検出感圧が不足して評価できなかった。
After wet mixing using acetone as a dispersion medium, dry granulation is performed.
Using a mold of 43.5 x 33.5 mm, many samples of 20 jl/P and 60 g/P were pressure-molded (1 ton/c♂) from granulated powder. These samples were heated to 700°C in a nitrogen atmosphere for 8 hours. By heating over a period of time, a degreased molded body was obtained. This molded body was placed in a graphite sagger and placed in a firing furnace. It was manually heated with electricity from room temperature to about 1350°C. Significant gas release was observed in the vicinity of 1350°C to 1550"C. The temperature increase rate (dT/dt) and degree of vacuum change in this area are as shown in the figure. A sharp gas release peak appears in the vicinity, but as the heating rate increases, the gas release peak becomes higher temperature *
It transitioned to #c and became low and wide. In addition, the gas release peak of the 2ON/P sample had a sharper shape than the 60Jl/P sample. Note: 1. Analysis using conventional DTA and TGA was attempted, but the detection pressure sensitivity was insufficient and evaluation could not be performed.

室温から焼結温度(2100″C)までの昇温過程を攬
々変化させて実験した結果を表に示す。
The table shows the results of experiments in which the heating process from room temperature to the sintering temperature (2100''C) was varied frequently.

(p人ト乍白) 参考例 1 7mm(2(W/p)20分Ar  20
00”C/HAr     0f−T  Ar実施例 
1           、v         v 
     、    v#20.5’I()t l  3     〃   、   〃  −10伝良
7H〃ol−1〃〃4               
                0.5H−−5〃〃
’500℃、4(〃     oH#−60,5H〃 #  7          〃  〃   25σ嘔
 〃     OH#、   8          
                    0.5H#
〃   9 〃10 参考例°2 21mr+(60I!/p) 30分Ar
   2000’(ン+I  Ar     OHAr
#  3           〃  v      
    v      #   ■、   4    
                         
  0.5H#〃5           〃−100
0’C/i(#OH。
(p person to white) Reference example 1 7mm (2 (W/p) 20 minutes Ar 20
00”C/HAr 0f-T Ar example
1, v v
, v#20.5'I()t l 3 〃 , 〃 -10Denryo7H〃ol-1〃〃4
0.5H--5〃
'500℃, 4 (〃 oH#-60,5H〃 #7 〃 〃 25σ 〃 OH#, 8
0.5H#
〃 9 〃10 Reference example °2 21mr+(60I!/p) 30 minutes Ar
2000'(n+I Ar OHAr
#3〃v
v # ■, 4

0.5H#〃5〃-100
0'C/i (#OH.

〃6                       
         o、51(#実施例 11    
      〃#500”C/H〃OH#〜  12 
                         
    o、s)(#″  13          
〃  〃   25o″c/H#     OH#” 
  14                     
         0.5H’2000℃/HAr  
    0.5HAr       2.89V   
     #    V        3.023.
07 3.08 3.11 3.16 3.17 3.17 3.18 #Ar         3.18 Ar                      3
.18200ffC/HAr      O,5HAr
       2.81V             
 V        2.882.93 2.95 2.96 3.00 3.04 3.15 3.18 #Ar         3.17 Ar                       
 3.17〔発明の効果〕 以上説明したように本発明によれば、ち密で良好なSi
C焼結体8得ることができる。
〃6
o, 51 (#Example 11
〃#500”C/H〃OH#~12

o, s) (#″ 13
〃 〃 25o″c/H# OH#”
14
0.5H'2000℃/HAr
0.5HAr 2.89V
#V 3.023.
07 3.08 3.11 3.16 3.17 3.17 3.18 #Ar 3.18 Ar 3
.. 18200ffC/HAr O,5HAr
2.81V
V 2.882.93 2.95 2.96 3.00 3.04 3.15 3.18 #Ar 3.17 Ar
3.17 [Effects of the Invention] As explained above, according to the present invention, dense and good Si
A C sintered body 8 can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度−真空度特性図。 代理人 弁理士  則 近 wl  佑同     竹
 花 喜久男 真 空 曳 一嫉じC) 第1図
Figure 1 is a temperature-vacuum characteristic diagram. Agent Patent Attorney Nori Chika wl Yudo Take Hana Kikuo Shinku Hikiichi Jealousy C) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)SiC粉末成形体を焼結する昇温過程で、SiC
粉末表面を覆う酸化皮膜の全てが還元除去されるまで焼
結開始温度未満の温度にSiC粉末成形体を保持し、そ
の後焼結開始温度以上に昇温することを特徴とする炭化
ケイ素焼結体の製造方法。
(1) In the temperature raising process of sintering the SiC powder compact, the SiC
A silicon carbide sintered body, characterized in that the SiC powder compact is maintained at a temperature below the sintering start temperature until all of the oxide film covering the powder surface is reduced and removed, and then the temperature is raised above the sintering start temperature. manufacturing method.
(2)前記保持温度は1350℃〜1550℃の範囲で
あることを特徴とした特許請求の範囲第1項記載の炭化
ケイ素焼結体の製造方法。
(2) The method for manufacturing a silicon carbide sintered body according to claim 1, wherein the holding temperature is in a range of 1350°C to 1550°C.
JP60195750A 1985-09-06 1985-09-06 Manufacture of silicon carbide sintered body Pending JPS6256371A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60195750A JPS6256371A (en) 1985-09-06 1985-09-06 Manufacture of silicon carbide sintered body
US06/903,141 US4853299A (en) 1985-09-06 1986-09-03 Silicon carbide sintered body and method of manufacturing the same
DE19863630369 DE3630369A1 (en) 1985-09-06 1986-09-05 SILICON CARBIDE SINTER BODY AND METHOD FOR THE PRODUCTION THEREOF
DE3645097A DE3645097C2 (en) 1985-09-06 1986-09-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60195750A JPS6256371A (en) 1985-09-06 1985-09-06 Manufacture of silicon carbide sintered body

Publications (1)

Publication Number Publication Date
JPS6256371A true JPS6256371A (en) 1987-03-12

Family

ID=16346342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60195750A Pending JPS6256371A (en) 1985-09-06 1985-09-06 Manufacture of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS6256371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236764A (en) * 1987-03-24 1988-10-03 三菱マテリアル株式会社 Manufacture of silicon carbide sintered body
JPH02199065A (en) * 1989-01-30 1990-08-07 Kazumichi Kijima Sintered silicon carbide having high thermal conductivity and production thereof
JPH02199066A (en) * 1989-01-30 1990-08-07 Kazumichi Kijima Sintered silicon carbide having electrical conductivity and production thereof
JP2016540717A (en) * 2013-10-30 2016-12-28 ゼネラル・エレクトリック・カンパニイ Method for repairing matrix cracks in infiltrated ceramic matrix composites.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169181A (en) * 1980-05-30 1981-12-25 Ibigawa Electric Ind Co Ltd Manufacture of high strength silicon carbide sintered body
JPS5732035A (en) * 1980-08-05 1982-02-20 Toyota Motor Corp Intake air quantity control method for internal combustion engine
JPS57166372A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS59184769A (en) * 1983-04-04 1984-10-20 日立化成工業株式会社 Manufacture of high density silicon carbide sintered body
JPS605071A (en) * 1983-06-21 1985-01-11 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS6065765A (en) * 1983-09-21 1985-04-15 科学技術庁無機材質研究所長 Process for sintering cubic silicon carbide powder
JPS60186467A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Silicon carbide sintered body and manufacture
JPS6131356A (en) * 1984-07-20 1986-02-13 松下電器産業株式会社 Manufacture of sic sintered body
JPS61168567A (en) * 1985-01-19 1986-07-30 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS6153166B2 (en) * 1982-03-16 1986-11-17 Ishikawajimaharima Jukogyo Kk

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169181A (en) * 1980-05-30 1981-12-25 Ibigawa Electric Ind Co Ltd Manufacture of high strength silicon carbide sintered body
JPS5732035A (en) * 1980-08-05 1982-02-20 Toyota Motor Corp Intake air quantity control method for internal combustion engine
JPS57166372A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS6153166B2 (en) * 1982-03-16 1986-11-17 Ishikawajimaharima Jukogyo Kk
JPS59184769A (en) * 1983-04-04 1984-10-20 日立化成工業株式会社 Manufacture of high density silicon carbide sintered body
JPS605071A (en) * 1983-06-21 1985-01-11 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS6065765A (en) * 1983-09-21 1985-04-15 科学技術庁無機材質研究所長 Process for sintering cubic silicon carbide powder
JPS60186467A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Silicon carbide sintered body and manufacture
JPS6131356A (en) * 1984-07-20 1986-02-13 松下電器産業株式会社 Manufacture of sic sintered body
JPS61168567A (en) * 1985-01-19 1986-07-30 イビデン株式会社 Manufacture of silicon carbide sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236764A (en) * 1987-03-24 1988-10-03 三菱マテリアル株式会社 Manufacture of silicon carbide sintered body
JPH0451511B2 (en) * 1987-03-24 1992-08-19 Mitsubishi Materials Corp
JPH02199065A (en) * 1989-01-30 1990-08-07 Kazumichi Kijima Sintered silicon carbide having high thermal conductivity and production thereof
JPH02199066A (en) * 1989-01-30 1990-08-07 Kazumichi Kijima Sintered silicon carbide having electrical conductivity and production thereof
JP2016540717A (en) * 2013-10-30 2016-12-28 ゼネラル・エレクトリック・カンパニイ Method for repairing matrix cracks in infiltrated ceramic matrix composites.

Similar Documents

Publication Publication Date Title
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
US4346049A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
JPS6071576A (en) High heat conductivity aluminum nitride ceramic product
US4019913A (en) Process for fabricating silicon carbide articles
GB2168722A (en) High thermal conductivity ceramic body
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
CA2478657A1 (en) Method of producing silicon carbide sintered body jig, and silicon carbide sintered body jig obtained by the production method
JPS6256371A (en) Manufacture of silicon carbide sintered body
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JPS6317258A (en) Silicon carbide sintered body and manufacture
JPH06279124A (en) Production of silicon nitride sintered compact
JP2558688B2 (en) Method for manufacturing silicon carbide sintered body
JPS6212664A (en) Method of sintering b4c base composite body
JP2549813B2 (en) Silicon nitride powder
JPS6127357B2 (en)
JPS63233076A (en) Manufacture of silicon carbide sintered body
JPH03177372A (en) Sic-based vesicular sintered compact and its production
JPS60251175A (en) Manufacture of formed body made from silicon carbide and carbon
JPH0579625B2 (en)
JPS60246263A (en) Silicon carbide base sintered body
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JP2747627B2 (en) Silicon nitride based sintered body and method for producing the same
JPH03174358A (en) Composite material consisting of continuous phase of carbon and silicon carbide
JPS6256372A (en) Manufacture of silicon carbide sintered body
JPS5891060A (en) Manufacture of silicon carbide sintered body