JP3035163B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP3035163B2
JP3035163B2 JP6194158A JP19415894A JP3035163B2 JP 3035163 B2 JP3035163 B2 JP 3035163B2 JP 6194158 A JP6194158 A JP 6194158A JP 19415894 A JP19415894 A JP 19415894A JP 3035163 B2 JP3035163 B2 JP 3035163B2
Authority
JP
Japan
Prior art keywords
weight
silicon nitride
temperature
powder
ytterbium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6194158A
Other languages
Japanese (ja)
Other versions
JPH0859350A (en
Inventor
勝徳 秋山
勇一郎 村上
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6194158A priority Critical patent/JP3035163B2/en
Publication of JPH0859350A publication Critical patent/JPH0859350A/en
Application granted granted Critical
Publication of JP3035163B2 publication Critical patent/JP3035163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高温高強度、耐酸化性、
耐摩耗性等が要求される機械部品に用いる窒化珪素質焼
結体とその製造方法に関する。
The present invention relates to a high-temperature high-strength, oxidation-resistant,
The present invention relates to a silicon nitride-based sintered body used for a machine component requiring abrasion resistance and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素焼結体は難焼結体であるため、
焼結助剤として酸化アルミニウム、酸化イットリウム等
を添加して焼結する方法が用いられているが、これらの
助剤成分は焼結後にガラス相として粒界に残り、このガ
ラス相が高温で軟化することにより高温特性を低下させ
ることが知られている。高温強度向上のためには助剤の
絶対量を減少させ、ホットプレスあるいはHIP等の特
殊な方法で強制的に焼結することが行われているが、耐
酸化性等について効果的な対策はほとんど行われてな
い。
2. Description of the Related Art Since a silicon nitride sintered body is difficult to be sintered,
A method of adding aluminum oxide, yttrium oxide, etc. as a sintering aid and sintering is used, but these aid components remain at the grain boundaries as a glass phase after sintering, and this glass phase softens at high temperatures. It is known that high-temperature characteristics are degraded by doing so. In order to improve the high-temperature strength, the absolute amount of the auxiliary agent is reduced, and sintering is forcibly performed by a special method such as hot pressing or HIP. Almost not done.

【0003】[0003]

【発明が解決しようとする課題】本発明は焼結助剤とし
て、酸化イッテルビウム、酸化アルミニウム及び/又は
酸化珪素の混合系を使用し、その量、組成比の適正化を
図り、かつ焼結後に適正な加熱処理を行うことによって
通常の常圧焼結であっても緻密に焼結し、かつ高温強
度、耐酸化性等の高温特性の低下の少ない窒化珪素焼結
体とその製造方法を提供しようとするものである。
According to the present invention, a mixed system of ytterbium oxide, aluminum oxide and / or silicon oxide is used as a sintering aid, its amount and composition ratio are optimized, and after sintering, Provided is a silicon nitride sintered body that is densely sintered by performing appropriate heat treatment even under normal atmospheric pressure sintering, and has a small decrease in high-temperature characteristics such as high-temperature strength and oxidation resistance, and a method for producing the same. What you want to do.

【0004】[0004]

【課題を解決するための手段】本発明は (1)窒化珪素を70〜97重量%、酸化イッテルビウ
ムを2〜30重量%、酸化アルミニウムを0.1〜5.
0重量%及び酸化アルミニウムに対する酸化イッテルビ
ウムの重量比が10以上の組成で、かつ焼結体中の窒化
珪素粒子の間隙である粒界部が安定な結晶相であるイッ
テルビウムシリコンオキシナイトライドの微結晶で構成
されてなることを特徴とする窒化珪素質焼結体 (2)窒化珪素粉末を70〜97重量%、酸化イッテル
ビウム粉末を2〜30重量%、酸化アルミニウム粉末を
0.1〜5.0重量%及び酸化アルミニウム粉末に対す
る酸化イッテルビウム粉末の重量比が10以上よりなる
混合粉体を成型し、窒素ガス雰囲気中で1700〜21
00℃で焼成した後、900〜940℃の範囲まで毎分
20℃以上の速度で降温し、5分以上保持した後、再び
1150〜1350℃の範囲に昇温し、4〜8時間の範
囲で保持することを特徴とする窒化珪素質焼結体製造方
(3) 窒化珪素粉末を70〜97重量%、酸化イッテル
ビウム粉末を2〜30重量%及び酸化珪素粉末を0.5
〜9.5重量%よりなる混合粉体を成型し、窒素ガス雰
囲気中で1700〜2100℃で焼成した後、900〜
940℃の範囲まで毎分20℃以上の速度で降温し、5
分以上保持した後、再び1150〜1350℃の範囲に
昇温し、4〜8時間の範囲で保持することを特徴とする
窒化珪素質焼結体製造方法 (4) 窒化珪素を70〜97重量%、酸化イッテルビウ
ムを2〜30重量%、酸化アルミニウムを0.1〜5.
0重量%、酸化アルミニウムに対する酸化イッテルビウ
ムの重量比が10以上及び酸化珪素を0.5〜9.5重
量%の組成で、かつ焼結体中の窒化珪素粒子の間隙であ
る粒界部が安定な結晶相であるイッテルビウムシリコン
オキシナイトライド及びイッテルビウムシリコンオキサ
イドの微結晶で構成されてなることを特徴とする窒化珪
素質焼結体、並びに、 (5) 窒化珪素粉末を70〜97重量%、酸化イッテル
ビウム粉末を2〜30重量%、酸化アルミニウム粉末を
0.1〜5.0重量%、酸化アルミニウム粉末に対する
酸化イッテルビウム粉末の重量比が10以上及び酸化珪
素粉末を0.5〜9.5重量%よりなる混合粉体を成型
し、窒素ガス雰囲気中で1700〜2100℃で焼成し
た後、900〜940℃の範囲まで毎分20℃以上の速
で降温し、5分以上保持した後、再び1150〜13
50℃の範囲に昇温し、4〜8時間の範囲で保持するこ
とを特徴とする窒化珪素質焼結体製造方法である。
According to the present invention, there are provided (1) 70 to 97% by weight of silicon nitride, 2 to 30% by weight of ytterbium oxide, and 0.1 to 5% of aluminum oxide.
Microcrystals of ytterbium silicon oxynitride having a composition of 0% by weight and a weight ratio of ytterbium oxide to aluminum oxide of 10 or more, and in which a grain boundary part which is a gap between silicon nitride particles in the sintered body is a stable crystal phase. in configured silicon nitride sintered body characterized by comprising, (2) silicon nitride powder 70-97 wt%, 2-30 wt% of ytterbium oxide powder, aluminum oxide powder 0.1-5. 0 wt% and a mixed powder having a weight ratio of ytterbium oxide powder to aluminum oxide powder of 10 or more was molded, and the mixed powder was formed in a nitrogen gas atmosphere at 1700 to 21%.
After firing at 00 ° C, the temperature is lowered at a rate of 20 ° C or more per minute to a range of 900 to 940 ° C, and after maintaining for 5 minutes or more, the temperature is raised again to a range of 1150 to 1350 ° C and a range of 4 to 8 hours. silicon nitride sintered body production method, which comprises in the holding, (3) a silicon nitride powder 70-97 wt%, 2-30 wt% of ytterbium oxide powder and silicon oxide powder 0.5
To 9.5% by weight, and then fired at 1700 to 2100 ° C. in a nitrogen gas atmosphere.
The temperature is lowered at a rate of 20 ° C or more per minute to a range of 940 ° C,
After holding min or more, again heated to a range of 1,150-1,350 ° C., wherein the silicon nitride sintered body manufacturing method of the holding in the range of 4 to 8 hours, (4) silicon nitride 70-97 % By weight, 2 to 30% by weight of ytterbium oxide, and 0.1 to 5% of aluminum oxide.
0% by weight, the weight ratio of ytterbium oxide to aluminum oxide is 10 or more, and silicon oxide is 0.5 to 9.5% by weight, and the grain boundary part which is the gap between silicon nitride particles in the sintered body is stable. A silicon nitride-based sintered body characterized by being composed of fine crystals of ytterbium silicon oxynitride and ytterbium silicon oxide, which are various crystalline phases ; and (5) 70-97% by weight of silicon nitride powder, oxidation 2-30% by weight of ytterbium powder, 0.1-5.0% by weight of aluminum oxide powder, weight ratio of ytterbium oxide powder to aluminum oxide powder of 10 or more, and 0.5-9.5% by weight of silicon oxide powder After forming a mixed powder consisting of and firing at 1700 to 2100 ° C in a nitrogen gas atmosphere, the temperature is at least 20 ° C per minute up to the range of 900 to 940 ° C. Speed
After holding time at the temperature was lowered, more than five minutes, again 1150-13
The temperature was raised to the range of 50 ° C., a silicon nitride sintered body prepared how, characterized in that to hold in the range of 4-8 hours.

【0005】[0005]

【作用】本発明によると、窒化珪素質焼結体の粒界部に
高温でも安定なイッテルビウムシリコンオキシナイトラ
イド及び/又はイッテルビウムシリコンオキサイドの微
結晶を設けたことにより、高温強度の低下が少なく、耐
酸化性にも優れた高い信頼性をもつ窒化珪素質焼結体
を、通常の常圧焼結法で製造することにより安価で提供
される。以下、更に本発明に係わる数値限定の理由を説
明する。
According to the present invention, a high-temperature stable ytterbium silicon oxynitride and / or ytterbium silicon oxide microcrystal is provided at a grain boundary portion of a silicon nitride-based sintered body, so that a decrease in high-temperature strength is small, A silicon nitride-based sintered body having excellent oxidation resistance and high reliability is provided at low cost by being manufactured by a normal atmospheric pressure sintering method. Hereinafter, the reason for limiting the numerical values according to the present invention will be further described.

【0006】(1)窒化珪素:70〜97重量%:窒化
珪素粉末は窒化珪素焼結体を作製する際の主剤となるも
ので、70重量%未満であると相対的に助剤の量が多す
ぎて焼結の際に変形が著しくなり、室温、高温において
強度を発現することが不可能で、窒化珪素焼結体の一般
的な特徴である優れた機械的性質がすべて失われてしま
う。一方、97重量%を越えると相対的に助剤の量が少
なくなり、難焼結性である窒化珪素をうまく焼結させる
ことができず、緻密化が難しくなり当然強度が落ちる。
より好ましくは75〜95重量%である。
(1) Silicon nitride: 70 to 97% by weight: The silicon nitride powder is a main component for producing a silicon nitride sintered body. Due to too much, deformation during sintering becomes remarkable, it is impossible to develop strength at room temperature and high temperature, and all of the excellent mechanical properties that are a general feature of silicon nitride sintered bodies are lost . On the other hand, if it exceeds 97% by weight, the amount of the auxiliary agent becomes relatively small, and it is difficult to sinter silicon nitride, which is difficult to sinter, and it is difficult to densify, and the strength naturally drops.
More preferably, it is 75 to 95% by weight.

【0007】(2)酸化イッテルビウム:2〜30重量
%:酸化イッテルビウムは酸化アルミニウム及び窒化珪
素粉末に酸化層として存在する酸化珪素並びに添加した
酸化珪素と共に焼結温度付近で反応、融解し、窒化珪素
焼結体作製時の助剤として作用し、緻密化に貢献すると
ともに、形成された焼結体の高温強度の低下を防ぐ作用
ももつ。また、酸化アルミニウムを使用しない場合であ
っても、高度に制御された条件下では酸化イッテルビウ
ムと酸化珪素のみで助剤としての作用をはたせる。この
場合には金属元素がひとつ少なくなるので、より共晶温
度が上昇し、高温強度の低下を防ぐ効果が高い。しかし
2重量%未満であると、焼結性が悪化し十分緻密化する
ことが困難で高温強度の低下が著しい。また、30重量
%を越えると、相対的に酸化アルミニウムの量が少なく
なり、焼結性が低下して強度が低下する。より好ましく
は5〜23重量%である。
(2) Ytterbium oxide: 2 to 30% by weight: Ytterbium oxide reacts and melts near the sintering temperature with silicon oxide present as an oxide layer in aluminum oxide and silicon nitride powder and silicon oxide added thereto, and silicon nitride It acts as an aid during the production of the sintered body, contributes to densification, and also has the effect of preventing a reduction in the high-temperature strength of the formed sintered body. Further, even when aluminum oxide is not used, under a highly controlled condition, only ytterbium oxide and silicon oxide act as an auxiliary agent. In this case, since one metal element is reduced, the eutectic temperature is further increased, and the effect of preventing a decrease in high-temperature strength is high. However, if it is less than 2% by weight, the sinterability deteriorates, it is difficult to sufficiently densify, and the high-temperature strength is remarkably reduced. On the other hand, when the content exceeds 30% by weight, the amount of aluminum oxide is relatively reduced, and the sinterability is reduced to lower the strength. More preferably, it is 5 to 23% by weight.

【0008】(3)酸化アルミニウム:0.1〜5.0
重量%:酸化アルミニウムは酸化イッテルビウム及び窒
化珪素粉末に酸化層として存在する酸化珪素並びに添加
した酸化珪素と共に焼結温度付近で反応、融解し、窒化
珪素焼結体作製時の助剤として作用し緻密化に貢献する
が、高温強度を低下させる作用ももつ。よって高温強度
を低下させないためには酸化アルミニウムの量を少なく
すること、すなわち添加しないことが好ましいが、添加
しないと焼結が不十分になるため、強度の絶対値が低く
なる。また、焼結後の熱処理によって結晶化するイッテ
ルビウムシリコンオキシナイトライドの主構成成分では
ないもののアルミニウムはこの結晶化を容易にし、結晶
中に固溶することにより、結晶の高温安定性を増大す
る。しかし、0.1重量%未満であると結晶化がしにく
くなることがあり、結晶の高温安定性が不安定となるた
め、焼結体の高温強度が低下する。また、5.0重量%
を越えると焼結性は良好で十分緻密化するが、結晶中へ
の固溶量を越えてしまうため高温強度の低下が著しい。
より好ましくは0.1〜2.0重量%である。
(3) Aluminum oxide: 0.1 to 5.0
% By weight: Aluminum oxide reacts and melts near the sintering temperature with ytterbium oxide, silicon oxide present as an oxide layer in silicon nitride powder, and added silicon oxide, and acts as an auxiliary agent in the production of a silicon nitride sintered body, and is dense. But also has the effect of reducing high-temperature strength. Therefore, in order not to lower the high-temperature strength, it is preferable to reduce the amount of aluminum oxide, that is, not to add aluminum oxide. However, since sintering becomes insufficient without adding aluminum oxide, the absolute value of the strength becomes low. Aluminum, which is not a main component of ytterbium silicon oxynitride crystallized by heat treatment after sintering, facilitates this crystallization and increases the high-temperature stability of the crystal by forming a solid solution in the crystal. However, if it is less than 0.1% by weight, crystallization may be difficult, and the high-temperature stability of the crystal becomes unstable, so that the high-temperature strength of the sintered body decreases. In addition, 5.0% by weight
If it exceeds, the sinterability is good and the film is sufficiently densified, but the amount of solid solution in the crystal is exceeded, so that the high temperature strength is significantly reduced.
More preferably, it is 0.1 to 2.0% by weight.

【0009】(4)酸化珪素:0.5〜9.5重量%:
酸化珪素は酸化イッテルビウム等と共に焼結温度付近で
反応、融解し、窒化珪素焼結体作製時の助剤として作用
し緻密化に貢献する。焼結後は粒界中に形成されるガラ
ス相の骨格をなし、高温特性を支配する。酸化珪素を助
剤として添加する場合、一般に量が多い方が焼結性が向
上するものの焼結体の高温特性は低下する。しかし0.
5重量%未満であると焼結性が低下し緻密化せず、9.
5重量%を越えると焼結後のガラス相も多量となり、結
果的に高温強度を低下させる。より好ましくは0.7〜
9.0重量%である。酸化珪素を積極的に添加しない場
合であっても、窒化珪素粉末に酸化層として存在する酸
化珪素が同様の作用をするが、この場合微量となり焼結
性の低下が避けられないため、酸化アルミニウムの添加
が不可欠となる。なお、上記いずれの原料も平均粒径2
μm以下とするのが望ましい。
(4) Silicon oxide: 0.5 to 9.5% by weight:
Silicon oxide reacts and melts near the sintering temperature together with ytterbium oxide and the like, acts as an auxiliary agent in the production of a silicon nitride sintered body, and contributes to densification. After sintering, it forms a skeleton of a glass phase formed in the grain boundaries and governs high-temperature characteristics. When silicon oxide is added as an auxiliary agent, generally, the larger the amount, the better the sinterability but the lower the high-temperature characteristics of the sintered body. But 0.
If the content is less than 5% by weight, the sinterability is reduced and the composition is not densified.
If it exceeds 5% by weight, the glass phase after sintering also becomes large, resulting in a decrease in high-temperature strength. More preferably 0.7 to
It is 9.0% by weight. Even if silicon oxide is not positively added, silicon oxide present as an oxide layer in the silicon nitride powder has the same effect, but in this case, the amount is small and sinterability is inevitably reduced. Is indispensable. Each of the above-mentioned raw materials has an average particle size of
It is desirable that the thickness be not more than μm.

【0010】(5)酸化アルミニウム粉末に対する酸化
イッテルビウム粉末の重量比:10以上:酸化イッテル
ビウムと酸化アルミニウムは窒化珪素粉末に酸化層とし
て存在する酸化珪素並びに添加した酸化珪素と共に焼結
温度付近で反応、融解し、窒化珪素焼結体作製時の助剤
として作用する。これらの成分は焼結後、主として粒界
中にガラス相として存在し、高温特性を支配する。この
比が10未満であると形成されるガラス相の粘性が低下
するためと考えられるが、高温強度が低下する。またこ
の比があまり大きすぎると、焼結性が低下するので、よ
り好ましくは20〜50である。
(5) Weight ratio of ytterbium oxide powder to aluminum oxide powder: 10 or more: ytterbium oxide and aluminum oxide react with silicon oxide present as an oxide layer in silicon nitride powder and added silicon oxide at about sintering temperature, It melts and acts as an aid when producing a silicon nitride sintered body. After sintering, these components exist mainly as a glass phase in the grain boundaries, and dominate the high-temperature characteristics. If this ratio is less than 10, it is considered that the viscosity of the formed glass phase is reduced, but the high-temperature strength is reduced. On the other hand, if the ratio is too large, the sinterability is reduced. Therefore, the ratio is more preferably 20 to 50.

【0011】(6)不純物はいずれの元素にせよ100
ppm以下が望ましい。
(6) The impurity is 100
ppm or less is desirable.

【0012】(7)窒素ガス雰囲気:窒素ガス加圧雰囲
気は窒化珪素が高温で昇華するのを防ぐために行うもの
である。なお、10kg/cm2 を超えると高圧ガス取
締法による適用を受け、ガスの製造、容器の取扱等に厳
しい規制を受けるため、実際の製品の製造に不利であり
コストにもひびくので、できれば10kg/cm2 以下
が望ましい。より好ましくは6〜9.9kg/cm2
ある。
(7) Nitrogen gas atmosphere: A nitrogen gas pressurized atmosphere is used to prevent silicon nitride from sublimating at a high temperature. If it exceeds 10 kg / cm 2, it will be subject to the application of the High Pressure Gas Control Law, and strict regulations will be imposed on gas production, container handling, etc., which is disadvantageous to actual product production and increases the cost. / Cm 2 or less is desirable. More preferably, it is 6 to 9.9 kg / cm 2 .

【0013】(8)1700〜2100℃で焼成:セラ
ミックス材料は粉体を焼き固めて焼結して作製する。焼
結させる時に焼成が必要となるが、窒化珪素の場合は助
剤を添加して焼結させ易くしているものの基本的に難焼
結性であって焼結には高い焼成温度が必要となる。17
00℃未満の温度では助剤の反応、融解があまり起こら
ずに焼結が進まず、緻密化しない。また2100℃を越
える温度であると窒化珪素が昇華、分解してしまい同じ
く緻密化しない。より好ましくは1750〜2050℃
である。
(8) Firing at 1700-2100 ° C .: The ceramic material is prepared by firing and sintering powder. Sintering is required when sintering, but in the case of silicon nitride, auxiliaries are added to facilitate sintering, but basically sintering is difficult and sintering requires a high sintering temperature. Become. 17
If the temperature is less than 00 ° C., the sintering does not proceed without causing the reaction and melting of the auxiliary agent, and the densification does not occur. If the temperature exceeds 2100 ° C., silicon nitride will sublimate and decompose, and will not be densified. More preferably 1750-2050 ° C
It is.

【0014】(9)焼成時間:焼成時間は特に限定はな
いが、セラミックス材料を焼成する際、ごく通常の外部
加熱炉を用いると試料の表面と内部で熱伝導の差により
温度差が少なからず生じてしまうので、目的温度まで昇
温後、ある程度の時間の保持は必要である。なお、10
時間以上の保持しても、もはや焼結はそれほど進まず、
コストの点からも意味がなくなるので、できればそれ以
下がよい。より好ましくは9時間以下である。
(9) Firing time: The firing time is not particularly limited. However, when a ceramic material is fired, if a very ordinary external heating furnace is used, the temperature difference is not small due to the difference in heat conduction between the surface and the inside of the sample. Therefore, it is necessary to maintain a certain time after the temperature is raised to the target temperature. In addition, 10
Sintering no longer progresses even if it is held for longer than
There is no point in terms of cost, so if possible, lower is better. More preferably, it is 9 hours or less.

【0015】(10)900〜940℃の範囲まで降
温:粒界ガラス相は加熱処理によって結晶化することが
可能であるが、適正な処理を行わないと安定な結晶相の
析出に膨大な時間がかかったりする等、非効率的なプロ
セスとなりうる。よって一般的な結晶成長理論に基づ
き、適当な結晶核を析出させた後、その核を成長させる
といった2段階の熱処理が効率的となる。ここでは結晶
核析出温度の決定に際し、助剤組成成分を主成分とした
模擬粒界ガラス試料を作製し、これに示差熱分析、X線
回折法等の方法を用いてガラス転移点の温度を調査した
結果、918℃であることが判明した。一般にこの付近
の温度で結晶核の生成速度が最大となることが知られて
おり、この温度より低い900℃未満であるとガラス構
造が安定な温度領域となり、核の析出はもとより結晶化
がしにくく、940℃を越えると融液の状態が安定で、
核の析出がしにくい。より好ましくは910〜930℃
である。
(10) The temperature is lowered to the range of 900 to 940 ° C .: The grain boundary glass phase can be crystallized by heat treatment, but if not properly treated, it takes an enormous amount of time to deposit a stable crystal phase. And may be an inefficient process. Therefore, based on a general crystal growth theory, a two-stage heat treatment in which an appropriate crystal nucleus is precipitated and then the nucleus is grown becomes efficient. Here, when determining the crystal nucleus precipitation temperature, a simulated grain boundary glass sample containing an auxiliary component as a main component was prepared, and the temperature of the glass transition point was determined using a method such as differential thermal analysis or X-ray diffraction. As a result of the investigation, it was found that the temperature was 918 ° C. It is generally known that the crystal nucleation rate is maximized at a temperature in the vicinity of this temperature. If the temperature is lower than 900 ° C., which is lower than this temperature, the glass structure becomes a stable temperature range, and crystallization occurs as well as nucleation. Difficult, the temperature of the melt is stable above 940 ℃,
Difficult to precipitate nuclei. More preferably 910-930 ° C
It is.

【0016】(11)20℃毎分以上で降温:粒界ガラ
ス相中に目的とする結晶核を有効に析出させるために
は、なるべく早く降温する必要がある。20℃毎分未満
であると望まない相が析出したり、後の熱処理が有効に
作用しない可能性がある。より好ましくは40℃毎分で
ある。
(11) Temperature drop at 20 ° C./minute or more: In order to effectively precipitate the target crystal nucleus in the grain boundary glass phase, it is necessary to drop the temperature as soon as possible. If the temperature is lower than 20 ° C. per minute, an undesired phase may be precipitated, or the subsequent heat treatment may not work effectively. More preferably, the temperature is 40 ° C. per minute.

【0017】(12)5分以上で保持:粒界ガラス相中
に目的とする結晶核を有効に析出させるために、ガラス
転移点の温度付近で保持をする必要があるが、5分未満
であると核が十分析出しない可能性がある。より好まし
くは10分以上である。
(12) Retention in 5 minutes or more: In order to effectively precipitate the target crystal nucleus in the grain boundary glass phase, it is necessary to maintain the temperature near the glass transition temperature, but it is less than 5 minutes. If it is, nuclei may not be sufficiently precipitated. More preferably, it is 10 minutes or more.

【0018】(13)1150℃〜1350℃の範囲に
昇温:粒界ガラス相は加熱処理によって結晶化すること
が可能であるが、適正な処理を行わないと安定な結晶相
の析出に膨大な時間がかかったりする等、非効率的なプ
ロセスとなりうる。よって一般的な結晶成長理論に基づ
き、適当な結晶核を析出させた後、その核を成長させる
といった2段階の熱処理が効率的となる。ここでは結晶
核成長温度の決定に際し、助剤組成成分を主成分とした
模擬粒界ガラス試料を作製し、これに示差熱分析、X線
回折法等の方法を用いて結晶化開始温度を調査した結
果、1209℃であることが判明した。一般にこの付近
の温度で結晶の成長速度が最大となることが知られてお
り、この温度より低い1150℃未満であると結晶化の
速度が遅く、別の不安定相が析出する可能性があり、1
350℃を越えてもまた速度が遅くなる。より好ましく
は1200〜1300℃である。
(13) Temperature rise in the range of 1150 ° C. to 1350 ° C .: The grain boundary glass phase can be crystallized by heat treatment, but without proper treatment, the precipitation of a stable crystal phase is enormous. It can be an inefficient process, such as taking a long time. Therefore, based on a general crystal growth theory, a two-stage heat treatment in which an appropriate crystal nucleus is precipitated and then the nucleus is grown becomes efficient. Here, when determining the crystal nucleus growth temperature, a simulated grain boundary glass sample containing the auxiliary component as a main component was prepared, and the crystallization start temperature was investigated using a method such as differential thermal analysis and X-ray diffraction. As a result, it was found that the temperature was 1209 ° C. It is generally known that the growth rate of the crystal becomes maximum at a temperature in the vicinity of this. If the temperature is lower than 1150 ° C., which is lower than this temperature, the crystallization speed is slow and another unstable phase may be precipitated. , 1
Above 350 ° C. the speed also slows down. More preferably, it is 1200-1300 degreeC.

【0019】(14)4〜8時間の範囲で保持:粒界ガ
ラス相中に目的とする結晶を効率的に成長させるため
に、結晶化開始温度付近で保持をする必要があるが、4
時間未満であると成長が十分行われない可能性があり、
8時間を越えてもほとんど変化がない。より好ましくは
4〜6時間である。
(14) Retention in the range of 4 to 8 hours: In order to efficiently grow the target crystal in the grain boundary glass phase, it is necessary to maintain the temperature around the crystallization start temperature.
If it is less than time, growth may not be enough,
There is almost no change over 8 hours. More preferably, it is 4 to 6 hours.

【0020】[0020]

【実施例】試験に供した原料粉末は窒化珪素原料粉末が
平均粒径0.5μm(結晶子径は0.2μm以下)の高
純度粉末を、焼結助剤の酸化イッテルビウムは平均粒径
が1.2μmの粉末を、酸化アルミニウムは平均粒径が
0.8μmの粉末を、酸化珪素は平均粒径が0.3μm
の粉末を用いた。各粉末の配合比としては表1に示した
とおりであり、試料番号は窒化珪素粉末が75.95
重量%、酸化イッテルビウム粉末が22.90重量%及
び酸化アルミニウム粉末が1.15重量%、試料番号
は窒化珪素粉末が94.41重量%、酸化イッテルビウ
ム粉末が5.32重量%及び酸化アルミニウム粉末が
0.27重量%、試料番号は窒化珪素粉末が90.0
0重量%、酸化イッテルビウム粉末が7.66重量%及
び酸化珪素粉末が2.34重量%、試料番号は窒化珪
素粉末が70.00重量%、酸化イッテルビウム粉末が
22.99重量%及び酸化珪素粉末が7.01重量%、
試料番号は窒化珪素粉末が70.00重量%、酸化イ
ッテルビウム粉末が22.90重量%、酸化アルミニウ
ム粉末が1.15重量%及び酸化珪素粉末が5.95重
量%の5つの試料について検討した。なお、これらの例
のすべての試験について、分散剤としてはポリエチレン
イミン系のものを、溶媒としては1−ブチルアルコール
を用いた湿式混合、粉砕法によった。
EXAMPLE The raw material powder used in the test was a high-purity silicon nitride raw material powder having an average particle size of 0.5 μm (crystallite size of 0.2 μm or less), and ytterbium oxide as a sintering aid having an average particle size. 1.2 μm powder, aluminum oxide powder having an average particle diameter of 0.8 μm, silicon oxide powder having an average particle diameter of 0.3 μm
Was used. The mixing ratio of each powder is as shown in Table 1, and the sample number is 75.95 for silicon nitride powder.
%, Ytterbium oxide powder: 22.90% by weight, aluminum oxide powder: 1.15% by weight, sample numbers: silicon nitride powder: 94.41% by weight, ytterbium oxide powder: 5.32% by weight, and aluminum oxide powder: 0.27% by weight, the sample number was 90.0%
0% by weight, 7.66% by weight of ytterbium oxide powder, 2.34% by weight of silicon oxide powder, sample numbers: 70.00% by weight of silicon nitride powder, 22.99% by weight of ytterbium oxide powder, and silicon oxide powder Is 7.01% by weight,
As for the sample numbers, five samples of 70.00% by weight of silicon nitride powder, 22.90% by weight of ytterbium oxide powder, 1.15% by weight of aluminum oxide powder, and 5.95% by weight of silicon oxide powder were examined. In all of the tests in these examples, a polyethyleneimine-based dispersant and a wet mixing and pulverization method using 1-butyl alcohol as a solvent were used.

【0021】窒化珪素質焼結体の作製に際し、まず混合
には原料粉末100重量%に対し、ポリエチレンイミン
系分散剤3重量%、1−ブチルアルコール溶媒120重
量%を加え、ジルコニアボールを用いて均一に混合した
後、乾燥しプレスで直径60mmφ、約6mmの円盤状
に成型し、4t/cm2 の圧力で静水圧プレスして成型
体を得た。この成型体を真空中で500℃まで加熱し、
1時間保持して脱脂した後、窒素ガス6kg毎平方セン
チメートルの加圧下、1℃/minで1800℃まで昇
温し、4時間焼結した。その後920℃まで40℃毎分
で降温し、10分保持した後、再び1300℃に昇温
し、4時間保持して結晶化させた試料と、結晶化させな
かった試料とで高温曲げ強さ、酸化増量等の高温特性を
比較した結果を表2に示す。これによると結晶化によ
り、高温における強度低下が抑えられるばかりでなく、
耐酸化性も増大することとなった。
In preparing the silicon nitride sintered body, 3% by weight of a polyethyleneimine-based dispersant and 120% by weight of a 1-butyl alcohol solvent are added to 100% by weight of the raw material powder for mixing, and zirconia balls are used. After being uniformly mixed, the mixture was dried, molded into a disk having a diameter of 60 mmφ and a diameter of about 6 mm by a press, and pressed by a hydrostatic pressure at a pressure of 4 t / cm 2 to obtain a molded body. This molded body is heated to 500 ° C. in a vacuum,
After degreasing by holding for 1 hour, the temperature was increased to 1800 ° C. at a rate of 1 ° C./min under a pressure of 6 kg of nitrogen gas per square centimeter and sintered for 4 hours. Thereafter, the temperature was lowered to 920 ° C. at a rate of 40 ° C. every minute, and after holding for 10 minutes, the temperature was raised again to 1300 ° C., and the sample crystallized by holding for 4 hours and the sample not crystallized at high temperature flexural strength. Table 2 shows the results of comparison of high-temperature characteristics such as oxidation and weight gain. According to this, crystallization not only suppresses the strength reduction at high temperature, but also
Oxidation resistance also increased.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明により、高温強度の低下が大幅に
抑えられ、高温強度の高い窒化珪素質焼結体を極一般的
な製造方法によって安価に提供することができ、産業上
の利用価値が大きい。
According to the present invention, a reduction in high-temperature strength can be greatly suppressed, and a silicon nitride-based sintered body having high high-temperature strength can be provided at a low cost by an extremely general manufacturing method, and is useful for industrial use. Is big.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 博一 神奈川県横浜市金沢区幸浦一丁目8番地 1 三菱重工業株式会社 基盤技術研究 所内 (56)参考文献 特開 平5−201767(JP,A) 特開 平5−208870(JP,A) 特開 平6−122556(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 - 35/596 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hirokazu Yamamoto 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa 1 Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory (56) References JP-A-5-201767 (JP, A JP-A-5-208870 (JP, A) JP-A-6-122556 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/584-35/596

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素を70〜97重量%、酸化イッ
テルビウムを2〜30重量%、酸化アルミニウムを0.
1〜5.0重量%及び酸化アルミニウムに対する酸化イ
ッテルビウムの重量比が10以上の組成で、かつ焼結体
中の窒化珪素粒子の間隙である粒界部が安定な結晶相で
あるイッテルビウムシリコンオキシナイトライドの微結
晶で構成されてなることを特徴とする窒化珪素質焼結
体。
1. A silicon nitride of 70 to 97% by weight, a ytterbium oxide of 2 to 30% by weight, and an aluminum oxide of 0.
Ytterbium silicon oxynitride having a composition of 1 to 5.0% by weight and a weight ratio of ytterbium oxide to aluminum oxide of 10 or more, and in which a grain boundary part which is a gap between silicon nitride particles in the sintered body is a stable crystal phase. A silicon nitride-based sintered body characterized by comprising microcrystals of a ride.
【請求項2】 窒化珪素粉末を70〜97重量%、酸化
イッテルビウム粉末を2〜30重量%、酸化アルミニウ
ム粉末を0.1〜5.0重量%及び酸化アルミニウム粉
末に対する酸化イッテルビウム粉末の重量比が10以上
よりなる混合粉体を成型し、窒素ガス雰囲気中で170
0〜2100℃で焼成した後、900〜940℃の範囲
まで毎分20℃以上の速度で降温し、5分以上保持した
後、再び1150〜1350℃の範囲に昇温し、4〜8
時間の範囲で保持することを特徴とする窒化珪素質焼結
体製造方法。
2. The weight ratio of silicon nitride powder is 70 to 97% by weight, ytterbium oxide powder is 2 to 30% by weight, aluminum oxide powder is 0.1 to 5.0% by weight, and the weight ratio of ytterbium oxide powder to aluminum oxide powder is 2. A mixed powder consisting of 10 or more is molded, and 170
After firing at 0 to 2100 ° C., the temperature is lowered at a rate of 20 ° C. or more per minute to a range of 900 to 940 ° C., maintained for 5 minutes or more, and then raised again to a range of 1150 to 1350 ° C. to 4 to 8
A method for producing a silicon nitride based sintered body, wherein the sintered body is maintained within a time range.
【請求項3】 窒化珪素粉末を70〜97重量%、酸化
イッテルビウム粉末を2〜30重量%及び酸化珪素粉末
を0.5〜9.5重量%よりなる混合粉体を成型し、窒
素ガス雰囲気中で1700〜2100℃で焼成した後、
900〜940℃の範囲まで毎分20℃以上の速度で降
温し、5分以上保持した後、再び1150〜1350℃
の範囲に昇温し、4〜8時間の範囲で保持することを特
徴とする窒化珪素質焼結体製造方法。
3. A mixed powder comprising 70 to 97% by weight of silicon nitride powder, 2 to 30% by weight of ytterbium oxide powder and 0.5 to 9.5% by weight of silicon oxide powder is molded into a nitrogen gas atmosphere. After firing at 1700-2100 ° C in
The temperature is lowered at a rate of 20 ° C. or more per minute to a range of 900 to 940 ° C., maintained for 5 minutes or more, and then returned to 1150 to 1350 ° C.
The method for producing a silicon nitride-based sintered body, wherein the temperature is raised to a range of 4 to 8 hours.
【請求項4】 窒化珪素を70〜97重量%、酸化イッ
テルビウムを2〜30重量%、酸化アルミニウムを0.
1〜5.0重量%、酸化アルミニウムに対する酸化イッ
テルビウムの重量比が10以上及び酸化珪素を0.5〜
9.5重量%の組成で、かつ焼結体中の窒化珪素粒子の
間隙である粒界部が安定な結晶相であるイッテルビウム
シリコンオキシナイトライド及びイッテルビウムシリコ
ンオキサイドの微結晶で構成されてなることを特徴とす
る窒化珪素質焼結体。
4. A silicon nitride having a content of 70 to 97% by weight, a ytterbium oxide having a content of 2 to 30% by weight, and an aluminum oxide having a content of 0.1 to 0.2%.
1 to 5.0% by weight, the weight ratio of ytterbium oxide to aluminum oxide is 10 or more and silicon oxide is 0.5 to 0.5%
The composition of 9.5% by weight, and the grain boundary portion, which is a gap between silicon nitride particles in the sintered body, is composed of microcrystals of ytterbium silicon oxynitride and ytterbium silicon oxide which are stable crystal phases. A silicon nitride based sintered body characterized by the following.
【請求項5】 窒化珪素粉末を70〜97重量%、酸化
イッテルビウム粉末を2〜30重量%、酸化アルミニウ
ム粉末を0.1〜5.0重量%、酸化アルミニウム粉末
に対する酸化イッテルビウム粉末の重量比が10以上及
び酸化珪素粉末を0.5〜9.5重量%よりなる混合粉
体を成型し、窒素ガス雰囲気中で1700〜2100℃
で焼成した後、900〜940℃の範囲まで毎分20℃
以上の速度で降温し、5分以上保持した後、再び115
0〜1350℃の範囲に昇温し、4〜8時間の範囲で保
持することを特徴とする窒化珪素質焼結体製造方法。
5. The silicon nitride powder is 70 to 97% by weight, the ytterbium oxide powder is 2 to 30% by weight, the aluminum oxide powder is 0.1 to 5.0% by weight, and the weight ratio of the ytterbium oxide powder to the aluminum oxide powder is: A mixed powder consisting of 10 or more and silicon oxide powder of 0.5 to 9.5% by weight is molded, and is heated to 1700 to 2100 ° C in a nitrogen gas atmosphere.
After firing at 20 ° C per minute up to 900-940 ° C
After lowering the temperature at the above speed and holding for 5 minutes or more,
A method for producing a silicon nitride based sintered body, wherein the temperature is raised to a range of 0 to 1350 ° C. and maintained for a period of 4 to 8 hours.
JP6194158A 1994-08-18 1994-08-18 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP3035163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194158A JP3035163B2 (en) 1994-08-18 1994-08-18 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6194158A JP3035163B2 (en) 1994-08-18 1994-08-18 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0859350A JPH0859350A (en) 1996-03-05
JP3035163B2 true JP3035163B2 (en) 2000-04-17

Family

ID=16319891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194158A Expired - Fee Related JP3035163B2 (en) 1994-08-18 1994-08-18 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3035163B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3094146A1 (en) * 2018-04-10 2019-10-17 Sintx Technologies, Inc. Method for improving the wear performance of ceramic-polyethylene or ceramic-ceramic articulation couples utilized in orthopaedic joint prostheses

Also Published As

Publication number Publication date
JPH0859350A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP0589997B1 (en) High toughness-high strength sintered silicon nitride
JPS64349B2 (en)
JPH0232230B2 (en)
JP3007730B2 (en) Rare earth oxide-alumina sintered body and method for producing the same
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JPS6220151B2 (en)
JP2927919B2 (en) Crystallizing heat treatment method for silicon nitride sintered body
JP2966644B2 (en) Silicon nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2742619B2 (en) Silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
US5194201A (en) Method of manufacturing high density silicon nitride sintered bodies
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH0959069A (en) Boron nitride sintered compact and its production
JPH01145380A (en) Production of silicon nitride sintered form
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JPH0559073B2 (en)
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JPH06122556A (en) Sintered compact of siliceous nitride and its production
JP2694369B2 (en) Silicon nitride sintered body
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2004051459A (en) Silicon nitride sintered compact and its manufacturing method
JPH06100376A (en) Sintered beta-sialon and its production
JPH0345034B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125

LAPS Cancellation because of no payment of annual fees