JPH02111840A - Treatment for nickel oxide ore - Google Patents

Treatment for nickel oxide ore

Info

Publication number
JPH02111840A
JPH02111840A JP26154688A JP26154688A JPH02111840A JP H02111840 A JPH02111840 A JP H02111840A JP 26154688 A JP26154688 A JP 26154688A JP 26154688 A JP26154688 A JP 26154688A JP H02111840 A JPH02111840 A JP H02111840A
Authority
JP
Japan
Prior art keywords
carbon material
nickel oxide
additive
sodium carbonate
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26154688A
Other languages
Japanese (ja)
Inventor
Retsu Nagabayashi
長林 烈
Morihiro Hasegawa
長谷川 守弘
Masahiro Kinugasa
衣笠 雅普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP26154688A priority Critical patent/JPH02111840A/en
Publication of JPH02111840A publication Critical patent/JPH02111840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain high recovery rates of Ni and Fe by the use of small amounts of additive and carbon material at relatively low temp. by specifying respective amounts of sodium carbonate as an additive and carbon material used in a treating method for reducing a mixture of crushed materials consisting of the title nickel oxide ore, carbon material, and additive to carry out screening. CONSTITUTION:Nickel oxide ore, carbon material as reducing agent, and sodium carbonate as additive are crushed to about 80 mesh, respectively. The above crushed materials are blended so that the contents of sodium carbonate and carbon material are regulated to 1-10% and 2.5-15%, respectively, and they are mixed, and further, the resulting powder mixture is preferably pelletized and formed into pellets of desired size, followed by drying. The above pellets are charged into a rotary kiln, etc., where Ni and Fe in the charged materials are reduced nearly perfectly in a nonoxidizing atmosphere at the prescribed temp. The resulting reduced materials are subjected to magnetic separation or to flotation, by which metallic components are separated from gangue components.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化ニッケル鉱石の処理法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for processing nickel oxide ore.

(従来技術とその問題点) 現在フェロニッケルの製造には主としてガーニエライト
等酸化ニッケル鉱石が原料として使われている。酸化ニ
ッケル鉱石のNi含有量は2%程度と低く、かつNiが
1μ程度に微細に分散しているため酸化ニッケル鉱石は
選鉱が難しいと言われている。したがって従来はN1鉱
石を脈石ごと電気・炉で溶解し、フェロニッケルを得る
方法(キルン−電気炉法)、あるいはN1鉱石を粉砕し
、炭材とCaOおよびSiO□の副原料を混合、混;凍
役団鉱として乾燥し、ロータリーキルンで還元、粉砕、
篩分け、比重選別、磁力選別の操作によりフェロニッケ
ルを得る方法(クルップレン法)が主として行なわれて
きた。上記のキルン−電気炉法、クルップレン法による
フェロニッケル製造方法では、5敲に含まれる脈石成分
ごとNl鉱石を処理し、フェロニッケルを得ているため
多量のエネルギーあるいは添加剤が必要であるという問
題がある。よって簡単な予備処理により脈石成分を取り
除き、N1を濃縮する方法が望まれている。
(Prior art and its problems) Currently, nickel oxide ores such as garnierite are mainly used as raw materials for the production of ferronickel. The Ni content of nickel oxide ore is as low as about 2%, and Ni is finely dispersed to a size of about 1 μm, so nickel oxide ore is said to be difficult to concentrate. Therefore, conventionally, N1 ore is melted together with gangue in an electric furnace to obtain ferronickel (kiln-electric furnace method), or N1 ore is crushed and mixed with carbonaceous material and auxiliary raw materials of CaO and SiO□. ; Dried as frozen briquette, reduced in a rotary kiln, crushed,
The main method used has been to obtain ferronickel by sieving, specific gravity sorting, and magnetic force sorting (Kruppren method). In the kiln-electric furnace method and Krupplen method mentioned above, the ferronickel production method requires a large amount of energy or additives because ferronickel is obtained by processing the Nl ore together with the gangue components contained in the 5. There's a problem. Therefore, a method for removing gangue components and concentrating N1 through simple pretreatment is desired.

N1鉱石の予備処理法としては(1)単純な物理的選鉱
法、(2)セグリゲーションー焙焼法、(3)還元−磁
選法の3種があり、それらに関して多くの提案がある。
There are three types of pretreatment methods for N1 ore: (1) simple physical beneficiation, (2) segregation-roasting, and (3) reduction-magnetic separation, and there are many proposals regarding these methods.

しかしいずれの方法も実用化に至ってはいないのが現状
である。その原因として(1)の場合は酸化ニッケル鉱
石中のNiが珪酸塩中に極めて微細(1μ以下)に分散
して存在しているため。
However, the current situation is that none of these methods has been put into practical use. The reason for this is that in the case of (1), Ni in the nickel oxide ore is dispersed in extremely fine particles (1 μm or less) in the silicate.

一部の鉱石を除いて選別粉砕、比重選鉱、磁力選鉱、浮
遊選鉱等の単純な選鉱法ではN1の濃縮は不可能である
With the exception of some ores, it is impossible to concentrate N1 by simple beneficiation methods such as selective crushing, gravity beneficiation, magnetic beneficiation, ore flotation.

(2)のセグリゲーションー焙焼法では、塩素化剤を大
量に添加するため1発生するHCIの回収や塩素化剤の
再生にコストがかかる点と雰囲気の制御が難しい点にお
いて問題がある。
The segregation-roast method (2) has problems in that a large amount of chlorinating agent is added, so it is costly to recover the generated HCI and regenerate the chlorinating agent, and it is difficult to control the atmosphere.

(3)の還元−磁選法では、還元析出した金属粒子の8
1粒化が不完全であること、および鉱石の融点に近い高
温(1400℃程度)で処理することによりエネルギー
費が高くなる等の問題点がある。
In the reduction-magnetic separation method (3), 8 of the reduced and precipitated metal particles are
There are problems such as incomplete granulation and high energy costs due to processing at a high temperature (approximately 1400° C.) close to the melting point of the ore.

(問題解決に関する知見) 本発明は、酸化ニッケル鉱石と、炭材および添加剤の粉
砕材料を所定量づつ配合し還元処理し、還元された材料
を選別(磁力選鉱または浮遊選v:)してN1とFeを
回収することからなる酸化ニッケル鉱石の処理方法にお
いて、少量の添加剤および還元剤を用い、比較的低温度
でN1鉱石を処理し従来達成できなかった高いN1およ
びFe回収率を得るNi鉱石予備処理方法を得ることを
課題とする。課題解決に関し、添加剤として炭酸ナトリ
ウムを1から10%、還元剤として炭材を2.5から1
5%添加することにより、添加剤と炭材の使用量が従来
のNi、農縮法に比べ少量で、ロータリーキルンての処
理温度がこれまでの還元−磁選法の1400 ’C程度
に比べて900〜1350℃と低温で処理でき、さらに
〜1のみならずFeの回収率も95%程度とN1とFe
を同時にr、Q * Fきる等、従来法に比較して安価
にN1鉱石の予備処理が可能となることを知見した。
(Knowledge related to problem solving) The present invention combines predetermined amounts of nickel oxide ore, pulverized materials of carbonaceous material and additives, performs reduction treatment, and sorts the reduced materials (magnetic ore separation or flotation v:). In a method for processing nickel oxide ore that involves recovering N1 and Fe, a small amount of additives and reducing agents are used to process N1 ore at relatively low temperatures to obtain high N1 and Fe recovery rates that were previously unattainable. The objective is to obtain a method for pre-processing Ni ore. To solve the problem, use 1 to 10% sodium carbonate as an additive and 2.5 to 1% carbon material as a reducing agent.
By adding 5% of Ni, the amount of additives and carbonaceous materials used is smaller than that of the conventional Ni and agricultural shrinkage methods, and the processing temperature in the rotary kiln is 900°C compared to the 1400'C of the conventional reduction-magnetic separation method. It can be processed at a low temperature of ~1350°C, and the recovery rate of not only ~1 but also Fe is around 95%, making it possible to process N1 and Fe.
It has been found that it is possible to pre-process N1 ore at a lower cost than conventional methods, such as by simultaneously cutting r and Q*F.

(発明の構成) 本発明は酸化ニッケル鉱石と炭材および添加剤の粉砕材
料を所定量づつ配合し還元処理を行ない、還元された材
料をjg別(磁力選鉱または、′7遊選鉱)してゝj1
と!′:eを回収することからなる酸化ニッケル鉱石の
処理方法において:添加剤として、炭酸す1−リウムを
1から10%、還元材として炭材を2.5から15%添
加することを特i″!!lとする酸化ニッケル鉱石の処
理方法を提供する。
(Structure of the Invention) The present invention involves blending predetermined amounts of pulverized materials such as nickel oxide ore, carbonaceous material, and additives, performing a reduction treatment, and separating the reduced materials into JG types (magnetic ore beneficiation or '7 reticulation).ゝj1
and! ': In the method for treating nickel oxide ore, which consists of recovering Provides a method for processing nickel oxide ore to produce nickel oxide ore.

本発明の方法が適用される酸化ニッケル鉱とは具体的に
はけい酸苦土ニッケル鉱石、ラテライ)へ鉱石等である
Specifically, the nickel oxide ore to which the method of the present invention is applied is magnesium silicate nickel ore, laterai ore, and the like.

本発明の方法において使用きれる炭材とは具体的には、
コークス、石炭等である。
Specifically, the carbonaceous materials that can be used in the method of the present invention include:
These include coke and coal.

本発明の方法において使用される添加剤とはフラツクス
であって、従来技術では例えばCaOである。
The additive used in the method of the invention is a flux, which in the prior art is, for example, CaO.

本発明は少量の添加剤および還元剤(炭材)を用い、比
較的低温度でNi鉱石を処理し、従来達成できなかった
高いNiおよびFe回収率を得るNi鉱石の予備処理方
法である。
The present invention is a method for pre-processing Ni ore, which uses small amounts of additives and reducing agents (charcoal materials) and processes Ni ore at relatively low temperatures, thereby obtaining high recovery rates of Ni and Fe that have not been achieved in the past.

耐化ニッケル鉱石、還元剤である炭材および炭酸ナトリ
ウムの添加剤をそれぞれ80メツシュ程度に粉砕する。
The hardened nickel ore, the carbonaceous material as a reducing agent, and the sodium carbonate additive are each crushed to about 80 mesh.

その手段としてはショークラッシャボールミル等の粉砕
機を用いそれぞれ粉砕を行なう。
As a means for this purpose, pulverization is performed using a pulverizer such as a show crusher ball mill.

上記の粉砕材料は所定量づつ配合して混合し、好ましく
は造粒し希望する大きさのペレットに成形する。即ち、
粉砕したN1鉱石、炭材、添加剤を、昆合機を用いて所
定の割合に混合する。この混合物に水分およびバインダ
ーを添加しペレタイザーにより希望の大きさのペレット
を調製し、約1]0°C程度に加熱できる乾燥炉あるい
は流動く・Z煙灰等により乾燥する。
The above-mentioned pulverized materials are blended in predetermined amounts and mixed, preferably granulated and formed into pellets of a desired size. That is,
The crushed N1 ore, carbon material, and additives are mixed in a predetermined ratio using a mixing machine. Moisture and a binder are added to this mixture, pellets of a desired size are prepared using a pelletizer, and the pellets are dried in a drying oven that can be heated to about 10° C. or in a drying oven or a drying furnace or the like.

乾燥したペレットを例えばロータリーキルンに装入し9
00〜1350℃の非酸化性雰囲気中で装入原料内のN
iおよびFeをほぼ完全に還元する。
For example, the dried pellets are charged into a rotary kiln9.
N in the charging material in a non-oxidizing atmosphere at 00-1350℃
i and Fe are almost completely reduced.

磁選工程あるいは11選工程では還元したペレット中の
金属成分を脈石成分から分離する。その手段としては、
還元したペレットを粉砕し、湿式あるいは乾式磁選機に
より磁着物と非磁着物に分雛する。またはll遊選鉱に
よりN〕およびFeを脈石より分離することができる。
In the magnetic separation step or 11 selection step, the metal components in the reduced pellets are separated from the gangue components. As a means of doing so,
The reduced pellets are crushed and separated into magnetic and non-magnetic materials using a wet or dry magnetic separator. Alternatively, N] and Fe can be separated from the gangue by free-flux treatment.

以上の諸工程それ自身は既知である。The above steps themselves are known.

前記混合造粒工程において、添加剤として炭酸ナトリウ
ムを1から10%、還元剤として炭材を2.5から15
%添加する。炭酸ナトリウムを1から10%添加するこ
とにより炭酸すl・リウム無添加の場合と比較してN1
およびFeの金属化率は著しく高くなり、はぼ100%
となる。また生成する金属粒子も大きく成長し数011
1の金属粒子となる場合もある。
In the mixing granulation step, 1 to 10% of sodium carbonate as an additive and 2.5 to 15% of carbon material as a reducing agent.
%Added. By adding 1 to 10% of sodium carbonate, the N1
And the metallization rate of Fe is significantly high, almost 100%.
becomes. In addition, the metal particles generated also grow large and number 011.
In some cases, the metal particles become No. 1 metal particles.

このことにより金属粒子と脈石の分離が容易となり磁選
あるいは浮選によりNlおよびFeをほぼ100%回収
できる利点がある。
This has the advantage that metal particles and gangue can be easily separated and almost 100% of Nl and Fe can be recovered by magnetic separation or flotation.

炭酸ナトリウム1%未満ではλ1】およびFeの金属化
率は急激に減少し、かつ金属粒子も大きく成長しないた
め磁選あるいは4選でのN1およびFe回収率が低下し
好ましくない。また炭酸ナトリウム添加量が10%を越
えるとペレットの融点が下がり前記還元工程においてロ
ータリーキルン内でペレットか溶融し炉壁に付着するた
め操業に支障がある。
If sodium carbonate is less than 1%, the metallization rate of λ1] and Fe sharply decreases, and the metal particles do not grow large, so the recovery rate of N1 and Fe in magnetic separation or 4-selection decreases, which is undesirable. Furthermore, if the amount of sodium carbonate added exceeds 10%, the melting point of the pellets decreases and the pellets melt in the rotary kiln during the reduction step and adhere to the furnace wall, which poses a problem in operation.

かつ10%以上の炭酸ナトリウムの添加は従来法と比較
しコスト高になる。
Moreover, addition of 10% or more of sodium carbonate results in higher costs compared to conventional methods.

一方炭材添加量が2.5%未満では、前記還元工程で′
I!1およびFeを完全に還元できない。また炭材が1
5%以上では炭材の残留量が多くなり、また炭材から入
る硫黄量が増加する間届点がある。
On the other hand, if the amount of carbon material added is less than 2.5%,
I! 1 and Fe cannot be completely reduced. Also, the carbon material is 1
If it exceeds 5%, the amount of carbonaceous material remaining will increase, and the amount of sulfur entering from the carbonaceous material will reach a certain point.

以上の工程により、Ni鉱石の高品位化を少量の炭酸ナ
トリウムおよび炭材を添加することにより達成できた。
Through the above steps, it was possible to improve the quality of Ni ore by adding a small amount of sodium carbonate and carbonaceous material.

炭酸ナトリウムを添加することに上り処理温度も900
〜1350℃と従来の還元−磁選法の1400°Cと比
べてかなり低くでき、還元反応、金属粒子の粗粒化を促
進する効果がある。
Due to the addition of sodium carbonate, the processing temperature is also 900℃.
~1350°C, which can be considerably lower than the 1400°C of the conventional reduction-magnetic separation method, and has the effect of promoting the reduction reaction and coarsening of metal particles.

(発明の具体的開示) 次に実施例を掲げるが、本発明はこれに限定されるもの
ではない。
(Specific Disclosure of the Invention) Examples are given below, but the present invention is not limited thereto.

実施例 原料として用いたN i*石の成分を第1表に示す。Example Table 1 shows the components of the Ni* stone used as a raw material.

第1表代表的なN1鉱石のがシ分(重量%)また炭材と
して用いたコークス粉の成分を第2表に示す。
Table 1 Table 2 shows the content (wt%) of typical N1 ores and the components of coke powder used as carbon material.

原料Ni鉱石を100メツシユ以下に粉砕し、これに同
じ<100メツシユ以下に粉砕したコークス粉および炭
酸ナトリウム(ソーダ灰)をそれぞれ5%づつ配合する
。少量の水と/<インダーを添加し直径lO〜20 m
 m程度のペレツl−に造粒する。このペレッ1〜を1
250°Cに保持したロータリーキルンで力l熱し、N
iおよびFeを還元した。この時のNiおよびFeの金
属化率はそれぞれ99゜5.95.1%であった。
Raw material Ni ore is crushed to 100 mesh or less, and 5% each of coke powder and sodium carbonate (soda ash), which are also crushed to <100 mesh, are added. Add a small amount of water and/<inder to a diameter of lO~20 m.
Granulate into pellets of about m size. 1~1 of these pellets
Heat in a rotary kiln maintained at 250°C, and
i and Fe were reduced. The metallization rates of Ni and Fe at this time were 99°5.95.1%, respectively.

またこの時最大長50 m m程度の金属粒子カニ l
’、成された。還元したペレットを乾式粉砕後、乾式磁
選して、数Ill In以上に成長した金属粒子を分離
回収する。
At this time, metal particle crabs with a maximum length of about 50 mm
', it was done. The reduced pellets are dry-pulverized and then subjected to dry magnetic separation to separate and recover metal particles that have grown to a size of several Ill In or more.

さらに乾式磁選の際の非磁着物を振動ミルにより湿式粉
砕した後、湿式PJA選懺により磁選を行ないさらに\
・1とFeの回収を完全にした。この結果乾式磁選と湿
式磁選の磁着物を合わせた回収物中の平均N1品位10
.2%、平均Fe品位60.1%となった。二の時のN
1回収は、99.1%、Fe圓収宰94.5%であった
Furthermore, after wet-pulverizing the non-magnetic material during dry magnetic separation using a vibrating mill, magnetic separation is performed using wet PJA separation.
・Complete recovery of 1 and Fe. As a result, the average N1 grade of the collected materials, which was a combination of the magnetic materials from dry magnetic separation and wet magnetic separation, was 10.
.. 2%, and the average Fe grade was 60.1%. Second time N
1 recovery was 99.1%, and Fe round recovery was 94.5%.

比咬例 Nili石および還元剤のコークスを実施例と同一のも
のを用い、添加剤としてC,]0を添加した。\」鉱石
、コークス、CaOをそれぞれ100メツシユ以下に粉
砕する。CaOを7%添加し、コークスを14%in加
し、少量の水とバインダーをこの混合段に加え、直径1
0〜20 m mのペレットに造粒する。このペレット
を1250°Cに保持したロータリーキルン中て加熱処
理を行なった。この時のNiの金属化率は54.8%F
cの金属化率は42.9%であった。また、金属粒子は
最大でも1mm以下であった。得られた還元ベレットを
振動ミルで湿式粉砕した後、湿式磁選機により磁選を行
なった。この結果磁着物中のNi品位は5.2%、 F
e品位は30.9%となった。この時のNi回収率は7
5.8%、 Fe回収率は70.5%であった。
The same Nili stone and coke as a reducing agent were used as in the example, and C,]0 was added as an additive. \”Crush ore, coke, and CaO to 100 mesh or less each. Add 7% of CaO, add 14% of coke, add a small amount of water and binder to this mixing stage,
Granulate into 0-20 mm pellets. The pellets were heat-treated in a rotary kiln maintained at 1250°C. At this time, the Ni metallization rate was 54.8%F
The metallization rate of c was 42.9%. Moreover, the metal particles were 1 mm or less at maximum. The obtained reduced pellet was wet-pulverized using a vibrating mill, and then subjected to magnetic separation using a wet-type magnetic separator. As a result, the Ni grade in the magnetized material was 5.2%, F
The e-quality was 30.9%. The Ni recovery rate at this time was 7
The Fe recovery rate was 70.5%.

本発明の実施例および比ikx例より、磁選物中のNj
およびFe含有量とそれぞれの回収率を第3表に示す。
From the examples of the present invention and comparative examples, it is clear that Nj in the magnetic separator
Table 3 shows the Fe contents and respective recovery rates.

実施例ではNi含有量10.2%、Fe含有量60.1
%と高く、さらにN1およびFe回収率はほぼ100%
であり、N1およびFeを効率的に濃縮できる二とが明
らかである。一方比較例ではNiおよびFeの品位はそ
れぞれ5.2%、30.9%と低く、Ni、 Fe回収
率も70%台に留まっている。
In the example, the Ni content was 10.2% and the Fe content was 60.1%.
%, and the N1 and Fe recovery rates are almost 100%.
It is clear that N1 and Fe can be efficiently concentrated. On the other hand, in the comparative example, the quality of Ni and Fe is low at 5.2% and 30.9%, respectively, and the Ni and Fe recovery rates also remain in the 70% range.

第3表 磁選物のN1およびFe品位と回収率ロータリ
ーキルンでの処理温度がこれまでの還元−磁選法による
a縮法に比へて低温である。またNiのみならずFeの
回収率も95%程度とN1とFeを同時に1縮できる等
の特徴をもち、従来法に比較して安価にNl鉱石の予備
処理が可能となる。よって本発明は経済的な効果が大き
い。
Table 3 N1 and Fe grade and recovery rate of magnetic separator The processing temperature in the rotary kiln is lower than that of the conventional reduction-magnetic a reduction method. In addition, the recovery rate of not only Ni but also Fe is about 95%, and N1 and Fe can be reduced by 1 at the same time, making it possible to pre-process Nl ore at a lower cost than conventional methods. Therefore, the present invention has great economic effects.

Claims (1)

【特許請求の範囲】[Claims] 1、酸化ニッケル鉱石と炭材および添加剤の粉砕材料を
所定量づつ配合し還元処理し、還元された材料を選別(
磁力選鉱または浮遊選鉱)してNiとFeを回収するこ
とからなる酸化ニッケル鉱石の処理方法において:添加
剤として炭酸ナトリウムを1から10%、還元剤として
炭材を2.5から15%添加することを特徴とする酸化
ニッケル鉱石の処理方法。
1. Blend predetermined amounts of pulverized materials such as nickel oxide ore, carbonaceous material, and additives, perform reduction treatment, and sort the reduced materials (
In a method for processing nickel oxide ores, which consists of recovering Ni and Fe by magnetic beneficiation or flotation: adding 1 to 10% of sodium carbonate as an additive and 2.5 to 15% of carbonaceous material as a reducing agent. A method for processing nickel oxide ore, characterized by:
JP26154688A 1988-10-19 1988-10-19 Treatment for nickel oxide ore Pending JPH02111840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26154688A JPH02111840A (en) 1988-10-19 1988-10-19 Treatment for nickel oxide ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26154688A JPH02111840A (en) 1988-10-19 1988-10-19 Treatment for nickel oxide ore

Publications (1)

Publication Number Publication Date
JPH02111840A true JPH02111840A (en) 1990-04-24

Family

ID=17363400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26154688A Pending JPH02111840A (en) 1988-10-19 1988-10-19 Treatment for nickel oxide ore

Country Status (1)

Country Link
JP (1) JPH02111840A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209411A (en) * 2008-03-04 2009-09-17 Nippon Yakin Kogyo Co Ltd Method for reducing valuable metal raw material
JP2013224493A (en) * 2013-06-18 2013-10-31 Nippon Yakin Kogyo Co Ltd Reducing method for valuable metal raw material
WO2016009828A1 (en) * 2014-07-15 2016-01-21 住友金属鉱山株式会社 Method for producing pellet and method for smelting nickel oxide ore
WO2016017347A1 (en) * 2014-08-01 2016-02-04 住友金属鉱山株式会社 Method for smelting nickel oxide ore

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209411A (en) * 2008-03-04 2009-09-17 Nippon Yakin Kogyo Co Ltd Method for reducing valuable metal raw material
JP2013224493A (en) * 2013-06-18 2013-10-31 Nippon Yakin Kogyo Co Ltd Reducing method for valuable metal raw material
WO2016009828A1 (en) * 2014-07-15 2016-01-21 住友金属鉱山株式会社 Method for producing pellet and method for smelting nickel oxide ore
JP2016020533A (en) * 2014-07-15 2016-02-04 住友金属鉱山株式会社 Manufacturing method of pellet, and smelting method of nickel oxide ore
AU2015290857B2 (en) * 2014-07-15 2017-07-13 Sumitomo Metal Mining Co., Ltd. Method for producing pellet and method for smelting nickel oxide ore
US10323297B2 (en) 2014-07-15 2019-06-18 Sumitomo Metal Mining Co., Ltd. Method for producing pellet and method for smelting nickel oxide ore
WO2016017347A1 (en) * 2014-08-01 2016-02-04 住友金属鉱山株式会社 Method for smelting nickel oxide ore
JP5858105B1 (en) * 2014-08-01 2016-02-10 住友金属鉱山株式会社 Nickel oxide ore smelting method
CN106661668A (en) * 2014-08-01 2017-05-10 住友金属矿山株式会社 Method for smelting nickel oxide ore
AU2015297792B2 (en) * 2014-08-01 2017-08-03 Sumitomo Metal Mining Co., Ltd. Method for smelting nickel oxide ore
US10041144B2 (en) 2014-08-01 2018-08-07 Sumitomo Metal Mining Co., Ltd. Method for smelting nickel oxide ore

Similar Documents

Publication Publication Date Title
US9334548B2 (en) Method of separating and recovering iron from waste non-ferrous slag discharged from process for smelting of non-ferrous metals, including copper, zinc and lead by physical and chemical separation technique
AU741669B2 (en) Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags
CA2956509C (en) Method for producing pellets and method for producing iron-nickel alloy
JP7077498B2 (en) Metal recovery method
CN106488990A (en) The manufacture method of granule and the manufacture method of iron-nickel alloy
CN106661668A (en) Method for smelting nickel oxide ore
JP2021120476A (en) Method for smelting oxide ore
JPH02111840A (en) Treatment for nickel oxide ore
JP2003213312A (en) Method for manufacturing metallic iron
JP2016529396A (en) Mineral processing
CN106574323A (en) Method for smelting nickel oxide ore
JP2002363624A (en) Reduced iron manufacturing method and manufacturing facility
JPH01156433A (en) Treatment of nickel oxide ore
US3748116A (en) Method for producing metallic iron powder from iron ore concentrate
JPS5827917A (en) Treatment of converter slag or the like
JP2021102797A (en) Method for smelting oxide ore
US6355088B1 (en) Method for direct reduction and upgrading of fine-grained refractory and earthy iron ores and slags
US3689249A (en) Method of pelletizing using copper-containing siliceous waste materials
JPH02250929A (en) Treatment of nickel oxide ore
RU2798451C1 (en) Method for producing reduced pellets from ferrous cake of nickel production
CN113000218B (en) Collecting agent for cobalt-manganese multi-metal oxide ores and preparation method and application thereof
US10017836B2 (en) Method for producing reduced iron
US3295957A (en) Production of high strength briquettes from solid-state-reduced iron ores
JP2945053B2 (en) Nickel oxide ore processing method
JP4907284B2 (en) Method for processing ferrous waste materials