JPS5827917A - Treatment of converter slag or the like - Google Patents

Treatment of converter slag or the like

Info

Publication number
JPS5827917A
JPS5827917A JP12478881A JP12478881A JPS5827917A JP S5827917 A JPS5827917 A JP S5827917A JP 12478881 A JP12478881 A JP 12478881A JP 12478881 A JP12478881 A JP 12478881A JP S5827917 A JPS5827917 A JP S5827917A
Authority
JP
Japan
Prior art keywords
slag
iron
reduced
reducing agent
converter slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12478881A
Other languages
Japanese (ja)
Inventor
Takahisa Koshida
孝久 越田
Takeshi Ogasawara
小笠原 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12478881A priority Critical patent/JPS5827917A/en
Publication of JPS5827917A publication Critical patent/JPS5827917A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To improve the utilization rate of slag of steel-making furnace by adding a specific amt. of a reducing agent to molten slag from a steel-making furnace such as converter then cooling the slag slowly and recovering the particle iron contained therein while grinding the slag finely. CONSTITUTION:A solid reducing agent of an amt. smaller than that required for reducing the iron oxide contained in the molten slag produced from a steel making furnace such as converter is added to said slag and both are mixed. Part of the iron oxide in the slag is reduced to iron, and since the amt. of the reducing agent is small, the iron of a small content of P is reduced without reduction of P2O5 in the slag. While the reduced iron is slowly cooled to solidify at <=20 deg.C/min cooling rate, the grain sizes of the reduced iron are grown large. In the process of grinding the reduced iron finely after the solidification, the granular iron is recovered with a magnetic separator, and the slag is ground finely. Since the ground slag is utilized as raw materials for fertilizers, cement, etc., the effective utilization rate thereof is improved.

Description

【発明の詳細な説明】 本発明は転炉スラグ等の処理方法に係り、詳しくは転炉
その他の製鋼炉から排出されるスラグを粉砕性が向上し
、鉄粉はリン分を含まない状態で単に磁選するのみによ
って、大部分が回収できる転炉スラグ等の処理方法に係
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating converter slag, etc., and more specifically, the slag discharged from converters and other steelmaking furnaces is improved in crushability, and the iron powder is free from phosphorus. The present invention relates to a method for treating converter slag, etc., which can largely be recovered simply by magnetic separation.

一般に、製鉄所から発生する転炉その他の製鋼炉からの
スラグ(以下、単に転炉スラグ等という、J)は路盤材
などの土建材料や微粉砕して肥料、セメント等の原料等
に一部利用されているが、まだ、大部分は投棄され、利
用度がきわめて低い。
Generally, slag from converters and other steelmaking furnaces generated at steel plants (hereinafter simply referred to as converter slag, etc.) is used in civil construction materials such as roadbed materials, and after being pulverized, some of it is used as raw materials for fertilizers, cement, etc. Although it is being used, most of it is still being dumped and its usage is extremely low.

この原因としては、転炉スラグ等は品質のバラツキが大
きいことや、加工費用が高い問題がある。特に肥料、セ
メント等の原料など微粉砕して利用する場合、転炉スラ
グ等は鉄分の含有量が多いために、その粉砕費用が高く
つくので、生産暇、コスト的に問題があった。このため
、転炉スラグ等の微粉砕がもつと容易になれば利用率は
向上する。また、微粉砕された転炉スラグ等は、鉄分の
含有量25〜10%程度と非常に多いので、比重が重い
などの問題もある。
This is due to the fact that converter slag and the like have large variations in quality and high processing costs. In particular, when pulverizing raw materials such as fertilizers and cement is used, converter slag and the like have a high iron content, so the pulverization costs are high, which poses problems in terms of production time and costs. Therefore, if it becomes easier to pulverize converter slag, etc., the utilization rate will improve. In addition, finely pulverized converter slag and the like have a very high iron content of about 25 to 10%, so there are problems such as high specific gravity.

本発明は上記欠点の解決を目的とし、具体的には従来例
の転炉スラグ等に比べて、微粉砕性が容易でかつ微粉砕
後の転炉スラグ等中の鉄分が少ない転炉スラグ等が製造
でき、かつリン分の少ない鉄分を回収できる転炉スラグ
等の処理方法を提案する。
The present invention aims to solve the above-mentioned drawbacks, and specifically focuses on converter slag, etc., which can be easily pulverized and has a lower iron content after pulverization, compared to conventional converter slag, etc. We propose a method for processing converter slag, etc. that can produce iron and recover iron with a low phosphorus content.

すなわち、本発明方法は、転炉スラグ等に、その中に含
まれる酸化鉄の還元に必要な量以下の還元剤を添加して
、溶融状態でこの酸化鉄の少なくとも一部を還元してか
ら、20 ℃/rnin以下の冷却速度で除冷し、その
後、粒径0.25前以下まで粉砕してから、磁選により
鉄分を分所11することを特徴とする。
That is, the method of the present invention involves adding a reducing agent to converter slag or the like in an amount less than the amount necessary for reducing the iron oxide contained therein, reducing at least a portion of this iron oxide in a molten state, and then It is characterized in that it is gradually cooled at a cooling rate of 20° C./rnin or less, then crushed to a particle size of 0.25 or less, and then separated into portions 11 to remove iron by magnetic separation.

以下、本発明方法について詳しく説明する。The method of the present invention will be explained in detail below.

まず、本発明は転炉スラグ等の粉砕性に微粉砕性を向上
させ、スラグ中から鉄粉が効果的に回収でき、その回収
鉄分中にスラグ中からのリン分の移行を少なくおさえる
方法について検討した結果、予めの転炉スラグ等を還元
処理してから微粉砕し、その後、磁選処理することがき
わめて効果的であることを見出し、この知見にもとすい
て成立したものである。従って、本発明方法では、転炉
スラグ等に対し、例えば、1600℃以下程度の溶融状
態に例えばコークス等の還元剤を添加し、転炉スラグ等
の中の酸化鉄の一部若しくは大部分を還元する1、この
場合、還元された鉄分中のリン分は最小限におさえる必
要があり、還元剤は含まれる酸化鉄の還元剤に必要な掘
を化学暖論的に算出して、その量販下を添加する。
First, the present invention describes a method for improving the pulverization properties of converter slag, etc., effectively recovering iron powder from the slag, and minimizing the transfer of phosphorus from the slag into the recovered iron. As a result of investigation, it was found that it is extremely effective to reduce converter slag, etc. in advance, pulverize it, and then subject it to magnetic separation treatment, and based on this knowledge, the invention was established. Therefore, in the method of the present invention, a reducing agent such as coke is added to the converter slag etc. in a molten state at about 1600°C or less, and a part or most of the iron oxide in the converter slag etc. is removed. Reducing 1. In this case, the phosphorus content in the reduced iron must be kept to a minimum, and the amount of reducing agent required for the reducing agent for the contained iron oxide must be calculated chemically, and the amount of phosphorus in the reduced iron must be minimized. Add the bottom.

すなわち、8g1図は転炉スラグの溶融還元処理時の還
元剤添加量と還元後の鉄分中のリン分の関係を示すグラ
フであって、この関係は後記の如く微粉砕して磁選によ
り回収した鉄分、つまり、回収金属鉄のりン磯から求め
たものである。第1図に示すように、転炉スラグ等の中
に含まれている酸化鉄を全量還元するに必要な量以上コ
ークスを添加すると、金属鉄中のリン分は急に高くなる
。この理由は転炉スラグ等の中のF e 01Fear
3等の酸化鉄の還元速度がPa5s等のリン酸物の還元
速度に優先し、還元剤が上記量以内であると、P2O5
等までは還元しないからである。
In other words, Figure 8g1 is a graph showing the relationship between the amount of reducing agent added during the melt reduction treatment of converter slag and the phosphorus content in the iron after reduction, and this relationship is based on the relationship between the amount of reducing agent added during the melt reduction treatment of converter slag, and the relationship between the amount of phosphorus in the iron content after reduction, and this relationship is based on pulverized slag and recovered by magnetic separation as described below. Iron content, that is, recovered metal iron phosphorus obtained from Iso. As shown in FIG. 1, when coke is added in an amount exceeding the amount required to completely reduce the iron oxide contained in the converter slag, etc., the phosphorus content in the metal iron suddenly increases. The reason for this is that F e 01Fear in converter slag, etc.
The reduction rate of iron oxides such as No. 3 has priority over the reduction rate of phosphates such as Pa5s, and if the reducing agent is within the above amount, P2O5
This is because the amount will not be reduced up to .

次に、還元処理終了後、溶融状態のスラグ20℃/mi
n以下の冷却速度で除冷する。この除冷によって、還元
され生成した金属鉄は粒状化し、スラグ中に所謂粒鉄と
して存在する。例えば、第2図はスラグの冷却速度金属
鉄の粒径との関係を示すグラフであって、スラグ中の金
属鉄の粒径はスラグの冷却速度が遅くなるにしたがって
大きくなることがわかる。このように冷却速度が遅くな
るに従って、粒径が大きくなっているのは、冷却過程で
金属鉄同志が(つつき合って粗大化するからであって、
特に、冷却速度が20℃/rnin以下のとき粒径は大
きく成長する。
Next, after the reduction treatment is completed, the molten slag is heated at 20°C/mi.
Cool slowly at a cooling rate of n or less. By this gradual cooling, the reduced and generated metallic iron is granulated and exists in the slag as so-called granular iron. For example, FIG. 2 is a graph showing the relationship between the cooling rate of slag and the particle size of metallic iron, and it can be seen that the particle size of metallic iron in slag becomes larger as the cooling rate of slag becomes slower. The reason why the grain size becomes larger as the cooling rate becomes slower is because metal iron particles (pecking each other) become coarser during the cooling process.
Particularly, when the cooling rate is 20° C./rnin or less, the grain size grows large.

次に、冷却後のスラグは粒径025畷以下まで粉砕し、
金属鉄は粒状化した状態で回収する。
Next, the slag after cooling is crushed to a particle size of 025 or less,
Metallic iron is recovered in granular form.

すなわち、第3図は冷却後のスラグをジヨウクラッシャ
ーで6メツシユ以下に粉砕し、その後、磁選したときの
粒度とスラグ中のT−Fe、P2O5濃度との関係を示
すグラフである1、第3図に示す如く、粒径0.25+
11++l以下に粉砕したときは、70%以上の鉄分が
磁選のろにより回収可能であることがわかる。
That is, Fig. 3 is a graph showing the relationship between the particle size and the T-Fe and P2O5 concentrations in the slag when the slag after cooling is crushed into 6 meshes or less with a Joe crusher and then subjected to magnetic separation. As shown in the figure, particle size 0.25+
It can be seen that when crushed to 11++l or less, more than 70% of the iron content can be recovered by magnetic separation.

また、このように粉砕する場合1本発明方法の如く、予
め還元処理している場合は粉砕性が向上し、容易に粒径
0.25 +ran以下まで微粉砕できる。
In addition, when pulverizing in this way, as in the method of the present invention, if reduction treatment is performed in advance, the pulverization properties are improved and the particles can be easily pulverized to a particle size of 0.25+ran or less.

第4図は還元処理を行なった転炉スラグと還元処理を行
なわない転炉スラグとをボール好ルによって粒径6メツ
シユ以下に粉砕した際のプレーン比表面積と粉砕時間と
の関係を示すグラフである。第4図において還元処理さ
れたグラフは符号(イ)、処理されないスラグは符号(
弓で示すが、還元処理したスラグ微粉砕性は、かなりよ
くなっていることがわかる 次に、実施例について説明する。
Figure 4 is a graph showing the relationship between plain specific surface area and grinding time when converter slag that has undergone reduction treatment and converter slag that has not undergone reduction treatment are crushed to a particle size of 6 mesh or less using a ball mill. be. In Figure 4, the graph that has been reduced is marked with the symbol (A), and the unprocessed slag is marked with the symbol (A).
As shown by the bow, it can be seen that the pulverization of the slag after the reduction treatment is considerably improved.Examples will now be described.

、  まず、溶融転炉スラグ(1600℃内外)に対し
て粉コークスを溶融転炉100重量部に対して2.5%
重量部を添加して還元処理を行なった。その後、溶融ス
ラグを20 ℃/min以下の冷却速度で除冷して固化
し、このスラグを粒径0.25+m以下に微粉砕し、2
000ガウスで乾式磁選した。この際、磁選前のスラグ
の組成とともに、磁選後のスラグ部分の組成と回収金属
鉄の組成とを求めたところ、次表に示す通りであった。
, First, 2.5% of coke powder was added to 100 parts by weight of molten converter slag (at around 1600°C).
A reduction treatment was carried out by adding parts by weight. Thereafter, the molten slag is gradually cooled and solidified at a cooling rate of 20°C/min or less, and this slag is pulverized to a particle size of 0.25+m or less.
Dry magnetic selection was performed at 0.000 Gauss. At this time, the composition of the slag before magnetic separation, the composition of the slag portion after magnetic separation, and the composition of recovered metal iron were determined, and the results were as shown in the following table.

この結果、次表に示す通り本発明法により処理したスラ
グは微粉状であり、鉄分が少ないため、かなり良質のセ
メント原料及び土質改良剤などとして利用できる。また
、回収した金属鉄は粒鉄であって、リン濃度が低く、高
炉にリターンして鉄源として有効に利用できる。
As a result, as shown in the following table, the slag treated by the method of the present invention is in the form of fine powder and has a low iron content, so it can be used as a fairly high-quality cement raw material and soil conditioner. In addition, the recovered metallic iron is granular iron, has a low phosphorus concentration, and can be returned to the blast furnace and effectively used as an iron source.

以上詳しく説明した通り、本発明方法は転炉スラグ等に
その中に含まれる酸化鉄を還元するに必要な量販下の還
元剤を添加し、溶融状態で還元してから除冷し、その後
、微粉砕してから単に磁選により鉄分をスラグ分から分
離するものである。
As explained in detail above, the method of the present invention involves adding a commercially available reducing agent necessary to reduce iron oxide contained therein to converter slag, etc., reducing it in a molten state, and then gradually cooling it. After pulverization, the iron content is simply separated from the slag content by magnetic separation.

従って、酸化鉄の還元に必要な量販下しか還元剤が存在
しない状態で還元処理するため、酸化鉄の還元のろが生
じ、%l no 、 P205等の還元が生じない。ま
た、還元後に除冷されるため、還元された金属鉄はスラ
グ中で粒状の状態で生成し、微粉砕時にも、予め還元処
理されているため、きわめて容易に微粉砕できる。
Therefore, since the reduction treatment is carried out in the presence of only a mass-market reducing agent necessary for the reduction of iron oxide, the reduction of iron oxide is slow and reduction of %l no , P205, etc. does not occur. Further, since it is gradually cooled after reduction, the reduced metal iron is generated in a granular state in the slag, and even when pulverized, it can be pulverized very easily because it has been previously subjected to reduction treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転炉スラグの溶融還元処理時の還元剤添加葉と
還元後の鉄分中のリン分の関係を示すグラフ、第2図は
スラグの冷却速度金属鉄の粒径との関係を示すグラフ、
第3図は冷却後のスラグをジヨウクラッシャーで6メツ
シユ以下に粉砕し、その後、磁選したときの粒度とスラ
グ中の’p* Fe、 Pg 05 濃度との関係な示
すグラフ、第4図は還元処理を行なった転炉スラグと還
元処理を行なわない転炉スラグをボールζルによって粒
径6メツシユ以下に粉砕した際のブレーン比表面積と粉
砕時間との関係な示すグラフである。 特許用願人 III IJ製鉄株式会社代理人弁理士松
下義騰 弁理士 鈴 木  均 第1図 第2図 第3図 第4図
Figure 1 is a graph showing the relationship between the amount of reducing agent added during melt reduction treatment of converter slag and the phosphorus content in iron after reduction, and Figure 2 shows the relationship between slag cooling rate and particle size of metallic iron. graph,
Figure 3 is a graph showing the relationship between the particle size and 'p* Fe, Pg 05 concentration in the slag when the cooled slag is crushed into 6 meshes or less using a Joe crusher and then subjected to magnetic separation. 2 is a graph showing the relationship between Blaine specific surface area and grinding time when treated converter slag and converter slag not subjected to reduction treatment are ground to a particle size of 6 mesh or less using a ball zeta mill. Patent applicant III IJ Steel Co., Ltd. Patent attorney Yoshito Matsushita Patent attorney Hitoshi Suzuki Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 転炉スラグ等に、その中に含まれる酸化鉄の還元に必要
な量販下の還元剤を添加して溶融状態で、この酸化鉄の
少なくとも一部を還元してから、20℃/min以下の
冷却速度で除冷し、その後、粒径0.25mm以下まで
粉砕してから、磁選により鉄分を分離することを特徴と
する転炉スラグ等の処理方法。
A commercially available reducing agent necessary for reducing the iron oxide contained therein is added to the converter slag, etc. to reduce at least a portion of the iron oxide in the molten state, and then heated at a temperature of 20°C/min or less. A method for treating converter slag, etc., characterized by slowly cooling it at a cooling rate, then crushing it to a particle size of 0.25 mm or less, and then separating the iron content by magnetic separation.
JP12478881A 1981-08-11 1981-08-11 Treatment of converter slag or the like Pending JPS5827917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12478881A JPS5827917A (en) 1981-08-11 1981-08-11 Treatment of converter slag or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12478881A JPS5827917A (en) 1981-08-11 1981-08-11 Treatment of converter slag or the like

Publications (1)

Publication Number Publication Date
JPS5827917A true JPS5827917A (en) 1983-02-18

Family

ID=14894130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12478881A Pending JPS5827917A (en) 1981-08-11 1981-08-11 Treatment of converter slag or the like

Country Status (1)

Country Link
JP (1) JPS5827917A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666591A (en) * 1984-01-10 1987-05-19 Kawasaki Jukogyo Kabushiki Kaisha Slag disposal method
US6493256B1 (en) 2001-05-31 2002-12-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
JP2012001797A (en) * 2010-06-21 2012-01-05 Jfe Steel Corp Method for recovering iron and phosphorus from steelmaking slag, and blast-furnace slag fine powder or blast-furnace slag cement, and resource raw material for phosphoric acid
JP2012007190A (en) * 2010-06-22 2012-01-12 Jfe Steel Corp Method for resource recovery from steelmaking slag, and raw material for phosphate fertilizer
JP2012007189A (en) * 2010-06-22 2012-01-12 Jfe Steel Corp Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphate resource raw material
JP2012529003A (en) * 2009-12-30 2012-11-15 ヒュンダイ スチール カンパニー Method for recovering valuable metals from slag
JP2017133074A (en) * 2016-01-28 2017-08-03 Jfeスチール株式会社 Method for screening iron steel slag, method for recycling iron steel slag and method for manufacturing raw material for iron making

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666591A (en) * 1984-01-10 1987-05-19 Kawasaki Jukogyo Kabushiki Kaisha Slag disposal method
US6493256B1 (en) 2001-05-31 2002-12-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
JP2012529003A (en) * 2009-12-30 2012-11-15 ヒュンダイ スチール カンパニー Method for recovering valuable metals from slag
JP2012001797A (en) * 2010-06-21 2012-01-05 Jfe Steel Corp Method for recovering iron and phosphorus from steelmaking slag, and blast-furnace slag fine powder or blast-furnace slag cement, and resource raw material for phosphoric acid
JP2012007190A (en) * 2010-06-22 2012-01-12 Jfe Steel Corp Method for resource recovery from steelmaking slag, and raw material for phosphate fertilizer
JP2012007189A (en) * 2010-06-22 2012-01-12 Jfe Steel Corp Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphate resource raw material
JP2017133074A (en) * 2016-01-28 2017-08-03 Jfeスチール株式会社 Method for screening iron steel slag, method for recycling iron steel slag and method for manufacturing raw material for iron making

Similar Documents

Publication Publication Date Title
EP3252178B1 (en) Method for smelting saprolite ore
CN106488990A (en) The manufacture method of granule and the manufacture method of iron-nickel alloy
CN106661668A (en) Method for smelting nickel oxide ore
JPS6319231B2 (en)
CN106536765A (en) Method for producing pellets and method for producing iron-nickel alloy
CN110512096A (en) A kind of fine fraction climb western ilmenite concentrate preparation can chlorination rich-titanium material method
JPS5827917A (en) Treatment of converter slag or the like
JP5531536B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP2001192741A (en) Method for utilizing steel making slag
EA031206B1 (en) Method for producing manganese containing ferroalloy
JP4219057B2 (en) Method for processing steelmaking slag for cement
CN106661667B (en) The smelting process of nickel oxide ore, the charging method of particle
JP2003213312A (en) Method for manufacturing metallic iron
US2811434A (en) Process for treating ilmenite-containing materials to produce metallic iron concentrates and titanium dioxide concentrates
JP3845893B2 (en) Metal iron manufacturing method
JP2019172547A (en) Manufacturing method of phosphoric acid fertilizer, and phosphoric acid fertilizer
JP2004218065A (en) Slag, its preparation method, and fertilizer and soil conditioner both using slag
CN106574323A (en) Method for smelting nickel oxide ore
US6918947B2 (en) Method for making reduced iron
JP2017205715A (en) Method for recovering valuables from dephosphorized slag
US3748116A (en) Method for producing metallic iron powder from iron ore concentrate
CN111254279B (en) Vanadium-containing steel slag granulating and sintering method
JPH02111840A (en) Treatment for nickel oxide ore
JPS6137321B2 (en)
JPS591602A (en) Production of iron powder for industrial purpose using converter off-gas dust