JPH02104647A - Heat treatment for ni-p alloy film - Google Patents

Heat treatment for ni-p alloy film

Info

Publication number
JPH02104647A
JPH02104647A JP63256474A JP25647488A JPH02104647A JP H02104647 A JPH02104647 A JP H02104647A JP 63256474 A JP63256474 A JP 63256474A JP 25647488 A JP25647488 A JP 25647488A JP H02104647 A JPH02104647 A JP H02104647A
Authority
JP
Japan
Prior art keywords
heat treatment
film
pulse
alloy film
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63256474A
Other languages
Japanese (ja)
Other versions
JP2625175B2 (en
Inventor
Tetsuya Aisaka
哲彌 逢坂
Jun Kawaguchi
純 川口
Hideo Sawai
澤井 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nihon Parkerizing Co Ltd
Oki Electric Industry Co Ltd
Original Assignee
Waseda University
Nihon Parkerizing Co Ltd
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nihon Parkerizing Co Ltd, Oki Electric Industry Co Ltd filed Critical Waseda University
Priority to JP63256474A priority Critical patent/JP2625175B2/en
Publication of JPH02104647A publication Critical patent/JPH02104647A/en
Application granted granted Critical
Publication of JP2625175B2 publication Critical patent/JP2625175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To perform local heat treatment for a film, to remove the influence of heat-treatment atmosphere on the film, and to prevent the deterioration of a base material attendant upon heat treatment by subjecting a film of Ni-P alloy in which P content is specified to pulse heating in an extremely short time. CONSTITUTION:A film of an Ni-P alloy of 5-15wt.% P content is formed on a base material by means of electroless plating, electroplating, or physical vapor deposition. The above film is subjected to pulse heating in an extremely short time in which pulse duration is regulated to about 1-1000msec by means of Joule heating by electrification, laser irradiation, or electron beam irradiation. By this method, the physical control of the film by means of heat treatment can be carried out in precision, and further, heat treatment stage can be simplified.

Description

【発明の詳細な説明】 Llよ段且那11 本発明は金属、セラミックス、合成樹脂等で形成された
基材表面を覆うNi−P合金皮膜の熱処理方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treating a Ni--P alloy film covering the surface of a base material made of metal, ceramics, synthetic resin, or the like.

従来技術 無電解メッキ法、電気メッキ法または物理蒸着法(真空
蒸着、スパッタリング、イオンブレーティング等)によ
って形成された燐含有量5〜15重量%のNi−P合金
皮膜は微結晶ないしアモルファスから成っており、燐含
有量を変化させることにより比抵抗を制御できることか
ら電気抵抗材料、電気接点材料等に使用され、高い硬度
を有することから各種耐摩耗性コーティングに使用され
、さらに、高い耐食性を有することから耐食性コーティ
ングに使用されている。これら各種の用途において、そ
れぞれNi−P合金皮膜の有する特性を最大限に発揮さ
せるためには適当な熱処理が必要である。例えば電気抵
抗材料として用いる場合には、その抵抗特性を安定化さ
せるために通常200〜270℃、1〜15時間の熱処
理が、耐摩耗性コーティング、耐食性コーティングに用
いる場合には、最大硬度あるいは最大の耐食性を付与す
るために300〜500℃で1〜24時間の熱処理がそ
れぞれ施される。
Prior art Ni-P alloy films with a phosphorus content of 5 to 15% by weight formed by electroless plating, electroplating, or physical vapor deposition (vacuum deposition, sputtering, ion blating, etc.) are composed of microcrystals or amorphous. It is used in electrical resistance materials, electrical contact materials, etc. because its specific resistance can be controlled by changing the phosphorus content, and it is used in various wear-resistant coatings because of its high hardness, and it also has high corrosion resistance. For this reason, it is used in corrosion-resistant coatings. In these various uses, appropriate heat treatment is required to maximize the characteristics of the Ni-P alloy film. For example, when used as an electrical resistance material, heat treatment is usually performed at 200 to 270°C for 1 to 15 hours in order to stabilize its resistance properties. In order to impart corrosion resistance, heat treatment is performed at 300 to 500°C for 1 to 24 hours, respectively.

燐含有層3〜15重量%の範囲のNi−P二元系合金は
、平衡状態においてP=11重量%で880℃の共晶点
を有するN i + N f 3 Pの二相合金である
。故に、アモルファス状態の皮膜に熱処理を施すと固溶
体相からN i 3Pが析出し、析出硬化を生ずる。例
えば、燐含有吊7重呈%のNt−P合金皮膜の場合、熱
処理により全ての燐がNi  Pに変化したとすると、
該N+3Pは皮膜の50体積%に達する。それ以上の燐
含有量ではNi3Pがマトリックスとなり、燐含有量1
5重予電では熱処理によって皮膜全体がNi3Pになる
The Ni-P binary alloy in the range of 3-15 wt% phosphorus-containing layer is a two-phase alloy of N i + Nf3P with a eutectic point of 880 °C at P = 11 wt% in equilibrium state. . Therefore, when a film in an amorphous state is subjected to heat treatment, N i 3P precipitates from the solid solution phase, resulting in precipitation hardening. For example, in the case of an Nt-P alloy film containing 7% phosphorus, if all the phosphorus is converted to NiP by heat treatment, then
The N+3P amounts to 50% by volume of the coating. If the phosphorus content is higher than that, Ni3P becomes a matrix, and if the phosphorus content is 1
In the case of quintuple precharging, the entire film becomes Ni3P by heat treatment.

発明が解決しようとする課題 ところで、従来方法による前記熱処理には以下のような
幾つかの問題がある。
Problems to be Solved by the Invention The heat treatment according to the conventional method has several problems as described below.

■ 熱処理に時間がかかり過ぎ、使用エネルギー経費が
嵩むだけでなく、生産性が阻害される。
■ Heat treatment takes too much time, which not only increases energy costs but also hinders productivity.

■ 皮膜の局所のみを熱処理することができない。■ It is not possible to heat treat only the local area of the film.

■ Ni−P合金皮膜処理が施される基材は前記熱処理
温度、時間に耐えなければならず、基材の材質が制限さ
れる。
(2) The base material to which the Ni--P alloy film treatment is applied must withstand the heat treatment temperature and time, and the material of the base material is limited.

■ 前記熱処理温度、時間ではNi−P合金皮膜表面が
酸化してしまう可能性があるため、皮膜使用目的によっ
ては熱処理雰囲気を選択しなければならない(例、真空
中、不活性ガス中等)。
(2) Since the surface of the Ni--P alloy film may be oxidized at the above heat treatment temperature and time, the heat treatment atmosphere must be selected depending on the purpose of use of the film (for example, in a vacuum, inert gas, etc.).

課題を解決するための 本発明は斯かる技術的背景の下にn1案されたものであ
り、その目的は、無電解メッキ法、電気メッキ法または
物理蒸着法により基材上に形成された燐含有量5〜15
重量%のNi−P合金皮膜に熱処理を施す方法において
、熱処理時間を短縮し、皮膜の局所の熱処理を可能にな
し、皮膜に対する熱処理雰囲気の影響をなくし、熱処理
に伴う基材の劣化を防ぐことである。
The present invention to solve the problems has been devised under such technical background, and its purpose is to reduce the amount of phosphorus formed on a substrate by electroless plating, electroplating or physical vapor deposition. Content 5-15
To shorten the heat treatment time, enable local heat treatment of the film, eliminate the influence of the heat treatment atmosphere on the film, and prevent deterioration of the base material due to heat treatment in a method of heat treating a Ni-P alloy film of % by weight. It is.

この目的は、Ni−P合金皮膜に対して通電によるジュ
ール加熱、レーザー照射または電子ビーム照射による極
短時間のパルス加熱を施すことによって達成される。
This objective is achieved by subjecting the Ni-P alloy film to Joule heating by energization, extremely short pulse heating by laser irradiation or electron beam irradiation.

本発明者等はNi−P合金皮膜の熱変化挙動に関する研
究を行なった。一般に、無電解メッキ法、電気メッキ法
、または物理蒸着法(PVD法)で作製されたNi−P
合金皮膜はその燐含有量が約7重間%以上ではアモルフ
ァスであり、それ未満では結晶組織となる。これ等のN
i−P合金皮膜に熱処理を施すことによってアモルファ
ス皮膜では結晶化が起り、結晶質皮膜では更にその結晶
化が進行する。そして、いずれも最終的にNiとNi3
Pが形成される。
The present inventors conducted research on the thermal change behavior of Ni-P alloy films. Generally, Ni-P made by electroless plating, electroplating, or physical vapor deposition (PVD)
The alloy film is amorphous when the phosphorus content is about 7% by weight or more, and has a crystalline structure when the phosphorus content is less than that. These N
When the i-P alloy film is subjected to heat treatment, crystallization occurs in the amorphous film, and crystallization further progresses in the crystalline film. And finally, both Ni and Ni3
P is formed.

さらに、前記熱変化挙動は、Ni−P合金皮膜のm含有
量が等しければ、■phystca 5tatusSo
lidi  A 、74.279 (1982)  (
L、に。
Furthermore, the thermal change behavior is as follows: If the m content of the Ni-P alloy film is the same,
lidi A, 74.279 (1982) (
L, to.

varaa & T、 Schmidt発表)、■金属
表面技術、34.330 (1983)(通板、小春発
表)、■日本金属学会誌、41.1130 (1977
)(増井、丸野、山田発表)等の文献に示されているよ
うに、皮膜形成方法(無電解メッキ法、電気メッキ法、
物理蒸着法等)の違いによって差異はないと言われてい
る。また、電気抵抗材料における電気抵抗特性の安定性
、耐摩耗性コーティングにおける皮膜硬度、および耐食
性コーティングにおける耐食性に対する熱処理効果は、
前記文献■、J、BIectrochem、  5oc
6,112.401 (1965)  (A、 It、
 Graham、 R,’に4. Lindsay、 
 H,J。
Vara & T, Schmidt (published), ■Metal surface technology, 34.330 (1983) (Tsuita, published by Koharu), ■Journal of the Japan Institute of Metals, 41.1130 (1977)
) (presented by Masui, Maruno, and Yamada), film formation methods (electroless plating method, electroplating method,
It is said that there is no difference depending on the method (physical vapor deposition method, etc.). In addition, the effect of heat treatment on the stability of electrical resistance properties in electrical resistance materials, film hardness in wear-resistant coatings, and corrosion resistance in corrosion-resistant coatings is
Said document ■, J, BIectrochem, 5oc
6,112.401 (1965) (A, It,
4. to Graham, R.' Lindsay,
H, J.

Read発表)、 Corrosion Preven
tion & Control。
Read announcement), Corrosion Preven
tion & control.

30、  (3)、9.5  (1983)  (C,
F、Beer。
30, (3), 9.5 (1983) (C,
F. Beer.

P、D、Longfield、 H,Sadeghi発
表)等の文献に示されるように、NiとNi5Pの形成
の程度に深くかかわっている。従って、熱処理方法が変
っても、NiとNi3Pの形成程度を首尾よく制御する
ことができれば、従来の熱処理と同等の効果を得ること
ができる。
As shown in the literature such as P., D., Longfield, H., Sadeghi, etc., it is deeply involved in the degree of formation of Ni and Ni5P. Therefore, even if the heat treatment method is changed, as long as the degree of formation of Ni and Ni3P can be successfully controlled, the same effect as the conventional heat treatment can be obtained.

本発明者等は、Ni−P合金皮膜に対してジュール加熱
による極短時間のパルス加熱を施した後の試料をX線回
折法により調べたところ、通常の熱処理の場合と同様に
NiとN i 3 Pの形成を確認することができた。
The present inventors examined the sample using X-ray diffraction after subjecting the Ni-P alloy film to extremely short pulse heating using Joule heating, and found that Ni and N Formation of i 3 P could be confirmed.

さらに、パルス加熱条件を変えて得たNi−P合金皮膜
の物性(電気抵抗、温度電気抵抗係数)を調べた結果、
通常の熱処理の場合と同様な物性変化を示しただけでな
く、通常の熱処理よりもむしろ細かな物性制御が可能で
あることが明らかとなった。また、該物性変化は窒素ガ
ス中でパルス加熱処理したもの、および空気中でパルス
加熱処理したもののいずれも同様の挙動を示した。
Furthermore, as a result of investigating the physical properties (electrical resistance, temperature electrical resistance coefficient) of Ni-P alloy films obtained by changing pulse heating conditions,
It became clear that not only did the material show the same changes in physical properties as in the case of normal heat treatment, but it was also possible to control the physical properties more precisely than with normal heat treatment. Furthermore, the physical property changes exhibited similar behavior in both those subjected to pulse heat treatment in nitrogen gas and those subjected to pulse heat treatment in air.

本発明で対象とするNi−P合金皮膜の好適なるP含有
量は5〜15@積%であり、皮膜の厚さ、形状(面積)
および基材の熱物性(比熱、熱伝導度)に応じた所定の
熱量をジュール加熱(通電加熱)、レーザー照射、また
は電子ビーム照射によってパルス幅1〜1000100
O程度の極短時間内に皮膜に投入することが推奨される
The preferred P content of the Ni-P alloy film targeted by the present invention is 5 to 15% by volume, and the thickness, shape (area) of the film
And a predetermined amount of heat according to the thermophysical properties (specific heat, thermal conductivity) of the base material is applied by Joule heating (current heating), laser irradiation, or electron beam irradiation with a pulse width of 1 to 1000100.
It is recommended to inject it into the film within a very short time of about 0.

実施例1 <Ni−p合金皮膜形成〉 96%アルミナセラミックスを基板として用い、無電解
Ni−P合金薄膜抵抗体製造工程により第1図、第2図
に示すようなパターンの抵抗体を作製した。図中、1は
Ni−P合金皮膜抵抗体を示し、該抵抗体10両端部に
パルス加W!4(ジュール加熱)のための通電電極用電
気銅メッキ部2を設けである。3はセラミックス基板を
示す。抵抗体1の幅(W)は50μ識、膜厚(1)は0
.5μmとした。試験片の他の寸法は図中に示す通りで
ある。
Example 1 <Formation of Ni-P alloy film> Using 96% alumina ceramics as a substrate, a resistor with a pattern as shown in FIGS. 1 and 2 was produced by an electroless Ni-P alloy thin film resistor manufacturing process. . In the figure, 1 indicates a Ni-P alloy film resistor, and a pulse is applied to both ends of the resistor 10! 4 (Joule heating) is provided with an electrolytic copper plating section 2 for current-carrying electrodes. 3 indicates a ceramic substrate. The width (W) of resistor 1 is 50μ, and the film thickness (1) is 0.
.. It was set to 5 μm. Other dimensions of the test piece are as shown in the figure.

無電解Ni−P合金薄膜抵抗体製造工程は以下の通りで
ある。
The manufacturing process of the electroless Ni--P alloy thin film resistor is as follows.

■脱脂・・・セラミックス基板3を常温でエタノール中
に浸漬し、10分間超音波洗浄を施した。
(1) Degreasing: The ceramic substrate 3 was immersed in ethanol at room temperature and subjected to ultrasonic cleaning for 10 minutes.

■活性化、水洗−8nCj!2 (19#)、36%1
−ICj(Id/l)水溶液に1分間浸漬(常温)シた
後、脱イオン水洗を行なった。
■Activation, washing with water -8nCj! 2 (19#), 36%1
-ICj (Id/l) After being immersed in an aqueous solution for 1 minute (at room temperature), it was washed with deionized water.

■触媒化、水洗・・・PdCl2  (0,1g/jり
、36%HCJ (0,lId/jり水溶液中に1分間
浸漬(常温)した後、脱イオン水洗を行なった。
(2) Catalyticization, water washing: After immersing in an aqueous solution of PdCl2 (0.1 g/j and 36% HCJ (0.1 d/j) for 1 minute (at room temperature), deionized water washing was performed.

■反覆処理・・・前記活性化→水洗→触媒化→水洗の処
理を再度行なった。
(2) Repetition treatment: The above-mentioned activation → water washing → catalyticization → water washing process was performed again.

■無電解メッキ・水洗・・・前記処理後のセラミックス
基板3を無電解Ni−Pメッキ浴(温度90℃)中に浸
漬し、燐含有吊13重量%、mN0.5μmのNi−P
合金皮膜を得た後、脱イオン水洗を行なった。メッキ浴
組成は以下の通りである。なお、膜厚の調整は処理時間
の選択によって行われる。
■Electroless plating/water washing: The ceramic substrate 3 after the above treatment is immersed in an electroless Ni-P plating bath (temperature 90°C), and Ni-P containing 13% by weight of phosphorus and 0.5 μm mN is applied.
After obtaining the alloy film, it was washed with deionized water. The plating bath composition is as follows. Note that the film thickness is adjusted by selecting the processing time.

NaHPO−H0・ 0.15mol/j!(NH4)
2SO4・・・0.50mol/JNa  CHO” 
2H20−0,2OrgoINNiS0  ・6H20
・・・0.1 (Mol/j!本庄:NaOHによりl
)Hを6.0に調整した。
NaHPO-H0・0.15mol/j! (NH4)
2SO4...0.50mol/JNa CHO"
2H20-0, 2OrgoINNiS0 ・6H20
...0.1 (Mol/j! Honjo: l by NaOH
)H was adjusted to 6.0.

■乾燥・・・水洗俊の試料を熱風で乾燥させた(温度1
00℃、約3分間)。
■Drying: The water-washed sample was dried with hot air (temperature 1
00°C for about 3 minutes).

■パターニング・・・フォトリソグラフィ法により第1
図、第2図示の如きパターンの抵抗体1を形成した。
■Patterning: First patterning using photolithography method.
A resistor 1 having a pattern as shown in FIG. 2 was formed.

■電極付け・・・フォトリソグラフィ法と電気銅メッキ
によりパルス加熱(ジュール加熱または通電加熱)のた
めの電極銅メッキ部2を形成した。
■Electrode attachment: Electrode copper plating portion 2 for pulse heating (Joule heating or current heating) was formed by photolithography and electrolytic copper plating.

くパルス加熱〉 ■前記工程で得た抵抗体1の電気抵抗値を測定する。Pulse heating (2) Measure the electrical resistance value of the resistor 1 obtained in the above step.

■得られた抵抗値から所定の電力を与え得る電圧を計算
し、抵抗体1に200 m5ec間の定電圧パルスを印
加してジュール熱によるパルス加熱処理を施t(窒素ガ
ス中)。
(2) Calculate the voltage that can provide a predetermined power from the obtained resistance value, apply a constant voltage pulse of 200 m5ec to the resistor 1, and perform pulse heat treatment using Joule heat (in nitrogen gas).

■パルス加熱処理後の抵抗体1の電気抵抗値を測定する
(2) Measure the electrical resistance value of the resistor 1 after the pulse heat treatment.

■該電気抵抗値に基づいて、先の投入電力値よりも所定
量だけ大きな電力を与え得る電圧を計算し、抵抗体1に
200−sec間の定電圧パルスを印加してジュール熱
によるパルス加熱処理を施す(窒素ガス中)。
■Based on the electrical resistance value, calculate the voltage that can provide a predetermined amount of power larger than the previously input power value, and apply a constant voltage pulse of 200-sec to the resistor 1 to perform pulse heating using Joule heat. Treatment (in nitrogen gas).

■前記■〜■の操作を繰り返し、抵抗体1が溶融破壊す
るまでパルス加熱処理を施す。 。
(2) Repeat the operations (2) to (2) above to perform pulse heat treatment until the resistor 1 is melted and destroyed. .

く試験〉 ■投入電力値の異なる各パルス加熱処理毎(電力値0,
7.9.10.12.17.5W)の抵抗体1につき、
微小X線回折計(XI源のターゲット・・・銅)により
形成物を同定した。その結果を第3図に示す。図中、X
印は基板3の構成材であるアルミナセラミックスのピー
ク値を示している。
Test> ■For each pulse heat treatment with different input power values (power value 0,
7.9.10.12.17.5W) per resistor,
The formation was identified using a micro X-ray diffractometer (XI source target...copper). The results are shown in FIG. In the diagram,
The marks indicate the peak values of alumina ceramics, which is the constituent material of the substrate 3.

この試験の結果、パルス加熱処理によって、抵抗体1(
皮膜)中にN+3p、および高燐含有量Ni−P合金皮
膜特有の準安定相が生じることが確認された。なお、図
中Ni3Pの各々のピークが電力の増加とともに出現し
或いは消滅しているのは、試料の微小部(直径30μI
)を測定しているため局所的なNi3Pの配向が顕著に
現れたためであると考えられる。
As a result of this test, resistor 1 (
It was confirmed that N+3p and a metastable phase peculiar to a high phosphorus content Ni-P alloy film were formed in the film. It should be noted that the peaks of Ni3P in the figure appear or disappear as the power increases in the microscopic part of the sample (diameter 30μI).
), this is thought to be because the local orientation of Ni3P was noticeable.

■また、前記パルス加熱処理による析出物(Ni3P)
の形成が物性においてら通常の熱処理の場合と同様な効
果をもたらすことを確認するために、投入電力値の異な
る各試料について電気抵抗値、温度電気抵抗係数(TC
R)を測定した。
■Also, precipitates (Ni3P) due to the pulse heat treatment
In order to confirm that the formation of a
R) was measured.

その結果を第5図に示す。The results are shown in FIG.

友i璽ユ 暴本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解メッキ浴のpl+を9.0として燐含有ff
17重量%のNi−P合金皮膜を得た。
A sample was prepared in the same manner as in Example 1. However, assuming that the pl+ of the electroless plating bath is 9.0, phosphorus content ff
A 17% by weight Ni-P alloy film was obtained.

■第4図に、実施例2における試料(窒素ガス中でパル
ス加熱を施した試料)のxi回折結果を示す。図から抵
抗体(皮膜)中にNiおよびNi3Pが生じたことが理
解される。
(2) FIG. 4 shows the xi diffraction results of the sample in Example 2 (sample subjected to pulse heating in nitrogen gas). It is understood from the figure that Ni and Ni3P were generated in the resistor (film).

■第6図に、実施例2における試料(窒素ガス中でパル
ス加熱を施した試料)の電気抵抗値、温度電気抵抗係数
測定結果を示す。
(2) Fig. 6 shows the measurement results of the electrical resistance value and temperature electrical resistance coefficient of the sample in Example 2 (sample subjected to pulse heating in nitrogen gas).

■第7図に、実施例2における試料の電気抵抗値測定結
果を示す。図中、曲線へは空気中でパルス加熱処理を施
した試料の特性変化を示し、曲線Bは窒素ガス中でパル
ス加熱処理を施した試料の特性変化を示す。
(2) FIG. 7 shows the results of measuring the electrical resistance value of the sample in Example 2. In the figure, the curve shows the change in characteristics of the sample subjected to pulse heat treatment in air, and the curve B shows the change in characteristics of the sample subjected to pulse heat treatment in nitrogen gas.

比較例 実施例1.2と同様に無電解メッキ法によって作製した
試料につき、通常の熱処理(真空中、各温度に1時間加
熱後、自然冷却)を施した後の電気抵抗変化、温度電気
抵抗係数(TCR)を測定した。その結果を第8図に示
す。
Comparative Example Electrical resistance change and temperature electrical resistance after normal heat treatment (heating in vacuum for 1 hour at each temperature, then natural cooling) for a sample prepared by electroless plating in the same manner as Example 1.2 The coefficient (TCR) was measured. The results are shown in FIG.

試験結果の評価 ■X線回折結果(第3図、第4図)から、Ni−P合金
皮膜のパルス加熱処理により、通常の熱処理と同様にN
iおよびNi3Pが形成されることが理解される。しか
も、パルス加熱処理に要する時間は極短時間(200m
5ec)であって、1時間以上の熱処理を必要とする通
常の熱処理方法に比して該時間は零に近く、生産性の向
上に大きく頁献できることが明らかである。
Evaluation of test results ■From the X-ray diffraction results (Figures 3 and 4), pulse heat treatment of the Ni-P alloy film shows that N
It is understood that i and Ni3P are formed. Moreover, the time required for pulse heat treatment is extremely short (200 m
5 ec), which is close to zero compared to the usual heat treatment method which requires heat treatment for 1 hour or more, and it is clear that this can greatly contribute to improving productivity.

■第5図、第6図と第8図との対比から、皮膜に対する
投入電力の増加(加熱温度の増加)によって通常の熱処
理の場合と同様な電気抵抗値の減少、および温度電気抵
抗係数(TCR)の増加が確認される。また、パルス加
熱処理された皮膜の方が物性値の変化が緩やかである(
第5図、第6図)ため、パルス加熱処理は通常の熱処理
に比して精密な物性制御が可能であることが理解される
■Comparing Figures 5, 6, and 8, it can be seen that an increase in the electrical power input to the film (increase in heating temperature) causes a decrease in the electrical resistance value, similar to that in normal heat treatment, and a temperature-temperature electrical resistance coefficient ( TCR) is confirmed to increase. In addition, the change in physical properties of the film treated with pulse heat treatment is more gradual (
5 and 6), it is understood that pulse heat treatment enables more precise control of physical properties than normal heat treatment.

■第7図から、空気中、窒素ガス中いずれの雰囲気中で
パルス加熱処理を施したものも同様な電気抵抗変化特性
を示し、極短時間内に熱処理の可 4゜能なパルス加熱
法では加熱による試料の酸化の影響がほとんどないこと
が理解される。
■From Figure 7, the electrical resistance change characteristics are similar to those subjected to pulse heating treatment in either air or nitrogen gas atmosphere, and the pulse heating method, which allows heat treatment within a very short time, shows similar electrical resistance change characteristics. It is understood that there is almost no effect of oxidation of the sample due to heating.

発明の効果 以上の説明から明らかなように、Ni−P合金皮膜にパ
ルス加熱処理を施す本発明方法によれば、■通常の熱処
理法と比較して処理時間がほぼ零になる、■極短時間の
加熱であるから、処理雰囲気の影響をほぼ無視すること
ができ、また使用拮材の材質選択の自由度が増大し、例
えば合成樹脂基材の使用も許容される、■特にレーザー
照射法、電子ビーム照(ト)法を利用すれば皮膜の局所
のみの熱処理も容易に行うことができる、■従来の長時
間の熱処理法に比して熱処理による皮膜の物性制御をよ
り精密に行い得る、■従来の熱処理法によれば、熱処理
炉を用い、処理雰囲気を調整する必要があって、消費熱
エネルギーコスト、設備コストが嵩む欠点があるが、本
発明方法では、熱処理工程が簡略化され、消費エネルギ
ーコスト、設備コストの低減化および生産性の向上を企
図し得る。
Effects of the Invention As is clear from the above explanation, according to the method of the present invention in which a Ni-P alloy film is subjected to pulse heat treatment, 1) the treatment time is almost zero compared to a normal heat treatment method, 2) it is extremely short. Because it is a heating process for a long time, the influence of the processing atmosphere can be almost ignored, and the degree of freedom in selecting the material to be used increases, for example, the use of synthetic resin base materials is also allowed.■ Especially the laser irradiation method , By using the electron beam irradiation method, it is possible to easily perform heat treatment on only a local area of the film. - Compared to the conventional long-term heat treatment method, the physical properties of the film can be controlled more precisely through heat treatment. , ■ According to the conventional heat treatment method, it is necessary to use a heat treatment furnace and adjust the treatment atmosphere, which has the disadvantage of increasing the cost of heat energy consumption and the cost of equipment, but the method of the present invention simplifies the heat treatment process. , it is possible to aim at reducing energy consumption costs, equipment costs, and improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミナセラミックス基板上に形成した本発明
の一実施例に係る無電解Ni−P合金皮膜抵抗体の形状
・寸法を示す図、第2図はその■−n線断面図、第3図
はパルス加熱処理による投入電力Mの異なる前記抵抗体
の組織を確認するためのX線回折パターンを示すグラフ
、第4図は前記抵抗体とは異なる組成の他の実施例に係
る抵抗体の組織を確認するためのX線回折パターンを示
すグラフ、第5図は前記一実施例に係る抵抗体について
の投入電力量の異なる各パルス加熱処理後の電気抵抗変
化および温度電気抵抗係数(TCP)変化を示すグラフ
、第6図は前記他の実施例に係る低抗体についての電気
抵抗変化および温度電気抵抗係数(TCR)変化を示す
第5図と同様なグラフ、第7図は前記他の実施例に係る
抵抗体についての投入電力量の異なる各パルス加熱処理
後の電気抵抗変化に与えるパルス加熱処理雰囲気の与え
る影響を示すグラフ、第8図は前記各実施例抵抗体と同
様な抵抗体についての通常法による熱処理温度と特性値
との関係を示す第5図、第6図と同様なグラフである。
FIG. 1 is a diagram showing the shape and dimensions of an electroless Ni-P alloy film resistor according to an embodiment of the present invention formed on an alumina ceramic substrate, FIG. 2 is a cross-sectional view taken along the line ■-n, and FIG. The figure is a graph showing an X-ray diffraction pattern for confirming the structure of the resistor with different input power M by pulse heat treatment, and FIG. 4 is a graph of a resistor according to another example having a composition different from the resistor. A graph showing an X-ray diffraction pattern for confirming the structure, and FIG. 5 shows the electrical resistance change and temperature electrical resistance coefficient (TCP) after each pulse heat treatment with different input power amount for the resistor according to the above-mentioned example. A graph showing the changes, FIG. 6 is a graph similar to FIG. 5 showing changes in electrical resistance and temperature coefficient of resistance (TCR) for the low antibody according to the other example, and FIG. A graph showing the influence of the pulse heat treatment atmosphere on the electrical resistance change after each pulse heat treatment with different amounts of input power for the resistor according to the example, and FIG. 8 is for a resistor similar to the resistor of each example described above. 6 is a graph similar to FIGS. 5 and 6 showing the relationship between heat treatment temperature and characteristic values according to the conventional method.

Claims (1)

【特許請求の範囲】[Claims] (1)無電解メッキ法、電気メッキ法または物理蒸着法
により基材上に形成された燐含有量5〜15重量%のN
i−P合金皮膜に、通電によるジュール加熱、レーザー
照射または電子ビーム照射により極短時間のパルス加熱
を施し、もつて制御された熱処理組織を得ることを特徴
とするNi−P合金皮膜の熱処理方法。
(1) N with a phosphorus content of 5 to 15% by weight formed on a substrate by electroless plating, electroplating, or physical vapor deposition
A method for heat treatment of a Ni-P alloy film, characterized in that the i-P alloy film is subjected to extremely short-time pulse heating by joule heating by energization, laser irradiation, or electron beam irradiation to obtain a controlled heat-treated structure. .
JP63256474A 1988-10-12 1988-10-12 Heat treatment method for Ni-P alloy film Expired - Lifetime JP2625175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63256474A JP2625175B2 (en) 1988-10-12 1988-10-12 Heat treatment method for Ni-P alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63256474A JP2625175B2 (en) 1988-10-12 1988-10-12 Heat treatment method for Ni-P alloy film

Publications (2)

Publication Number Publication Date
JPH02104647A true JPH02104647A (en) 1990-04-17
JP2625175B2 JP2625175B2 (en) 1997-07-02

Family

ID=17293138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63256474A Expired - Lifetime JP2625175B2 (en) 1988-10-12 1988-10-12 Heat treatment method for Ni-P alloy film

Country Status (1)

Country Link
JP (1) JP2625175B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442145A (en) * 1992-10-12 1995-08-15 Ngk Spark Plug Co., Ltd. Input/output terminal for electronic circuit device
US5583379A (en) * 1993-09-03 1996-12-10 Ngk Spark Plug Co., Ltd. Outer lead for a semiconductor IC package having individually annealed plated layers
CN104562098A (en) * 2014-12-30 2015-04-29 沈阳理工大学 Method for synthesizing titanium-nickel alloy layer through electron beam
CN109457220A (en) * 2018-11-14 2019-03-12 台州中科普尔尼镀膜技术有限公司 Ion plating Ni-P nano-stack film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148347A (en) * 1983-02-14 1984-08-25 Seiko Instr & Electronics Ltd Method for forming wiring metal for semiconductor device
JPS6348841A (en) * 1986-08-19 1988-03-01 Fujitsu Ltd Manufacture of semiconductor device
JPS63109182A (en) * 1986-10-24 1988-05-13 Mazda Motor Corp Production of wear resistant member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148347A (en) * 1983-02-14 1984-08-25 Seiko Instr & Electronics Ltd Method for forming wiring metal for semiconductor device
JPS6348841A (en) * 1986-08-19 1988-03-01 Fujitsu Ltd Manufacture of semiconductor device
JPS63109182A (en) * 1986-10-24 1988-05-13 Mazda Motor Corp Production of wear resistant member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442145A (en) * 1992-10-12 1995-08-15 Ngk Spark Plug Co., Ltd. Input/output terminal for electronic circuit device
US5583379A (en) * 1993-09-03 1996-12-10 Ngk Spark Plug Co., Ltd. Outer lead for a semiconductor IC package having individually annealed plated layers
US5668060A (en) * 1993-09-03 1997-09-16 Ngk Spark Plug Co., Ltd. Outer lead for a semiconductor IC package and a method of fabricating the same
CN104562098A (en) * 2014-12-30 2015-04-29 沈阳理工大学 Method for synthesizing titanium-nickel alloy layer through electron beam
CN109457220A (en) * 2018-11-14 2019-03-12 台州中科普尔尼镀膜技术有限公司 Ion plating Ni-P nano-stack film and preparation method thereof
CN109457220B (en) * 2018-11-14 2020-08-21 台州中科普尔尼镀膜技术有限公司 Ion plating Ni-P nano laminated film and preparation method thereof

Also Published As

Publication number Publication date
JP2625175B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
US5032468A (en) Composite aluminum plate and target for physical coating processes produced therefrom and methods for producing same
CA1060283A (en) Method of making an ordered alloy
US5268236A (en) Composite aluminum plate for physical coating processes and methods for producing composite aluminum plate and target
CA1042323A (en) Process for the preparation of metallic film resistors by heat treating
Mohammadi et al. Role of heat treatment on the fabrication and electrochemical property of ordered TiO 2 nanotubular layer on the as-cast NiTi
JPH02104647A (en) Heat treatment for ni-p alloy film
JP3194268B2 (en) Equally reduced fine grain hardened surface
Ciabattari et al. Pulsed laser deposition of NiTi shape memory effect thin films
US5143557A (en) Surface coating made from an aluminum-based alloy
KR101695590B1 (en) ELECTRODE FOR WATER TREATMENT WITH DIAMOND COATING LAYER ON Ti SUBSTRATE AND MANUFACTURING METHOD THREREOF
JP3896595B2 (en) High temperature resistant, electrically resistant metal material and method for producing the same
Leinartas et al. Structural and anticorrosive properties of magnetron-sputtered Fe–Cr–Ni and Fe–Cr–Ni–Ta alloy films
JP3355148B2 (en) Ceramic evaporating boat with improved initial wetting performance and method of making the same
JPH05320872A (en) Metallic article with corrosion resistant coating film and its production
JPH1060645A (en) Production of aluminum layer
JPH04297001A (en) Electroless ni-re-p alloy thin-film resistor
JPH01165755A (en) Method for coating product sensitive to high temperature with hard layer and coated product
JP4750924B2 (en) Manufacturing method of sputtering target
JPH0397835A (en) Heat treatment for ni-mo-p alloy film
Scherer et al. Surface crystallization behaviour of Metglas 2605-SC and 2826-MB
JP6963161B2 (en) Corrosion sensor for stainless steel and its manufacturing method
JPS6134171A (en) Production of catalytic material
JPH02112192A (en) Foil heater
RU2024646C1 (en) Method for application of chromium coating to internal surface of steel workpiece
RU2242534C1 (en) Method of production of a current-conducting alloyed diamond-like nano-composite film