JPH0397835A - Heat treatment for ni-mo-p alloy film - Google Patents

Heat treatment for ni-mo-p alloy film

Info

Publication number
JPH0397835A
JPH0397835A JP1232588A JP23258889A JPH0397835A JP H0397835 A JPH0397835 A JP H0397835A JP 1232588 A JP1232588 A JP 1232588A JP 23258889 A JP23258889 A JP 23258889A JP H0397835 A JPH0397835 A JP H0397835A
Authority
JP
Japan
Prior art keywords
heating
film
heat treatment
alloy
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232588A
Other languages
Japanese (ja)
Inventor
Tetsuya Aisaka
哲彌 逢坂
Jun Kawaguchi
純 川口
Hideo Sawai
澤井 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nihon Parkerizing Co Ltd
Oki Electric Industry Co Ltd
Original Assignee
Waseda University
Nihon Parkerizing Co Ltd
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nihon Parkerizing Co Ltd, Oki Electric Industry Co Ltd filed Critical Waseda University
Priority to JP1232588A priority Critical patent/JPH0397835A/en
Publication of JPH0397835A publication Critical patent/JPH0397835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To carry out local heat treatment for a film and to stably maintain the resistance characteristics of the film while preventing deterioration in a base material attendant upon heat treatment by applying extremely short time pulse heating to a film of Ni-Mo-P alloy with a specific composition formed on a base material. CONSTITUTION:A film of an Ni-Mo-P alloy containing 10-25wt.% Mo and 0.5-2.0wt.% P is formed on a base material by an electroless plating method. Extremely short time pulse working is applied to the above alloy film by means of Joule heating by electrification, laser irradiation, electron beam irradiation, etc. Since the above heating is performed in an extremely short time, the influence of treatment atmosphere can be neglected and the degree of freedom in the material selection of a base material to be used can be increased. Further, the physical properties of the film can be precisely controlled. Accordingly, the high thermal stability of the resistance characteristics of the Ni-Mo-P alloy can be obtained.

Description

【発明の詳細な説明】 L1ユ』コリ4廷1 本発明は金属、セラミックス、合成樹脂等で形成された
基材表面を覆う無電解Ni−Mo−P合金皮膜の電気的
特性を高い8!度まで安定して雑持させるための熱処理
方法に関するものである。
[Detailed Description of the Invention] The present invention improves the electrical properties of an electroless Ni-Mo-P alloy film covering the surface of a base material made of metal, ceramics, synthetic resin, etc. to a high level of 8! The present invention relates to a heat treatment method for stably retaining particles to a certain degree.

L見盈遣 無電解めっき法により形成された燐含有PIi5〜15
重偕%のNi−P合金皮膜は、微結晶ないしアモルファ
ス相で形威されており、高い比抵抗と低い温度抵抗係数
(TCR)を有することから、金jIW/III型の電
気抵抗材料としてディスクリート部品や、ハイブリッド
ICなどに利用されている。
Phosphorus-containing PIi5 to 15 formed by L Mieikari electroless plating method
Ni-P alloy film with 1% weight is formed in a microcrystalline or amorphous phase and has high resistivity and low temperature coefficient of resistance (TCR), so it is used as a discrete gold jIW/III type electrical resistance material. It is used in parts and hybrid ICs.

ただし、この良好な電気抵抗特性はNi−P合金の微結
晶構造ないしはアモルファス構造により得られており、
これらの構造は熱h学的に準安定状態なので耐熱性に劣
るという欠点を有する。これは、抵抗材料自体が通電に
よって発熱体(例、感熱記録の印字素子であるサーマル
ヘッド等で代表される発熱抵抗体)となること、および
その製造工程、組付け工程に必ずと言ってよいほど加熱
過程が存在することを考慮すると極めて重要な問題であ
る。
However, this good electrical resistance property is obtained due to the microcrystalline structure or amorphous structure of the Ni-P alloy.
Since these structures are thermally metastable, they have the disadvantage of poor heat resistance. This is because the resistive material itself becomes a heating element when energized (e.g., a heating resistor typified by a thermal head, which is a printing element for heat-sensitive recording), and its manufacturing and assembly processes are essential. This is an extremely important issue considering that there is a heating process.

この問題に対処して、第三元素としてW,Moなどの高
融点金属をNi−P合金に共析(共析出〉させることが
検討されている。特にMoの共析は極めて有効であり、
Ni−P合金では高々300℃までの加熱で比抵抗が減
少し、TCPが上昇して抵抗特性が劣化してしまうのに
対し、Ni−Mo−P合金皮膜の場合は300℃−70
0℃の加熱により比抵抗が上昇し、TCPが減少するこ
とによりむしろ抵抗特性が向上するとともに、その加熱
温度までの抵抗特性の安定化がなされる。
To deal with this problem, eutectoiding (eutectoid) high melting point metals such as W and Mo as third elements into Ni-P alloys is being considered. In particular, eutectoiding of Mo is extremely effective;
In the case of Ni-P alloy, heating up to 300°C reduces the specific resistance, increases TCP and deteriorates the resistance properties, whereas in the case of Ni-Mo-P alloy film, heating up to 300°C - 70°C
Heating at 0° C. increases the specific resistance, and by decreasing TCP, the resistance characteristics are rather improved, and the resistance characteristics are stabilized up to the heating temperature.

言い換えると、抵抗特性の向上およびその耐熱性の向上
が同時に達成される。第11図は、これらの例としてN
i−P合金皮膜およびNi −Mo −P合金皮膜を真
空炉内にて各設定澹度で1時間加熱し、放冷後にv1抗
特性を測定した結果を示している。
In other words, an improvement in resistance characteristics and an improvement in its heat resistance are achieved at the same time. Figure 11 shows N as an example of these.
The graph shows the results of heating the i-P alloy film and the Ni-Mo-P alloy film in a vacuum furnace at each temperature setting for 1 hour, and measuring the v1 resistance after cooling.

発明が解 しようとする課題 しかるに、Ni−Mo−P合金皮膜に高い熱的安定性を
付与するには極めて高い温度(300℃−500℃)で
の熱処理を必要とすることである。
Problem to be Solved by the Invention However, in order to impart high thermal stability to the Ni-Mo-P alloy film, heat treatment at an extremely high temperature (300°C to 500°C) is required.

仮に熱処理を施さなければ、該皮膜使用時に温度上界が
あると、第11図図示のごとく抵抗が変化してしまうこ
とに留意すべきである。そして、Ni−Mo−P合金皮
膜の熱処理を行うことにつき以下の問題を挙げることが
できる。
It should be noted that if heat treatment is not performed, the resistance will change as shown in FIG. 11 if there is an upper temperature limit when the film is used. The following problems can be raised when heat treating a Ni-Mo-P alloy film.

■ 熱処理21度が高く、しかも該熱凱理に長時問を必
要とするため、使用エネルギーR費が嵩むだけでなく、
生産性が阻害される。
■ Since the heat treatment is 21 degrees high and requires a long time for the heat treatment, not only does the energy consumption R cost increase;
Productivity is hindered.

■ 皮躾の局所のみを熱処理することができない。■ It is not possible to heat treat only the local area of skin care.

■ Ni−Mo−P合金皮膜が施される基祠は上記熱処
理温度および処理時間に耐えなければならず、M羽の材
質が制限される。
(2) The base shrine to which the Ni-Mo-P alloy film is applied must withstand the above heat treatment temperature and treatment time, and the material of the M wing is limited.

■ 上記熱処理温度、時間ではNi−Mo−P合金皮膜
の表面が酸化してしまう可能性があるため、皮膜の使用
目的によっては熱処理雰囲気を選択しなければならない
〈例:真空中、不活性ガス中など〉。
■ The surface of the Ni-Mo-P alloy film may be oxidized at the above heat treatment temperature and time, so the heat treatment atmosphere must be selected depending on the intended use of the film (e.g. in vacuum, inert gas). Inside, etc.

課題を  するための 本発明はかかる技術的背蒙の下に創案されたものであり
、無電解めっき法により基材上に形成されたモリブデン
含有量10〜25重量%、燐含有量0.5〜2.0重闇
%のNi−Mo−P合金皮膜に熱処理を施す方法におい
て熱処理時間を短縮し、皮膜の局所の熱処理を可能にし
、皮膜に封ずる熱処理の影響を無くし、熱処理に伴う基
材の劣化を防ぎつつ、その抵抗特性を高い温度まで安定
に維持させることを目的としている。
The present invention for solving the problems was created based on such technical knowledge, and is formed on a base material by electroless plating with a molybdenum content of 10 to 25% by weight and a phosphorus content of 0.5%. In the method of heat-treating a Ni-Mo-P alloy film with a concentration of ~2.0%, it shortens the heat treatment time, enables local heat treatment of the film, eliminates the effect of heat treatment sealing on the film, and reduces the base density caused by heat treatment. The purpose is to maintain the resistance characteristics of the material stably up to high temperatures while preventing deterioration of the material.

この目的は、Ni−Mo−P合金皮膜に対して通電によ
るジュール加熱、レーザー照射または電子ビーム照射に
よる極短時間のパルス加熱を施すことによって達成され
る。
This objective is achieved by subjecting the Ni-Mo-P alloy film to Joule heating by energization, extremely short pulse heating by laser irradiation or electron beam irradiation.

本発明者等はN i −Mo−P合金皮膜の熱変化j$
勤に閏する研究を行なった。一般に、無電解めっき法に
より作製されためつきしたままのNi−Mo−P合金皮
膜は、X線回折的には結晶構造を示すが、実際には結晶
質のNi −Mo固溶体相([)と非品質Ni−Mo−
P相(■相}との2相により構成されている。しかるに
、通常の電気炉などを用いた長時間加熱をN r −M
o−P合金皮膜に施した場合(以下、定常加熱と称する
)の抵抗特性の変化が第11図に示されているところ、
その場合、500℃までの熱処理において比抵抗が増加
するのは、■相から■相へN1の拡散が起って両相の境
界近傍にMoの局所濃縮部が生じることによる。その詳
細については、■J.Electrochem.Soc
.,  1 3 5,  7 1 8  ( 1 9 
8B’)(I.コイワ、M,ウスダ、K.ヤマダ、T.
オウサカ発表)、■.Lpn.J.Appl.Phys
.,  2 8 . 299 (1989)(T.オウ
サカ、K.アライ、Y.ヤマダ、T,ナミカワ発表)等
を参照されたい。本発明者等は既に、Ni−P合金皮膜
につき、以上述べたような定常加熱およびパルス加熱に
より全く同等の結果が得られることを見い出しており(
特願昭63−256474号参照)、そのためNi−M
o−P合金皮膜においても同様な効果が期持されるとい
う観点の下で本発明の開発が進められ、以下の結果が得
られた。
The present inventors have investigated the thermal change of Ni-Mo-P alloy film.
I conducted research related to my work. In general, a pristine Ni-Mo-P alloy film produced by electroless plating shows a crystalline structure in X-ray diffraction, but it actually consists of a crystalline Ni-Mo solid solution phase ([). Non-quality Ni-Mo-
It is composed of two phases: P phase (■ phase}. However, long-term heating using a normal electric furnace etc.
Figure 11 shows the change in resistance characteristics when applied to the o-P alloy film (hereinafter referred to as steady heating).
In this case, the reason why the resistivity increases in heat treatment up to 500° C. is that N1 diffuses from phase 2 to phase 2 and a locally concentrated portion of Mo is generated near the boundary between the two phases. For details, see ■J. Electrochem. Soc.
.. , 1 3 5, 7 1 8 ( 1 9
8B') (I. Koiwa, M. Usuda, K. Yamada, T.
Osaka announcement), ■. Lpn. J. Appl. Phys.
.. , 2 8. 299 (1989) (presented by T. Osaka, K. Arai, Y. Yamada, T. Namikawa), etc. The present inventors have already discovered that completely equivalent results can be obtained for Ni-P alloy films by steady heating and pulse heating as described above (
(See Japanese Patent Application No. 63-256474), therefore Ni-M
The development of the present invention was carried out with the view that similar effects could be expected in o-P alloy films, and the following results were obtained.

本発明者等が、Ni−Mo−P合金皮膜に対してジュー
ル加熱による極短時問のパルス加熱を施した試料の抵抗
特性、ならびにxI!回折による工相の組成変化を調べ
たところ、葡述の定常加熱とほぼ同様な抵抗特性の挙動
が観察された。ただし、パルス加熱による■相の組成変
化は定常加熱に比べより顕著に起り、しかも比抵抗が極
大に達した後の更に高い温度での加熱による比抵抗減少
Gま定常加熱よりも大きい。もつとも、抵抗材料として
比抵抗はできるだけ高い方がよいから、熱処理はこの極
大蛤より小さな比抵抗が得られるような温度領域で行わ
れるため、このことは実際には問題とはならない。した
がって、パルス加熱により得られる効果のメカニズムは
定常加熱の場合と若干異なることが想定されるものの、
実用範囲内においては全く同様な効果が得られると言え
る。
The present inventors investigated the resistance characteristics and xI! of a sample in which the Ni-Mo-P alloy film was subjected to extremely short pulse heating using Joule heating. When we investigated the compositional change of the phase due to diffraction, we observed a behavior of the resistance characteristics that was almost the same as that of the steady heating method described by Tosho. However, the change in the composition of the phase II due to pulse heating occurs more markedly than during steady heating, and furthermore, the decrease in resistivity G due to heating at a higher temperature after the resistivity reaches its maximum is greater than that during steady heating. However, since it is better for a resistive material to have as high a resistivity as possible, this is not actually a problem because the heat treatment is carried out in a temperature range where a resistivity smaller than this maximum value can be obtained. Therefore, although it is assumed that the mechanism of the effect obtained by pulse heating is slightly different from that of steady heating,
It can be said that exactly the same effect can be obtained within a practical range.

また、詳細は後述されるが、定常加熱で得られた最も高
い比抵抗(wJ述の極大値)は、その後の加熱に対し5
00℃まで安定であったが、パルス加熱で得られた該極
大値は、その後の加熱に対し700℃までの安定性が得
られた。これは、定常加熱およびパルス加熱で得られた
Ni−Mo−P合金組織の僅かな違いが良い方向に作用
した結果であるものと思われる。さらに、パルス加熱で
は処理時間が極めて短いために、加熱後の抵抗特性を即
座に測定することができ、定常加熱に比して細かな物性
II IIIが可能であることが明らかとなった。また
、定常加熱による物性v4mは部品組み付け前に行われ
な1jればならないのに対し、パルス加熱では局所的な
加熱が可能であるために部品組み付け後に適用可能であ
る。
Also, although the details will be described later, the highest specific resistance (maximum value described in wJ) obtained by steady heating is 5% with respect to subsequent heating.
The maximum value obtained by pulse heating was stable up to 700°C with respect to subsequent heating. This seems to be the result of a slight difference in the Ni-Mo-P alloy structure obtained by steady heating and pulse heating working in a positive direction. Furthermore, since the processing time is extremely short in pulse heating, the resistance characteristics after heating can be measured immediately, and it has become clear that finer physical properties II and III can be obtained compared to steady heating. Further, physical property v4m by steady heating must be performed before assembling parts, whereas pulse heating allows local heating and can therefore be applied after assembling parts.

本発明で対象とするNi−Mo−P合金皮股の好適なる
モリブデン含有渋は10〜25重量%、燐含有量は0.
5〜2.0重缶%であり、皮膜の厚さ、形状(而積〉、
および基材の熱物性(比熱、熱伝導度)に応じた所定の
熱量を、ジュール加熱(通電加熱)、レーザー照射また
は電子ビーム照射によってパルス幅1〜1000mse
c (ミリ秒冫程度の極短FR周内に投入することが推
奨される。
The preferred molybdenum content of the Ni-Mo-P alloy crotch targeted by the present invention is 10 to 25% by weight, and the phosphorus content is 0.
5 to 2.0% of heavy cans, and the thickness, shape (and volume) of the film,
A predetermined amount of heat according to the thermophysical properties (specific heat, thermal conductivity) of the base material is applied with a pulse width of 1 to 1000 msec by Joule heating (current heating), laser irradiation, or electron beam irradiation.
c (It is recommended to insert it within an extremely short FR cycle of about milliseconds.

友置亘ユ <Ni−Mo−P合金皮膜形成〉 96%アルファ・アルミナ・セラミックスを基板として
用い、無電解Ni−Mo−P合金薄膜抵抗体製造工程に
より第1図、第2図に示すようなパターンの抵抗体を作
製した。図中..1はNi−Mo−P合金皮膜抵抗体を
示し、該抵抗休1の両端部にパルス加熱(ジュール加熱
)のための通電電極用電気銅めっき部を設けてある。抵
抗休1の幅(W)は5 0 μm,膜厚(1)は0.5
μmとした。試験片の他の寸法は図中に示すとおりであ
る。
Wataru Tomooki <Formation of Ni-Mo-P alloy film> Using 96% alpha alumina ceramics as a substrate, the electroless Ni-Mo-P alloy thin film resistor manufacturing process was used to form a film as shown in Figures 1 and 2. A resistor with a pattern was fabricated. In the figure. .. Reference numeral 1 indicates a Ni-Mo-P alloy film resistor, and electrolytic copper plating portions for current-carrying electrodes for pulse heating (Joule heating) are provided at both ends of the resistor 1. The width (W) of resistance layer 1 is 50 μm, and the film thickness (1) is 0.5
It was set as μm. Other dimensions of the test piece are as shown in the figure.

無電解Ni−Mo−P合金皮膜抵抗体製造工程は以下の
とおりである。
The manufacturing process of the electroless Ni-Mo-P alloy film resistor is as follows.

■ 脱脂・・・セラミック基板3を常温でエタノール中
に浸漬し、10分間の超音波洗浄を施した。
■ Degreasing: The ceramic substrate 3 was immersed in ethanol at room temperature and subjected to ultrasonic cleaning for 10 minutes.

■ 活性化及び水洗・・・SnC12 (1!iF/I
),36%I1cJ(lid/j!)水溶液に1分間没
漬(常温〉シた後、脱イオン水洗を行なった。
■ Activation and washing...SnC12 (1!iF/I
), 36% I1cJ (lid/j!) aqueous solution for 1 minute (at room temperature), and then washed with deionized water.

■ 触媒化・・・PdC12 (0. 1g/!)、3
6%l−1c,! (0. 1m/J)水溶液中に1分
間浸漬(常編)した後、脱イオン水洗を行なった。
■ Catalyticization...PdC12 (0.1g/!), 3
6%l-1c,! (0.1 m/J) After being immersed in an aqueous solution for 1 minute (regular), it was washed with deionized water.

■ 反復処理・・・前記■、■項の処理を再度行なった
■ Repetitive processing: The processes in sections (1) and (2) above were performed again.

■ 無電解めっき及び水洗・・・前記凱理後のセラミッ
ク基板3を無電解Ni−Mo−P合金めつき浴〈温度9
0℃)中に浸漬し、Mo含有爵22.3重層%、P含有
最0.7垂潰%、l&!厚0.5μmのNi−Mo−P
合金皮膜eiたm、脱イオン水洗を行なった。めっき浴
組成は以下に示すとおりである。なお、膜厚の調整は処
理時間の選択によって行われる。
■ Electroless plating and water washing: The ceramic substrate 3 after the above-described process is placed in an electroless Ni-Mo-P alloy plating bath (temperature 9).
0°C), Mo content: 22.3%, P content: 0.7%, l&! Ni-Mo-P with a thickness of 0.5 μm
The alloy film was removed and washed with deionized water. The plating bath composition is as shown below. Note that the film thickness is adjusted by selecting the processing time.

NaH2PO2−H20   −−−0.20molt
/INa3C6H5 07  − 2口20−−−0.
  10mO1/IC2H403       − ”
 0. 20moj!/INiSO4’6H20   
−−−0. 10moJ/fNa2MoO4−2H,,
O  −−−0.02mol/1*注:NaOHにより
pHを9.0に調整した。
NaH2PO2-H20---0.20molt
/INa3C6H5 07 - 2 mouths 20---0.
10mO1/IC2H403-”
0. 20moj! /INiSO4'6H20
---0. 10moJ/fNa2MoO4-2H,,
O---0.02 mol/1*Note: pH was adjusted to 9.0 with NaOH.

■ 乾燥・・・水洗後の試料を熱風で乾燥させた(m度
100℃、約3分間}。
■ Drying: The sample after washing with water was dried with hot air (100°C, approximately 3 minutes).

■ パターニング・・−フオトリソグラフィー法により
第1図、第2図に示すようなパターンの抵抗体1を形成
した。
(2) Patterning: A resistor 1 having a pattern as shown in FIGS. 1 and 2 was formed by photolithography.

■ 電極付け・・・フォトリソグラフィー法と電気銅め
っきによりパルス加熱のための電気銅めっき部2を形成
した。
■ Electrode attachment: Electrolytic copper plated portion 2 for pulse heating was formed by photolithography and electrolytic copper plating.

〈パルス加熱〉 ■ 前記工程で得た抵抗休1の電気抵抗婉を測定する。<Pulse heating> (2) Measure the electrical resistance of the resistance layer 1 obtained in the above step.

■ 得られた電気抵抗鉤から所定の電力(0. 1W>
を与え得る電圧を計算し、抵抗体1に200msec 
(ミリ秒)の定電圧パルスを印加してジュール熱による
パルス加熱処理を施す(窒素ガス中)。
■ A specified electric power (0.1W>
Calculate the voltage that can be applied to resistor 1 for 200 msec.
A constant voltage pulse of (milliseconds) is applied to perform pulse heating treatment using Joule heat (in nitrogen gas).

■ パルス加熱処理後の抵抗休1の電気抵抗鉋を測定す
る。
■ Measure the electrical resistance planer after resistance rest 1 after pulse heat treatment.

■ 該電気抵抗釦に基づいて、先の投入電力鉛よりも所
定ffi(0.1W>だけ大きな電力を計算し、抵抗体
1に200mSeC間の定電圧パルスを印加してジュー
ル熱によるパルス加熱処理を施す(窒素ガス中)。
■ Based on the electric resistance button, calculate a power larger than the previously input power lead by a predetermined amount ffi (0.1 W), apply a constant voltage pulse of 200 mSeC to the resistor 1, and perform pulse heating treatment using Joule heat. (in nitrogen gas).

■ 前記■〜■項の処理を繰り返し、抵抗休1が溶解破
断するまでパルス加熱処理を施す。
(2) Repeat the processes in sections (1) to (2) above, and perform pulse heat treatment until the resistor 1 melts and breaks.

〈比較例1〉 実施例1に対応して該実施例1と同様な方法で作製した
皮膜に対し、定常加熱(真空中にて各設定温度で1時間
加熱後、自然冷却)を行なった。
Comparative Example 1 A film prepared in the same manner as in Example 1 was subjected to constant heating (heating in vacuum at each set temperature for 1 hour, then natural cooling).

〈試験結果〉 実施例1、比較例1で得られた皮膜の特性試験結果をそ
れぞれ第3図、第4図に示す。前述のように或る加熱I
l(定常加熱では500℃〜700℃、パルス加熱では
10W〉で比抵抗は極大値を示し、更に加熱すると減少
することが判る。また、この極大値は定常加熱に比して
パルス加熱では全電力域に5って滑らかな曲線を描いて
おり、加熱処理後の抵抗特性のυIll!をより精密に
行い得ることが判る。これは、定常加熱がバッチ処理で
あるため熱飢理温度毎の条件設定に誤差が伴い易いのに
対し、パルス加熱では熱処理を連続的に行うことができ
るためである。
<Test Results> The characteristics test results of the films obtained in Example 1 and Comparative Example 1 are shown in FIG. 3 and FIG. 4, respectively. As mentioned above, some heating I
It can be seen that the specific resistance shows a maximum value at 500°C to 700°C in steady heating and 10 W in pulse heating, and decreases with further heating.In addition, this maximum value is less than 100°C in pulse heating compared to steady heating. 5 draws a smooth curve in the power range, and it can be seen that υIll! of the resistance characteristics after heat treatment can be determined more precisely.This is because steady heating is a batch process, so This is because pulse heating allows heat treatment to be performed continuously, whereas the setting of conditions is likely to involve errors.

塞塾出4l 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のNa2M004を0.01mOI
/1とすることによりMo含有6119.5重量%、P
含有量0.6重徂%なる組成のNi−Mo−P合金皮膜
を得た。以後のパルス加熱は同様にこれを行なった。さ
らに、本実施例では皮膜の比抵抗のみならず温度抵抗係
数の測定をも行なった。温度抵抗係数は、冷凍機付きオ
ーブンの中で(−>60℃〜(+)70℃の温W1範囲
で抵抗を測定し、そのときの温度一抵杭直線の勾配から
これを求めた。
4l Samples were prepared basically in the same manner as in Example 1. However, 0.01 mOI of Na2M004 in the electroless plating bath
/1, Mo content 6119.5% by weight, P
A Ni-Mo-P alloy film having a composition of 0.6% by weight was obtained. Subsequent pulse heating was performed in the same manner. Furthermore, in this example, not only the specific resistance of the film but also the temperature resistance coefficient was measured. The temperature resistance coefficient was determined by measuring the resistance in a temperature W1 range of (->60°C to (+)70°C) in an oven equipped with a refrigerator, and from the slope of the straight line between the temperature and the temperature at that time.

〈比較例2〉 実施例2に対応して該実施例2と同様な方法で作製した
皮膜に対し、定常加熱(真空中にて各設定温度で1時間
加熱後、自然冷却)を行なった。
<Comparative Example 2> Corresponding to Example 2, a film prepared in the same manner as in Example 2 was subjected to constant heating (heating in vacuum at each set temperature for 1 hour, and then natural cooling).

また、皮膜の比抵抗のみならず潟度v1抗係数の測定を
も行なった。
In addition, not only the specific resistance of the film but also the lagoonal v1 resistance coefficient was measured.

く試験結果〉 実施例2、比較例2で得られた皮膜の特性試験結果をそ
れぞれ第5図、第6図に示す。異なる化学組成のNi−
Mo−p合金皮膜においても、実施例1、比較例1にお
ける場合と同様な比抵抗変化が認められた。温度抵抗係
数は、定常加熱、パルス加熱いずれの場合においても比
抵抗が極大碩を示す加熱量で極小値を示した。無電解N
i−Mo−P合金皮膜は、定常加熱においては500℃
、パルス加熱においては10Wでの加熱で最も良好な抵
抗特性を示す。このことからも定常加熱とパルス加熱で
は実用上において同様の挙動を示すことが判る。
Test Results> The characteristics test results of the films obtained in Example 2 and Comparative Example 2 are shown in FIG. 5 and FIG. 6, respectively. Ni- with different chemical compositions
Also in the Mo-P alloy film, the same specific resistance change as in Example 1 and Comparative Example 1 was observed. The temperature resistance coefficient showed a minimum value at the heating amount at which the specific resistance reached its maximum in both steady heating and pulse heating. Electroless N
The i-Mo-P alloy film is heated to 500°C during steady heating.
In pulse heating, heating at 10 W shows the best resistance characteristics. This also shows that steady heating and pulse heating exhibit similar behavior in practice.

実滴例3 基本的に実施例1と同様の方法で試料を作製した。ただ
し、無電解めっき浴のN a 2 M O O 4を0
.003mol/IとすることによりMo含有fi11
2.5重層%、P含有屋1.2重量%なる相成のN r
−Mo−P合金皮膜を得た。以後のパルス加熱は同様に
これを行なった。
Actual Droplet Example 3 A sample was prepared basically in the same manner as in Example 1. However, if the N a 2 M O O 4 of the electroless plating bath is 0
.. Mo-containing fi11 by setting it as 003 mol/I
2.5% multilayer, P content 1.2% by weight N r
-Mo-P alloy film was obtained. Subsequent pulse heating was performed in the same manner.

〈比較例3〉 実施例3に対応して該実施例3と同様な方法で作製した
皮膜に対し、定常加熱(真空中にて各設定温度で1時間
加熱後、自然冷却)を行なった。
<Comparative Example 3> A film prepared in the same manner as in Example 3 was subjected to constant heating (heating in vacuum at each set temperature for 1 hour, and then natural cooling).

〈試験結果〉 実施例3、比較例3で得られた皮膜の特性試験結果をそ
れぞれ第7図、第8図に示す。前記各例におけるものと
は異なる化学組成のNi−MoP合金皮膜においても、
同様な結果が得られることが判る。
<Test Results> The characteristics test results of the films obtained in Example 3 and Comparative Example 3 are shown in FIG. 7 and FIG. 8, respectively. Even in the Ni-MoP alloy film having a chemical composition different from that in each of the above examples,
It can be seen that similar results can be obtained.

【災旦A パルス加熱された試料の抵抗特性の熱的安定性を調べる
ために、実施例1、2、3の各操作で得られた各皮I!
IA,B,Cに10W(各々の皮膜で比抵抗が極大値を
示す加熱量)までのパルス加熱を行い、その後種々の温
度で定常加熱(真空中にて各設定温度で1rf間加熱後
、自然冷却)を行なった。
[Disaster A] In order to investigate the thermal stability of the resistance properties of pulse-heated samples, each skin I!
Pulse heating was performed on IA, B, and C up to 10 W (the amount of heating at which the specific resistance of each film showed the maximum value), and then steady heating was performed at various temperatures (after heating for 1 rf at each set temperature in vacuum, natural cooling).

〈試験結果〉 実施例4で得られた各皮膜の特性試験結果をそれぞれ第
9図に示す。該第9図によれば、どの皮膜も700℃ま
での加熱に対し比抵抗が一定であり、熱的安定性に優れ
ていることが判る。
<Test Results> The characteristics test results of each film obtained in Example 4 are shown in FIG. 9. According to FIG. 9, it can be seen that all the films have a constant resistivity when heated up to 700° C., indicating that they have excellent thermal stability.

実施例5 パルス加熱された試料の抵抗特性の熱的安定性を調べる
ために、実ffPA1、2、3の各操作で得られた各皮
!iD,E,Fに10W(各々の皮膜で比抵抗が極大値
を示す加熱1fi)までのパルス加熱を行い、それらの
試料を真空炉中で昇温速度10℃/分で昇渇した場合に
おける連続的な抵抗変化を測定した。
Example 5 In order to investigate the thermal stability of the resistance properties of pulse-heated samples, each skin obtained in each operation of actual ffPA1, 2, and 3! iD, E, and F were subjected to pulse heating up to 10 W (heating 1fi at which the resistivity reached the maximum value for each film), and the samples were heated at a heating rate of 10°C/min in a vacuum furnace. Continuous resistance changes were measured.

〈試験結果〉 実施例5で得られた各皮膜の特性試験結果をそれぞれ第
10図に示す。いずれの皮膜においても、緩やかな直線
的抵抗変化が見られる。実藻例4における場合と比して
、温度上昇に伴なって比抵抗埴が僅かに上昇するのは、
この皮膜が正の温度抵抗係数を有することによる。この
変化は可逆的であって、温度を常温に戻すと比抵抗も元
に戻る。
<Test Results> The characteristics test results of each film obtained in Example 5 are shown in FIG. 10. A gentle linear resistance change is observed in both films. Compared to the case in Actual Algae Example 4, the slight increase in resistivity with increasing temperature is due to
This is because this film has a positive temperature resistance coefficient. This change is reversible, and when the temperature is returned to room temperature, the specific resistance also returns to its original value.

実施例6 パルス加熱時における加熱雰囲気の彰費を見るために、
実施例2の操作で皮膜を作製し、さらにパルス加熱を空
気中で行なった。
Example 6 To see the cost of the heating atmosphere during pulse heating,
A film was prepared according to the procedure of Example 2, and further pulse heating was performed in air.

〈試験結果〉 実施例6で得られた皮膜の特性試験結果を行なった結果
、第5図のグラフと全く同様な比低抗変化が得られた。
<Test Results> As a result of conducting a characteristic test of the film obtained in Example 6, a change in specific resistance was obtained that was exactly the same as the graph shown in FIG.

[試験結果の評価] ■ 3種類の化学組成のNt−Mo−p合金皮膜の加熱
に対する抵抗特性の変化(第3図ないし第8図)から、
パルス加熱により定常加熱と同様なg/J果が祈られる
ことが理解される。しかも、パルス加熱に要する時間は
極短時間であって、約1時間の熱処理を必要とづる定常
加熱法に比して該時間はゼロに近く、生産性の向上に大
きく貢献できることが明らかである。
[Evaluation of test results] ■ From the changes in resistance characteristics against heating of Nt-Mo-p alloy films with three types of chemical compositions (Figures 3 to 8),
It is understood that pulse heating is expected to produce the same g/J results as steady heating. Moreover, the time required for pulse heating is extremely short, and compared to the steady heating method which requires about 1 hour of heat treatment, the time required is close to zero, and it is clear that it can greatly contribute to improving productivity. .

■ 第3図ないし第8図における定常加熱とパルス加熱
の抵抗特性の変化を比較すると、パルス加熱を行なった
場合の比抵抗の変化は極めて円滑であり、パルス加熱で
は定常加熱に比べより精密な抵抗特性!+11御が可能
であることが理解される。
■ Comparing the changes in resistance characteristics between steady heating and pulse heating in Figures 3 to 8, it is found that the change in resistivity when pulse heating is performed is extremely smooth, and pulse heating is more precise than steady heating. Resistance characteristics! It is understood that +11 control is possible.

■ 第9図、第10図から、適切な電力でのパルス加熱
を行うと(本例では10Wであった)、温度700℃に
到るまで抵抗特性の安定なN i −Mo−P合金皮膜
を得ることができる。定常加熱でこれと同様な安定性を
有する皮膜を得るためには、極めて高い!fA度(70
0℃〉での長時間の熱処理を必要とし、この点において
もパルス加熱の優位性が立証される。
■ From Figures 9 and 10, when pulse heating is performed with an appropriate power (10 W in this example), the Ni-Mo-P alloy film has stable resistance characteristics up to a temperature of 700°C. can be obtained. In order to obtain a film with the same stability under constant heating, the cost is extremely high! fA degree (70
0° C.> is required, and the superiority of pulse heating is proven in this respect as well.

■ 実施例6から、空気または窒素ガスのいずれの雰囲
気中でパルス加熱を施した皮膜も同様な抵抗特性を示し
、極短時間内に熱処理の可能なパルス加熱では加熱によ
る試料酸化の彰胃がほとんどないことが理解される。
■ From Example 6, films subjected to pulse heating in either air or nitrogen gas atmospheres showed similar resistance characteristics, and pulse heating, which allows heat treatment in an extremely short period of time, did not cause oxidation of the sample due to heating. It is understood that there are very few.

発明の効果 以上の説明から明らかなように、Ni−MoP合金皮膜
にパルス加熱を施す本発明方法によれば、■通常の熱処
理方法と比較して処理時間がほぼゼロになる、■wAW
1時間の加熱であるから、処理雰囲気の影響を概略無視
することができ、また使用基材の材質選択の自由度がノ
け太し、例えば合成樹Wi基材の使用も許容される、■
特にレーザー照躬法あるいは電子ビーム照射法を利用す
れば、皮膜の局所のみの熱処理も容易にこれを行うこと
ができる。■従来の長時間の熱処理法に比して熱処理に
よる皮膜の物性!lI御をより精密に行い得る、■従来
の熱処理法においては、熱処理炉を用い、処理7j曲気
を調整する必要があり、消費熱エネルギー・コスト、設
備コストが嵩む欠点があるところ、本発明法では、熱処
理工程が簡略化され、加えて実装後(組立て後〉の熱処
理も可能となり、滌費熱エネルギー・コスト、設備コス
トの低減化を図り得るとともに、生産性の向上を図るこ
とができるという利点を有するのみならず、N1−Mo
−P合金の抵抗特性の高い熱的安定性を得ることができ
る。
Effects of the Invention As is clear from the above explanation, according to the method of the present invention in which a Ni-MoP alloy film is subjected to pulse heating, the processing time becomes almost zero compared to the normal heat treatment method.
Since the heating time is 1 hour, the influence of the processing atmosphere can be largely ignored, and there is a great deal of freedom in selecting the material of the base material to be used, for example, the use of synthetic wood Wi base material is also allowed.
In particular, if a laser beam irradiation method or an electron beam irradiation method is used, it is possible to easily heat treat only a local area of the film. ■The physical properties of the film obtained by heat treatment are better than that of conventional long-term heat treatment methods! ■Conventional heat treatment methods require the use of a heat treatment furnace and the need to adjust the heat treatment temperature, resulting in increased heat energy consumption, equipment costs, and other disadvantages; however, the present invention This method simplifies the heat treatment process and also enables post-mounting (post-assembly) heat treatment, which can reduce heat energy costs and equipment costs, as well as improve productivity. Not only does it have the advantage of
-High thermal stability of the resistance properties of the P alloy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアルミナセラミックス基板上に形成した本発明
の一実施例による無電解Ni−Mo−P合金皮膜抵抗体
の形状、寸法を示す図、第2図はそのn−itaIlF
i面図、第3図はN i−22.3wt%Mo−0.7
wt%P合金皮膜にパルス加熱を施した場合の比抵抗の
変化を示すグラフ、第4図は前記皮膜と同等の皮膜に定
常加熱を施した場合の第3図と同様なグラフ、第5図は
Ni−19.5wt%Mo−0.6wt%P合金皮膜に
パルス加熱を施した場合の比i抗およびa!度抵抗係数
の変化を示すグラフ、第6図は該皮膜と同等の皮膜に定
常加熱を施した場合の第5図と同様なグラフ、第7図は
Ni−12.5wt%Mo−1. 2wt%P合金皮膜
にパルス加熱を蒲した場合の比抵抗の変化を示すグラフ
、第8図は該皮膜と同等の皮膜に定常加熱を施した場合
の第7図と同様なグラフ、第9図はパルス加熱後の試料
の熱的安定性を調べるために3種類の組成のN+−Mo
−P合金皮膜に10Wまでのパルス加熱を施した後、各
種温度で定常加熱を行なった場合の比抵抗の変化を示す
グラフ、第10図は同様に3種類の組成のNi−Mo−
P合金皮膜に10Wまでのパルス加熱を施した後、真空
炉中で昇編速度10℃/分で昇湿した場合の連続的な比
抵抗変化を測定したグラフ、第11図はNi−Mo−P
合金皮膜に定常加熱を施した場合の抵抗特性の変化をN
i−P合金の場合と比較した図である。 1・・・抵抗体,2・・・電気銅めっき部,3・・・セ
ラミック基板。
FIG. 1 is a diagram showing the shape and dimensions of an electroless Ni-Mo-P alloy film resistor according to an embodiment of the present invention formed on an alumina ceramic substrate, and FIG. 2 is a diagram showing the n-itaIIF
i-plane view, Figure 3 is Ni-22.3wt%Mo-0.7
A graph showing the change in specific resistance when a wt%P alloy film is subjected to pulse heating, Fig. 4 is a graph similar to Fig. 3 when steady heating is applied to a film equivalent to the above-mentioned film, and Fig. 5 are the specific i resistance and a! when pulse heating is applied to the Ni-19.5wt%Mo-0.6wt%P alloy film. FIG. 6 is a graph similar to FIG. 5 when a film equivalent to the above film is subjected to constant heating, and FIG. 7 is a graph showing changes in the resistance coefficient of Ni-12.5wt% Mo-1. A graph showing the change in resistivity when pulse heating is applied to a 2wt%P alloy film, Fig. 8 is a graph similar to Fig. 7 when steady heating is applied to a film equivalent to the above film, and Fig. 9. In order to investigate the thermal stability of the sample after pulse heating, three types of N+-Mo compositions were prepared.
Figure 10 is a graph showing the change in resistivity when the -P alloy film is subjected to pulse heating up to 10 W and then subjected to steady heating at various temperatures.
Figure 11 is a graph showing the continuous change in specific resistance when the P alloy film was subjected to pulse heating up to 10 W and then raised in a vacuum furnace at a knitting rate of 10°C/min. P
The change in resistance characteristics when constant heating is applied to the alloy film is
It is a figure compared with the case of i-P alloy. DESCRIPTION OF SYMBOLS 1...Resistor, 2...Electrolytic copper plating part, 3...Ceramic board.

Claims (1)

【特許請求の範囲】[Claims] (1) 無電解めつき法により基材上に形成されたモリ
ブデン含有10〜25重量%、燐含有量 0.5〜2.0重量%のNi−Mo−P合金皮膜に、通
電によるジュール加熱、レーザー照射、もしくは電子ビ
ーム照射により極短時間のパルス加熱を施し、熱的に安
定な電気抵抗体を得ることを特徴とするNi−Mo−P
合金皮膜の熱処理方法。
(1) A Ni-Mo-P alloy film with a molybdenum content of 10 to 25% by weight and a phosphorus content of 0.5 to 2.0% by weight, formed on a base material by an electroless plating method, is subjected to Joule heating by energization. , Ni-Mo-P characterized in that a thermally stable electrical resistor is obtained by subjecting it to extremely short-time pulse heating by laser irradiation or electron beam irradiation.
Heat treatment method for alloy film.
JP1232588A 1989-09-07 1989-09-07 Heat treatment for ni-mo-p alloy film Pending JPH0397835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232588A JPH0397835A (en) 1989-09-07 1989-09-07 Heat treatment for ni-mo-p alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232588A JPH0397835A (en) 1989-09-07 1989-09-07 Heat treatment for ni-mo-p alloy film

Publications (1)

Publication Number Publication Date
JPH0397835A true JPH0397835A (en) 1991-04-23

Family

ID=16941716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232588A Pending JPH0397835A (en) 1989-09-07 1989-09-07 Heat treatment for ni-mo-p alloy film

Country Status (1)

Country Link
JP (1) JPH0397835A (en)

Similar Documents

Publication Publication Date Title
US4994154A (en) High frequency electrochemical repair of open circuits
JPH0397835A (en) Heat treatment for ni-mo-p alloy film
CN113345806B (en) Laser annealing method of SiC-based semiconductor
Shiraishi et al. Low temperature ageing in equiatomic CuAu and Cu-Au-Pd ternary alloys
JP2625175B2 (en) Heat treatment method for Ni-P alloy film
JPH01315101A (en) Thermosensitive resistance element and its manufacture
JPH0364494A (en) Treatment of gold plating film
Thienhaus et al. High-throughput characterization of shape memory thin films using automated temperature-dependent resistance measurements
JP3838768B2 (en) Electrolytic plating method and probe pin manufacturing method using it
Konov et al. Temperature dependence of the absorptivity of aluminum targets at the 10.6 μ wavelength
JPS58113386A (en) Silver plating method
JPS62167056A (en) Thermal head
US2640020A (en) Formation of a surface easily wettable by mercury
JPWO2004057054A1 (en) Electroless nickel plating bath for anisotropic growth bump formation, method for forming anisotropic growth bump, article on which anisotropic growth bump is formed, and anisotropic growth accelerator for electroless nickel plating bath
RU2242534C1 (en) Method of production of a current-conducting alloyed diamond-like nano-composite film
JPH04297001A (en) Electroless ni-re-p alloy thin-film resistor
JPH04186745A (en) Method of evaluating pulse electro-migration
Von Gutfeld et al. Laser enhanced plating: Applications to gold patterning
JPH02112192A (en) Foil heater
Von Gutfeld et al. Copper exchange plating on palladium and its relation to circuit repair
JPH0955416A (en) Reliability evaluation method of metal wiring in semiconductor device
Xue-Ru et al. Crystallization Kinetics of Amorphous In44Sb20Te36 Phase-Change Optical Recording Films on a Nanosecond Scale
JPS61127892A (en) Production of shape memory alloy element
JP2024086254A (en) Electroplating application system, application condition determination device, and method for manufacturing plated structure
Vlasenko et al. Structure and physical characteristics of ohmic contacts based on Fe and Ge films