JPH0210204B2 - - Google Patents

Info

Publication number
JPH0210204B2
JPH0210204B2 JP11661782A JP11661782A JPH0210204B2 JP H0210204 B2 JPH0210204 B2 JP H0210204B2 JP 11661782 A JP11661782 A JP 11661782A JP 11661782 A JP11661782 A JP 11661782A JP H0210204 B2 JPH0210204 B2 JP H0210204B2
Authority
JP
Japan
Prior art keywords
charge
furnace
pressure
layer
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11661782A
Other languages
Japanese (ja)
Other versions
JPS599115A (en
Inventor
Hiroshi Itaya
Matao Araya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11661782A priority Critical patent/JPS599115A/en
Publication of JPS599115A publication Critical patent/JPS599115A/en
Publication of JPH0210204B2 publication Critical patent/JPH0210204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、高炉内装入物の降下挙動ならびに堆
積構造の検知方法に関するものであり、とくに装
入物層の高炉高さ方向にわたる降下速度ならびに
装入物堆積構造につき正確に検知する有利な方法
について提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the descending behavior and deposition structure of charges in a blast furnace, and in particular, the method of detecting the descending rate of the charge layer in the height direction of the blast furnace and the charge deposition structure. This paper proposes an advantageous method for detecting

高炉操業において、溶銑温度、溶銑成分あるい
は、燃料比などは、炉下部に到達するまでの装入
物の還元状態、加熱状態、溶融状態などにより支
配される。すなわち、高炉の炉頂から順次装入さ
れて層状堆積構造をなす炉内の装入物は、炉内を
上昇するガスとは逆に降下していく間に、そのガ
スとの接触により加熱、還元されるのであり、こ
の意味で装入物の還元状態、加熱状態、溶融状態
は装入物が炉下部に到達するまでの降下速度によ
り多大な影響を受ける。したがつて、溶銑温度、
成分、炉熱等の操業の安定性を確保するには、装
入物の降下速度を常に正確に把握し、これを適正
に管理することが不可欠の条件である。
In blast furnace operation, hot metal temperature, hot metal composition, fuel ratio, etc. are controlled by the reduction state, heating state, melting state, etc. of the charge until it reaches the lower part of the furnace. In other words, the charge in the blast furnace, which is sequentially charged from the top of the furnace and has a layered structure, is heated by contact with the gas while descending in the furnace in the opposite direction to the gas rising inside the furnace. In this sense, the reduced state, heating state, and melting state of the charge are greatly influenced by the rate of descent of the charge until it reaches the lower part of the furnace. Therefore, the hot metal temperature,
In order to ensure operational stability in terms of composition, furnace heat, etc., it is essential to always accurately grasp the rate of descent of the charge and to properly manage it.

従来、上述した装入物の降下速度を測定するの
に、炉頂部の装入物堆積層表面上に、該装入物層
の動きに追随する動きをなす錘りを接触させるこ
とにより、装入物の降下速度を調べる技術があつ
た。
Conventionally, in order to measure the rate of descent of the charge described above, a weight that moves to follow the movement of the charge layer is brought into contact with the surface of the charge deposited layer at the top of the furnace. A technique has been developed to determine the rate of descent of objects.

図中の1は、錘りの移動量測定器、2は大ベ
ル、3はおもりの吊下げワイヤ、4は錘り、5は
鉄皮、6は炉壁れんが、7は装入物(堆積)層表
面である。普通、高炉炉頂部での装入物堆積プロ
フイルは、第1図で示すように、炉壁側が高く炉
中心側が低くなるように傾斜して堆積しているた
め、錘り4は中心側に転動したり、装入物の炉中
心側への流れ込みに追従したりする。かかる従来
技術の場合、上述のような不正常な錘り4の動き
に対しても装入物が炉内を降下したものとして計
測される。したがつて、錘り4の移動距離から装
入物の降下速度を測定する従来の方法では、炉内
での装入物の降下とは無関係に起こる外乱が排除
できないため測定誤差が大きいという欠点があつ
た。
In the figure, 1 is a weight movement measuring device, 2 is a large bell, 3 is a hanging wire for the weight, 4 is a weight, 5 is an iron shell, 6 is a furnace wall brick, and 7 is a charge (accumulated material). ) layer surface. Normally, as shown in Fig. 1, the burden deposition profile at the top of the blast furnace is slanted so that the furnace wall side is high and the furnace center side is low. It moves and follows the flow of the charge toward the center of the furnace. In the case of this prior art, even abnormal movement of the weight 4 as described above is measured as if the charge has descended within the furnace. Therefore, the conventional method of measuring the descending speed of the charge from the moving distance of the weight 4 has the disadvantage of large measurement errors because disturbances that occur independently of the descending of the charge in the furnace cannot be excluded. It was hot.

しかも、かかる従来技術の場合、錘り4が装入
物の堆積表面上に位置することが必須の要件なの
で、装入物の降下速度を検出できたとしてもそれ
は装入物の堆積表面近傍についての挙動に限定さ
れる。従つて高炉内炉高方向における全体的な装
入物の降下挙動を代表するものとはいい得ない不
備がある。
Moreover, in the case of such conventional technology, it is essential that the weight 4 be located on the deposition surface of the charge, so even if the descending speed of the charge can be detected, it is only in the vicinity of the deposition surface of the charge. behavior. Therefore, there is a defect that it cannot be said to be representative of the overall descending behavior of the burden in the direction of the furnace height inside the blast furnace.

本発明の目的とするところは、上述した従来測
定技術に見られる欠点:即ち炉頂近傍における装
入物の流れ込みや、再分布の影響を受けず、しか
も炉内の任意の高さレベルにおける装入物の降下
速度および堆積構造を極めて容易に検出するのに
好適な方法について提案することにある。この発
明の構成の要旨とするところは、 鉱石類とコークスとを分別装入することによ
り、それらが交互に堆積した状態となる炉内装入
物層につき、その降下挙動ならびに堆積構造を検
知する方法において、 上記装入物の単一種のものが形成する一堆積層
の平均層厚に略等しい距離隔てた炉体の複数ケ所
に測定点を設けてそれぞれの位置で炉内圧力の変
化を測定し、その圧力の変化測定値から装入物種
別毎の圧力変化速度を求め、上記各測定点間で測
定される該圧力変化速度の変動から装入物の降下
速度と装入物種別毎の層厚、層厚比を検知するこ
とを特徴とする高炉内装入物の降下挙動ならびに
堆積構造の検知方法にある。以下にその構成の詳
細を説明する。
The purpose of the present invention is to eliminate the drawbacks of the conventional measurement techniques mentioned above, namely, to eliminate the effects of charge flow and redistribution near the top of the furnace, and to eliminate the effects of loading at any height level in the furnace. The purpose of the present invention is to propose a method suitable for extremely easily detecting the descending speed and sedimentary structure of objects. The gist of the configuration of the present invention is to provide a method for detecting the descending behavior and deposition structure of a layer of charge in a furnace in which ores and coke are alternately deposited by separately charging them. In this method, measurement points were set up at multiple locations on the furnace body separated by a distance approximately equal to the average layer thickness of one deposited layer formed by a single type of the above-mentioned charge, and changes in the pressure inside the furnace were measured at each location. , calculate the rate of pressure change for each charge type from the measured value of pressure change, and calculate the descending rate of the charge and the layer for each charge type from the fluctuation of the pressure change rate measured between the above measurement points. The present invention provides a method for detecting the descending behavior of blast furnace contents and the deposited structure, which is characterized by detecting the thickness and layer thickness ratio. The details of the configuration will be explained below.

高炉では、鉱石類とコークスとは層状構造を形
成するように交互に分別装入されるが、これらの
装入物は原則的に言うとそのまま層状構造を維持
した状態で炉内を降下して溶融滴下帯上部にまで
達する。
In a blast furnace, ores and coke are charged alternately and separately to form a layered structure, but in principle, these charges are lowered through the furnace while maintaining their layered structure. It reaches the upper part of the melt dripping zone.

一方、高炉のような充填層における層厚方向の
圧力勾配dp/dlは、 dp/dl=(1.75+150・(1−ε)・μ/D・G)・ρu
2/D・gc・ 1−ε/ε3 (1) ここでP:圧力(g/cm2) l:炉内高さ方向の距離(cm) ε:充填層の空隙率(無次元) D:充填粒子の粒子径(cm) G:ガスの質量流量(g/cm2・sec) μ:ガスの粘度(g/cm・sec) ρ:ガスの密度(g/cm3) u:ガスの空塔速度(cm) gc:重力換算係数(g/g重) 上記(1)式から明らかなように、ガス(質量)流
量が一定の条件下では、粒子径Dと空隙率εに大
きく依存しており、粒子径Dが大きくなると圧力
勾配dp/dlは減少し、空隙率εが大きくなると
圧力勾配dp/dlは減少する。
On the other hand, the pressure gradient dp/dl in the layer thickness direction in a packed bed like a blast furnace is dp/dl=(1.75+150・(1−ε)・μ/D・G)・ρu
2 /D・gc・1−ε/ε 3 (1) where P: Pressure (g/cm 2 ) l: Distance in the height direction of the furnace (cm) ε: Porosity of the packed bed (dimensionless) D: Particle diameter of packed particles (cm) G: Gas mass flow rate (g/cm 2 sec) μ: Gas viscosity (g/cm sec) ρ: Gas density (g/cm 3 ) u: Gas superficial velocity (cm) g c : Gravity conversion coefficient (g/g weight) As is clear from equation (1) above, under conditions where the gas (mass) flow rate is constant, the particle diameter D and the porosity ε As the particle diameter D increases, the pressure gradient dp/dl decreases, and as the porosity ε increases, the pressure gradient dp/dl decreases.

要するに、高炉に装入される鉱石類とコークス
の平均的な粒子径Dはそれぞれ0.02m(鉱石)と
0.05m(コークス)で、コークスの方が粒子径は
大きく、両層の平均的な空隙率εもそれぞれ0.40
と0.45でコークス層の方が大きい。従つて、上述
の圧力勾配dp/dlと粒子径Dおよび空隙率εの
関係から鉱石類の層とコークス層を比較すると、
鉱石類層における圧力勾配の方が、粒子径Dおよ
び空隙率εが小さい分だけコークス層における圧
力勾配よりも大きくなることを示している。
In short, the average particle diameter D of the ores and coke charged into the blast furnace is 0.02 m (ore), respectively.
0.05m (coke), the particle size of coke is larger, and the average porosity ε of both layers is 0.40.
and 0.45, which is larger in the coke layer. Therefore, when comparing the ore layer and the coke layer from the above-mentioned relationship between the pressure gradient dp/dl, particle diameter D, and porosity ε,
This shows that the pressure gradient in the ore layer is larger than the pressure gradient in the coke layer due to the smaller particle diameter D and porosity ε.

上述のことから、炉内の一定点で圧力を測定す
れば、例えば圧力勾配dp/dlの大きい鉱石類の
層が該圧力測定点の位置を通過するときには大き
な圧力変化が現れ、一方圧力勾配dp/dlの小さ
なコークス層が測定点を通過するときには小さな
圧力変化が現れるようになる。ところで、高炉内
では圧力測定点の位置を圧力勾配dp/dlの異な
る鉱石類の層とコークス層とが交互に通過するの
で、測定される圧力変化は両層の通過に対応して
大きな変化と小さな変化とが交互に現れる。
From the above, if the pressure is measured at a fixed point in the furnace, for example, when a layer of ores with a large pressure gradient dp/dl passes through the position of the pressure measurement point, a large pressure change will occur; /dl When a small coke layer passes through the measurement point, a small pressure change will appear. By the way, in a blast furnace, ore layers and coke layers with different pressure gradients dp/dl pass alternately at the pressure measurement point, so the measured pressure changes will vary greatly as the pressure measurement point passes through both layers. Small changes appear alternately.

第2図は、装入物降下速度2cm/min、炉頂圧
1000g/cm2、ガスの質量速度0.2g/cm2・sec、鉱
石層厚1.2m、コークス層0.8mの条件下におけ
る、ストツクライン下2.3mと8.8mの2ケ所の位
置で測定される圧力変化から、(1)式にもとづき、
層別毎の圧力勾配(圧力の時間変化)を理論的に
計算した結果について示すものであるが、いずれ
の位置においても鉱石類やコークスの装入時にお
ける急激な圧力上昇を除くと、鉱石類の層の通過
時には大きな圧力変化が現れ、コークス層の通過
時には小さな圧力変化が現れている。
Figure 2 shows the charge descending speed of 2 cm/min and the furnace top pressure.
Pressure measured at two locations 2.3 m and 8.8 m below the stock line under the conditions of 1000 g/cm 2 , gas mass velocity 0.2 g/cm 2 sec, ore layer thickness 1.2 m, and coke layer 0.8 m. From the change, based on equation (1),
This shows the results of theoretical calculations of the pressure gradient (time change in pressure) for each layer. A large pressure change appears when passing through the coke layer, and a small pressure change appears when passing through the coke layer.

また、第3図は上記各層毎の圧力勾配の計算結
果にもとづき、鉱石類やコークス装入時の急激な
圧力上昇を除いて、ストツクライン下2.3mの位
置での圧力の時間変化(圧力勾配dp/dl)から
求めた各圧力変化速度持続の時間経過を示す図で
ある。この図に示されるように、圧力測定点に鉱
石層が到達すると圧力変化速度は急激に大きくな
り、コークス層が到達すると急激に小さくなるの
で、両層の境界位置が圧力測定点を通過した時刻
を極めて正確に検知することができる。
In addition, Figure 3 shows the time change in pressure (pressure gradient dp/dl) is a diagram showing the time course of the duration of each pressure change rate obtained from dp/dl. As shown in this figure, the rate of pressure change increases rapidly when the ore layer reaches the pressure measurement point, and decreases rapidly when the coke layer arrives, so the time when the boundary position of both layers passes the pressure measurement point can be detected extremely accurately.

第3図において、tpは炉内の圧力測定点の位置
を鉱石層が通過するのに要した時間であり、tc
コークス層が通過するのに要した時間である。
In FIG. 3, t p is the time required for the ore layer to pass through the position of the pressure measurement point in the furnace, and t c is the time required for the coke layer to pass.

本発明は、正にこのような鉱石類の層とコーク
ス層との通過にともなう上記圧力勾配(以下は圧
力変化速度という)の周期的な変化を利用して装
入物降下速度を検出するようにした方法である。
The present invention detects the rate of descent of the burden by utilizing periodic changes in the pressure gradient (hereinafter referred to as pressure change rate) as it passes between the ore layer and the coke layer. This is the method I used.

さて、高炉の高さ方向に適当な間隔ΔLを隔て
た2ケ所の測定点を定めて圧力の変化測定し、圧
力変化速度を求めれば両方の位置で得られる圧力
変化速度は、第3図のように周期的に変化し、こ
の変化は第4図に示すように下側の測定点におい
て上側に対して遅れて現れる。図中10は上側測
定点測定値、11は下側測定点における測定値の
変化である。
Now, if we measure the pressure change at two measurement points separated by an appropriate distance ΔL in the height direction of the blast furnace and find the pressure change rate, the pressure change rate obtained at both positions will be as shown in Figure 3. As shown in FIG. 4, this change appears at the lower measurement point later than the upper measurement point. In the figure, 10 is the measured value at the upper measuring point, and 11 is the change in the measured value at the lower measuring point.

さて、ある時刻t1に上部位置にセツトした圧力
測定点で装入物堆積層が鉱石類からコークスへと
変化することに伴つて圧力変化速度の急激な減少
があつたとすると、この圧力変化速度を生じさせ
る鉱石類の層とコークスの層との境界は、下部位
置にセツトした測定点をある時間遅れて通過し、
この下部位置における圧力変化速度の急激な減少
もその時間だけ遅れて起る。ある着目する鉱石類
の層とコークス層の境界が上側の圧力測定点を通
過し、圧力変化速度が急激に減少した時刻をt1
この境界が下側の測定点を通過し圧力変化速度が
急激に減少した時刻をt2とすれば、Δt=t2−t1
装入物がΔLの間隔を降下するに要した時間であ
る。従つて、装入物の降下速度は(2)式により求め
ることができる。
Now, if at a certain time t1 there is a sudden decrease in the rate of pressure change as the burden layer changes from ore to coke at the pressure measurement point set at the upper position, then this rate of pressure change The boundary between the ore layer and the coke layer, which causes
This rapid decrease in the rate of pressure change at the lower position also occurs with a delay of that amount of time. The time when the boundary between the ore layer of interest and the coke layer passes through the upper pressure measurement point and the pressure change rate suddenly decreases is t 1 ,
If t 2 is the time when this boundary passes the lower measurement point and the pressure change rate suddenly decreases, then Δt = t 2t 1 is the time required for the charge to descend through the distance of ΔL. be. Therefore, the descending speed of the charge can be determined using equation (2).

v=ΔL/Δt なお、上下に隔てる圧力測定点間の間隔ΔLを
平均的装入物の層厚の範囲:すなわち鉱石なら鉱
石だけの単一堆積層が形成する平均層厚を0.5〜
1.0mとすれば、上側の圧力測定点で急激な圧力
変化速度の減少が現れた時刻を基準としたとき、
下側の測定点に現れる最初の圧力変化速度の減少
は鉱石類の層についての上側と対応するものと言
うことができる。要するに、特定の装入物層につ
いての上下の圧力測定点での対応する急激な圧力
変化速度の減少を判別するには、ΔLはその装入
物層の平均的な装入物層厚とすることが必要なこ
ととなる。
v=ΔL/Δt Note that the interval ΔL between the pressure measurement points that separate the upper and lower parts is the range of the average charge layer thickness: In other words, if it is ore, the average layer thickness formed by a single deposited layer of ore is 0.5~
If it is 1.0m, then when the time when the pressure change rate suddenly decreases at the upper pressure measurement point is the reference point,
The initial decrease in pressure change rate appearing at the lower measurement point can be said to correspond to the upper one for the ore layer. In short, to determine the corresponding rapid pressure change rate decrease at the upper and lower pressure measurement points for a particular charge layer, ΔL is the average charge layer thickness for that charge layer. This becomes necessary.

第5図は、炉口径8.8mの操業中の高炉におい
てストツクライン下7mと8mの位置で炉壁を貫
通して鋼鉄製のパイプ12,13を炉壁れんが内
面まで挿入し炉内圧力を測定する状況を示すもの
である。
Figure 5 shows the pressure inside an operating blast furnace with a diameter of 8.8 m by inserting steel pipes 12 and 13 through the furnace wall at positions 7 m and 8 m below the stock line to the inner surface of the furnace wall bricks. This indicates the situation in which the

第6図は、第5図に示した方法で測定した上側
の測定点12と下側の測定点13における圧力勾
配から求めた圧力変化速度の時間変化の1例であ
る。図から明らかなように、上側の測定点12で
ある時刻t1で急激な圧力変化速度の減少が現れた
後、1m下側の測定点13には約8.5分遅れた時
刻t2で急激な圧力変化速度の減少が現れ、この場
合装入物の降下速度は(2)式により 1.0/8.5≒0.12m/minのように求められた。
FIG. 6 is an example of a time change in the pressure change rate determined from the pressure gradient at the upper measurement point 12 and the lower measurement point 13 measured by the method shown in FIG. As is clear from the figure, after a sudden decrease in the pressure change rate appeared at time t 1 , which is the upper measurement point 12, there was a sudden decrease in the pressure change rate at time t 2 , about 8.5 minutes later, at the measurement point 13 located 1 m below. A decrease in the rate of pressure change appeared, and in this case, the rate of descent of the charge was calculated as 1.0/8.5≒0.12 m/min using equation (2).

本発明によれば、上述のような方法で、装入物
の降下速度が正確に検知できる。そのために、該
降下速度vと第3図に示した鉱石類として識別さ
れている時間tp、コークスとして識別されている
時間tcとから、それぞれ鉱石層厚lpとコークス層
厚lcは次の各式により求められる。
According to the present invention, the descending speed of the charge can be accurately detected by the method described above. Therefore, the ore layer thickness l p and the coke layer thickness l c can be calculated from the falling speed v and the time t p when the ore is identified as shown in FIG. 3 , and the time t c when the coke is identified as shown in FIG . It is determined by the following formulas.

lp=v×tp (3) lc=v×tc (4) さらに、上式から降下速度vを検出しなくて
も、tpとtcを検出するだけで鉱石類の層厚とコー
クス層厚の比lp/lcは(5)式により求めることがで
きる。
l p = v x t p (3) l c = v x t c (4) Furthermore, even if the descent speed v is not detected from the above equation, the thickness of the ore layer can be determined by simply detecting t p and t c . and the coke layer thickness ratio l p /l c can be determined using equation (5).

lp/lc=tp/tc (5) 上記のようにして、この発明によれば炉内装入
物の堆積面で生じる撹乱による誤検出を伴うこと
なく、正確かつ容易に高炉内装入物の降下速度を
検知できるばかりでなく、鉱石類の層厚、コーク
ス層の層厚および両層の層厚比も極めて容易に検
知できる。
l p /l c =t p /t c (5) As described above, according to the present invention, blast furnace loading can be carried out accurately and easily without erroneous detection due to disturbances occurring on the deposition surface of the blast furnace loading. Not only can the speed of descent of objects be detected, but also the thickness of the ore layer, the thickness of the coke layer, and the ratio of the thicknesses of both layers can be detected extremely easily.

なお、本発明の上述の説明では炉壁に2ケ所圧
力測定孔を設置した場合について述べたが、圧力
測定孔を高さ方向に多段に設置すれば炉内高さ方
向の任意の位置で装入物の降下速度を検知できる
ことは当然である。さらに、0.5〜1m程度の間
隔を隔てた2個の圧力測定孔を有し、かつ炉内を
昇降可能な構造とした鋼鉄製のパイプを炉内に挿
入して圧力を測定すれば、炉内の任意の高さレベ
ルで装入物降下速度を測定できることは明らかで
ある。
In the above description of the present invention, the case was described in which pressure measurement holes were installed at two locations on the furnace wall, but if the pressure measurement holes are installed in multiple stages in the height direction, they can be installed at any position in the height direction inside the furnace. Naturally, it is possible to detect the descending speed of the object. Furthermore, if you insert a steel pipe into the furnace that has two pressure measurement holes spaced apart by about 0.5 to 1 m and have a structure that allows it to move up and down inside the furnace and measure the pressure, you can measure the pressure inside the furnace. It is clear that the rate of charge descent can be measured at any height level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高炉内の装入物堆積表面におもりを
吊下げた状態を示す断面図、第2図は、理論的に
計算したストツクライン下の2.3mと8.8mの位置
での圧力変化を示すグラフ、第3図は、理論的に
計算したストツクライン下の2.3mの位置での圧
力変化速度の経時変化を示すグラフ、第4図は、
高炉内で垂直方向にΔL隔てた2点で測定される
圧力変化から得られる圧力変化速度の時間経過を
示すグラフ、第5図は、ストツクライン下7mと
8mで炉内圧を測定する状況を示す説明図、第6
図は、ストツクライン下7mと8mで測定した圧
力から求めた圧力変化速度の時間経過を示すグラ
フである。 1…錘りの移動量測定器、2…大ベル、3…錘
り吊下げワイヤ、4…錘り、5…鉄皮、6…炉壁
れんが、7…装入物堆積表面、8…上側の測定点
での圧力変化計算値、9…下側の測定点での圧力
変化計算値、10…上側の測定点での圧力変化速
度、11…下側の測定点での圧力変化速度、12
…ストツクライン下7mでの圧力測定用パイプ、
13…ストツクライン下8mでの圧力測定用パイ
プ、14…圧力測定器、15…ストツクライン下
7mでの圧力測定から求めた圧力変化速度、16
…ストツクライン下8mでの圧力測定から求めた
圧力変化速度。
Figure 1 is a cross-sectional view showing the state in which a weight is suspended on the surface of the charge pile in the blast furnace, and Figure 2 is the theoretically calculated pressure change at 2.3 m and 8.8 m below the stock line. Figure 3 is a graph showing the theoretically calculated pressure change rate at a position 2.3m below the stock line, and Figure 4 is a graph showing the change in pressure change rate over time.
A graph showing the time course of the pressure change rate obtained from the pressure change measured at two points separated by ΔL in the vertical direction in the blast furnace. Figure 5 shows the situation in which the furnace pressure is measured at 7 m and 8 m below the stock line. Explanatory diagram, No. 6
The figure is a graph showing the time course of the pressure change rate determined from pressures measured at 7 m and 8 m below the stock line. 1... Weight movement measuring device, 2... Large bell, 3... Weight hanging wire, 4... Weight, 5... Steel shell, 6... Furnace wall brick, 7... Charge accumulation surface, 8... Upper side 9...Calculated pressure change value at the lower measurement point, 10...Pressure change rate at the upper measurement point, 11...Pressure change rate at the lower measurement point, 12
...Pipe for pressure measurement 7m below the stock line,
13...Pipe for pressure measurement at 8 m below the stock line, 14...Pressure measuring device, 15...Pressure change rate determined from pressure measurement at 7 m below the stock line, 16
...Pressure change rate determined from pressure measurements 8m below the stock line.

Claims (1)

【特許請求の範囲】 1 鉱石類とコークスとを分別装入することによ
り、それらが交互に堆積した状態となる炉内装入
物層につき、その降下挙動ならびに堆積構造を検
知する方法において、 上記装入物の単一種のものが形成する一堆積層
の平均層厚に略等しい距離隔てた炉体の複数ケ所
に測定点を設けてそれぞれの位置で炉内圧力の変
化を測定し、その圧力の変化測定値から装入物種
別毎の圧力変化速度を求め、上記各測定点間で測
定される該圧力変化速度の変動から装入物の降下
速度と装入物種別毎の層厚、層厚比を検知するこ
とを特徴とする高炉内装入物の降下挙動ならびに
堆積構造の検知方法。
[Scope of Claims] 1. A method for detecting the descending behavior and deposition structure of a furnace charge layer in which ores and coke are alternately deposited by separately charging them, Measurement points are set up at multiple locations on the furnace body separated by a distance approximately equal to the average layer thickness of one deposited layer formed by a single type of material, and changes in the pressure inside the furnace are measured at each location. The rate of pressure change for each type of charge is determined from the measured change value, and the rate of descent of the charge and the layer thickness and layer thickness for each type of charge are determined from the fluctuations in the rate of pressure change measured between the above measurement points. A method for detecting the descending behavior and deposition structure of blast furnace contents, which is characterized by detecting the ratio.
JP11661782A 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace Granted JPS599115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11661782A JPS599115A (en) 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11661782A JPS599115A (en) 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace

Publications (2)

Publication Number Publication Date
JPS599115A JPS599115A (en) 1984-01-18
JPH0210204B2 true JPH0210204B2 (en) 1990-03-07

Family

ID=14691610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11661782A Granted JPS599115A (en) 1982-07-05 1982-07-05 Detection of descending behavior and heaped structure of charge in blast furnace

Country Status (1)

Country Link
JP (1) JPS599115A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208407A (en) * 1984-03-31 1985-10-21 Nippon Kokan Kk <Nkk> Detection of layer of charge in furnace
KR870002377A (en) * 1985-08-05 1987-03-31 미다 가쓰시게 Negative pressure supply device for automobile
CN107299169B (en) * 2017-08-07 2019-04-02 新兴铸管股份有限公司 The calculation method of blast furnace short term damping-down material

Also Published As

Publication number Publication date
JPS599115A (en) 1984-01-18

Similar Documents

Publication Publication Date Title
JPH0210204B2 (en)
JP6311482B2 (en) Estimation method of gas flow rate and reduction load of blast furnace block.
JP2727563B2 (en) Blast furnace operation method
JP2608504B2 (en) Distribution control method of blast furnace charge
JPS5831007A (en) Detection of abnormality in descending of charging material in blast furnace
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace
JPH0754026A (en) Method for measuring descending position of charged material in blast furnace
JPS58727B2 (en) Estimation method of cohesive zone shape in blast furnace
JP2678767B2 (en) Blast furnace operation method
JPS596888B2 (en) Method for detecting deposits on blast furnace walls
JPH0586446B2 (en)
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
JP3624658B2 (en) Evaluation method of in-furnace deposition shape stability in blast furnace
JPS58117805A (en) Operating method for blast furnace
JPH06228617A (en) Two step shaft blast furnace
JPS6040484B2 (en) Method for understanding charging and falling status of blast furnace raw materials
JPS6028678Y2 (en) Blast furnace furnace condition measuring device
KR20230124065A (en) Method and device for detecting residual amount of liquid, method and device for detecting residual amount of melt, and method for operating a vertical furnace
JPS62192511A (en) Method for estimating falling position of raw material charged into rotary chute type blast furnace
JPS6122234B2 (en)
JPH0417607A (en) Method for operating blast furnace
JPS59104408A (en) Detection of bonded zone by fusion of blast furnace
JP2931497B2 (en) Blast furnace operation method
KR20230124711A (en) Liquid level detection method and detection device, melt level detection method and detection device, and vertical furnace operating method
JPS5833082A (en) Method of deciding behavior of charge in furnace in metal smelting furnace, etc.