JPH04324209A - Oxide superconductive wire and its manufacture - Google Patents

Oxide superconductive wire and its manufacture

Info

Publication number
JPH04324209A
JPH04324209A JP3122329A JP12232991A JPH04324209A JP H04324209 A JPH04324209 A JP H04324209A JP 3122329 A JP3122329 A JP 3122329A JP 12232991 A JP12232991 A JP 12232991A JP H04324209 A JPH04324209 A JP H04324209A
Authority
JP
Japan
Prior art keywords
wire
thin film
superconducting
magnetic field
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3122329A
Other languages
Japanese (ja)
Other versions
JP3090709B2 (en
Inventor
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Yasuhiro Iijima
康裕 飯島
Kazunori Onabe
和憲 尾鍋
Kazutomi Kakimoto
一臣 柿本
Naohiro Futaki
二木 直洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP03122329A priority Critical patent/JP3090709B2/en
Publication of JPH04324209A publication Critical patent/JPH04324209A/en
Application granted granted Critical
Publication of JP3090709B2 publication Critical patent/JP3090709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide an electric power conductor capable of applying from a low to a high magnetic fields by combining a Bi system superconductive wire, capable of ensuring high current on the low magnetic field side, and an A-B-Cu-O superconductive thin film like a Y system, capable of ensuring relatively high Ic even on the high magnetic field side, though the Ic itself is rather low. CONSTITUTION:An A-B-Cu-O system superconductive thin film 5 (where marks are representing as follow, A: one kind or more of periodic table group IIIa elements such as Y, Sc, La, Yb, Er, Eu, Ho, and Dy, and B: one kind or more of periodic table group IIa elements such as Ba, Sr, and Ca) is formed on the surface of a Bi superconductive wire material 4, in which a sheath 2 made of noble-metal such as Ag is filled with a Bi system superconductor 3.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超電導マグネット、超
電導電力輸送、医用機器、超電導エネルギー貯蔵などと
して用いられる酸化物超電導線に係わり、更に詳細には
Bi系超電導体とY系などのA−B−Cu−O系超電導
体とを組み合わせることによって磁界特性を向上させた
酸化物超電導線とその製造方法に関する。
[Industrial Application Field] The present invention relates to oxide superconducting wires used for superconducting magnets, superconducting power transport, medical equipment, superconducting energy storage, etc., and more specifically relates to oxide superconducting wires such as Bi-based superconductors and Y-based A- The present invention relates to an oxide superconducting wire with improved magnetic field characteristics by combining it with a B--Cu--O based superconductor, and a method for manufacturing the same.

【0002】0002

【従来の技術】近年、超電導状態から常電導状態に遷移
する臨界温度(Tc)が液体窒素温度以上の高い値を示
す酸化物系超電導体が種々発見されつつある。この種の
酸化物系超電導体は、液体ヘリウムで冷却する必要のあ
った従来の合金系あるいは金属間化合物系の超電導体に
比較して格段に有利な冷却条件で使用できることから、
実用上極めて有望な超電導材料として種々の研究と開発
がなされている。
BACKGROUND OF THE INVENTION In recent years, various oxide superconductors have been discovered whose critical temperature (Tc) for transition from a superconducting state to a normal conducting state is higher than the temperature of liquid nitrogen. This type of oxide-based superconductor can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium.
Various research and developments are being conducted on superconducting materials that are extremely promising for practical use.

【0003】これらの酸化物超電導体の内でも、Bi系
超電導体(Bi−Sr−Ca−Cu−O、(Bi,Pb
)−Sr−Ca−Cu−Oなど)やY系超電導体(Y−
Ba−Cu−Oなど)は、線材化や薄膜に加工して高い
臨界電流密度(Jc)が得られることから、これらの超
電導体を用いた超電導線材や超電導薄膜が試作され、実
用化に向けての研究が進められつつある。
Among these oxide superconductors, Bi-based superconductors (Bi-Sr-Ca-Cu-O, (Bi, Pb
)-Sr-Ca-Cu-O, etc.) and Y-based superconductors (Y-
Since high critical current densities (Jc) can be obtained by processing superconductors (Ba-Cu-O, etc.) into wires or thin films, prototype superconducting wires and superconducting thin films using these superconductors have been produced, with the aim of putting them into practical use. Research is currently underway.

【0004】例えばBi系超電導体の一例としてBi2
Sr2Ca1Cu2Oy、Bi2Sr2Ca2Cu3O
yなどの酸化物超電導材料は、Agなどの貴金属シース
に充填して圧延やプレス工程を経て、最終的に熱処理す
ることにより、臨界電流密度(Jc)=104A/cm
2(77K,0T)台を確保することができる超電導線
材が得られるようになった。またY系超電導体にあって
は、レーザ蒸着法やCVD法などの薄膜形成手段を用い
てセラミックス製基板や金属基板上に超電導薄膜を形成
することにより、Jc=106A/cm2(77K,0
T)台の超電導薄膜が得られている。
For example, Bi2 is an example of a Bi-based superconductor.
Sr2Ca1Cu2Oy, Bi2Sr2Ca2Cu3O
Oxide superconducting materials such as y are filled into a noble metal sheath such as Ag, subjected to rolling and pressing processes, and finally heat treated to achieve a critical current density (Jc) of 104 A/cm.
2 (77K, 0T) level can now be obtained. For Y-based superconductors, Jc = 106 A/cm2 (77K, 0
T) superconducting thin films have been obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
従来の超電導体には次のような問題があった。まず前者
のBi系超電導体では、この材料はピンニングセンタと
して効くものがみつからず、液体窒素温度(77K)で
は磁界特性が非常に低いのが実情である。図6はBi−
Sr−Ca−Cu−O(BSCCO)を用いて作製され
た線材(Agシース線材)のJc−B特性を示すグラフ
であって、このグラフから明らかなようにこの線材は0
Tで104A/cm2あった臨界電流密度が1Tの印加
磁場状態では102A/cm2台に低下してしまう。そ
こでBi系超電導線材を実用化するための1つの方法と
して、線材を4.2Kに冷却して使用する試みもなされ
ている。図7は4.2KにおけるBSCCOなどの超電
導線材(Agシース線材)のJc−B特性を示すグラフ
である。この図から分かるように、BSCCO線材は4
.2Kまで冷却して使用することにより高磁界側でも比
較的高いJcが得られるものの、この温度まで冷却する
には高価な液体ヘリウムで冷却する必要があり、安価な
液体窒素で冷却して使用できる高温超電導体としての利
点を損なうことになる。
[Problems to be Solved by the Invention] However, these conventional superconductors have the following problems. First, regarding the former Bi-based superconductor, no material has been found that is effective as a pinning center, and the fact is that the magnetic field characteristics are extremely low at liquid nitrogen temperature (77K). Figure 6 shows Bi-
This is a graph showing the Jc-B characteristics of a wire rod (Ag sheath wire rod) made using Sr-Ca-Cu-O (BSCCO), and as is clear from this graph, this wire rod has a
The critical current density, which was 104 A/cm2 at T, drops to the 102 A/cm2 level when a magnetic field of 1 T is applied. Therefore, as one method for putting Bi-based superconducting wire into practical use, attempts have been made to cool the wire to 4.2K before use. FIG. 7 is a graph showing the Jc-B characteristics of a superconducting wire (Ag sheath wire) such as BSCCO at 4.2K. As you can see from this figure, the BSCCO wire is 4
.. By cooling to 2K and using it, a relatively high Jc can be obtained even on the high magnetic field side, but cooling to this temperature requires cooling with expensive liquid helium, but it can be used by cooling with inexpensive liquid nitrogen. This would impair its advantages as a high-temperature superconductor.

【0006】また後者のY系超電導薄膜では、106A
/cm2(77K,0T)台の高い臨界電流密度が得ら
れ、しかも製法によっては優れた磁界特性を示すものも
多い。図8および図9はレーザアブレーション法により
成膜されたY系超電導薄膜のJc−B特性を示すもので
あって、図8は0〜1Tの範囲でのJc−B特性を示し
、図9はレーザ照射エネルギーを1.3J/cm2と1
.1J/cm2として作製した薄膜の高磁界でのJc−
B特性を示している。図8から分かるようにY系超電導
薄膜では1Tの印加磁場であっても106A/cm2台
のJcが得られ、図9に示すように1Tを超える高磁場
強度であっても比較的安定したJcが得られる。しかし
このY系超電導薄膜は、単結晶基板上に薄膜形成手段に
よって形成された薄い膜であるために、臨界電流(Ic
)が大きくとれず、コイル用、電力輸送用等の電力応用
分野に適用させることが困難であった。
Furthermore, in the latter Y-based superconducting thin film, 106A
A high critical current density on the order of /cm2 (77K, 0T) can be obtained, and depending on the manufacturing method, many exhibit excellent magnetic field characteristics. 8 and 9 show the Jc-B characteristics of a Y-based superconducting thin film formed by laser ablation, and FIG. 8 shows the Jc-B characteristics in the range of 0 to 1T, and FIG. Laser irradiation energy is 1.3J/cm2 and 1
.. Jc- in a high magnetic field of a thin film prepared at 1 J/cm2
It shows B characteristic. As can be seen from Figure 8, the Y-based superconducting thin film can obtain a Jc of 106A/cm2 even with an applied magnetic field of 1T, and as shown in Figure 9, a relatively stable Jc can be obtained even with a high magnetic field strength exceeding 1T. is obtained. However, since this Y-based superconducting thin film is a thin film formed by thin film forming means on a single crystal substrate, the critical current (Ic
) cannot be made large, making it difficult to apply it to power application fields such as coils and power transportation.

【0007】本発明は上記事情に鑑みてなされたもので
、幅広い磁界範囲で電力応用分野に適用可能な酸化物超
電導線の提供を目的としている。
The present invention has been made in view of the above circumstances, and aims to provide an oxide superconducting wire that can be applied to electric power applications over a wide range of magnetic fields.

【0008】[0008]

【課題を解決するための手段】かかる課題は、Ag等の
貴金属製シースにBi系超電導体が充填されたBi系超
電導線材の表面に、A−B−Cu−O系(ただし、Aは
Y,Sc,La,Yb,Er,Eu,Ho,Dy等の周
期律表IIIa族元素の1種類以上を表わし、BはBa
,Sr,Ca等の周期律表IIa族元素の1種類以上を
表わす)超電導薄膜を成膜した酸化物超電導線によって
解消される。
[Means for solving the problem] This problem is solved by applying an A-B-Cu-O system (where A is Y , Sc, La, Yb, Er, Eu, Ho, Dy, etc., represents one or more elements of group IIIa of the periodic table, and B is Ba.
This problem can be solved by using an oxide superconducting wire formed with a superconducting thin film (representing one or more elements of group IIa of the periodic table, such as , Sr, Ca, etc.).

【0009】また上記酸化物超電導線の製造方法として
は、Ag等の貴金属製シースにBi系超電導体が充填さ
れたBi系超電導線材の表面に、レーザ蒸着法、CVD
法などの薄膜形成手段によって、A−B−Cu−O系(
ただし、AはY,Sc,La,Yb,Er,Eu,Ho
,Dy等の周期律表IIIa族元素の1種類以上を表わ
し、BはBa,Sr,Ca等の周期律表IIa族元素の
1種類以上を表わす)超電導薄膜を成膜する方法が好適
である。
[0009] Further, as a method for manufacturing the above-mentioned oxide superconducting wire, the surface of a Bi-based superconducting wire in which a sheath made of a noble metal such as Ag is filled with a Bi-based superconductor is coated with a laser vapor deposition method, a CVD method, etc.
A-B-Cu-O system (
However, A is Y, Sc, La, Yb, Er, Eu, Ho
, Dy, etc., and B represents one or more elements of Group IIa of the periodic table, such as Ba, Sr, Ca, etc.) A method of forming a superconducting thin film is preferred. .

【0010】0010

【作用】本発明の酸化物超電導線は、低磁界で大電流を
確保できるBi系超電導体と、比較的高磁界でも電流密
度が極端に低下しないY系などのA−B−Cu−O系と
を組み合わせたことによって、低磁界側で大電流を確保
できるとともに高磁界側での急激な電流密度の低下を緩
和でき、低磁界〜高磁界に適用できる超電導体となる。
[Function] The oxide superconducting wire of the present invention is made of a Bi-based superconductor that can secure a large current in a low magnetic field, and an A-B-Cu-O based material such as a Y-based material whose current density does not drop drastically even in a relatively high magnetic field. By combining these, a large current can be ensured on the low magnetic field side, and a rapid drop in current density on the high magnetic field side can be alleviated, resulting in a superconductor that can be applied to low to high magnetic fields.

【0011】[0011]

【実施例】図1は、本発明に係わる酸化物超電導線の第
1実施例を示す図である。この酸化物超電導線1はAg
シース2内にBi系超電導体3を充填してテープ状に縮
径加工したBi系線材4の上面側に、A−B−Cu−O
系超電導薄膜5を成膜した構成になっている。
Embodiment FIG. 1 is a diagram showing a first embodiment of an oxide superconducting wire according to the present invention. This oxide superconducting wire 1 is made of Ag
A-B-Cu-O is placed on the upper surface side of the Bi-based wire 4 which is filled with the Bi-based superconductor 3 in the sheath 2 and processed to reduce its diameter into a tape shape.
It has a structure in which a superconducting thin film 5 is formed.

【0012】本発明に使用されるBi系超電導体として
は、Bi−Sr−Ca−Cu−O(BSCCO)系と称
される超電導体であり、これらの系のうちでも液体窒素
温度(77K)以上の高い臨界温度(Tc)が得られる
材料、例えばBi2Sr2Ca1Cu2Oy(2212
系という)、Bi2Sr2Ca2Cu3Oy(2223
系という)や、これらの組成のうちBiの一部をPbで
置換したもの、あるいはSrの一部をY等の周期律表I
IIa族元素で置換したものなどがあり、特に上記22
23系超電導体が好適に使用される。
The Bi-based superconductor used in the present invention is a superconductor called a Bi-Sr-Ca-Cu-O (BSCCO) system, and among these systems, the temperature at liquid nitrogen temperature (77K) is Materials that can obtain a high critical temperature (Tc) above, for example, Bi2Sr2Ca1Cu2Oy (2212
system), Bi2Sr2Ca2Cu3Oy (2223
(referred to as system), among these compositions, part of Bi is replaced with Pb, or part of Sr is replaced with Y, etc.
There are those substituted with Group IIa elements, especially the above 22
23 series superconductors are preferably used.

【0013】また本発明に使用されるA−B−Cu−O
系(ただし、AはY,Sc,La,Yb,Er,Eu,
Ho,Dy等の周期律表IIIa族元素の1種類以上を
表わし、BはBa,Sr,Ca等の周期律表IIa族元
素の1種類以上を表わす)超電導体についても臨界温度
(Tc)が77K以上を示す材料が使用され、代表的な
材料を例示すればY1Ba2Cu3Oyである。
A-B-Cu-O used in the present invention
system (where A is Y, Sc, La, Yb, Er, Eu,
The critical temperature (Tc) of superconductors is also A material exhibiting a temperature of 77K or more is used, and a typical example of the material is Y1Ba2Cu3Oy.

【0014】またこの実施例ではBi系線材4のシース
材料としてAgシース2を用いたが、シース材料はAg
に限定される事無く、Pd、Pt、Au、Ag−Pd合
金、Pt合金などの貴金属およびその合金類が使用可能
である。
Furthermore, in this embodiment, the Ag sheath 2 was used as the sheath material of the Bi-based wire 4;
Noble metals such as Pd, Pt, Au, Ag-Pd alloys, Pt alloys, and alloys thereof can be used without being limited to these.

【0015】Bi系線材4の表面にA−B−Cu−O系
超電導薄膜5を成膜するのに好適な薄膜形成手段として
は、レーザ蒸着法やCVD法などがある。これらの蒸着
法では、チャンバ内を完全な真空状態でなく若干の酸素
分圧も確保されること、および成膜条件も700℃程度
、20分〜2時間程度と、Bi系線材4の最終熱処理条
件に比べ低温で短時間であり、最終熱処理を終えたBi
系線材4の超電導特性にあまり影響を及ぼさないことか
ら、本発明における酸化物超電導線の製造において好適
な蒸着法である。
Suitable thin film forming means for forming the A-B-Cu-O superconducting thin film 5 on the surface of the Bi-based wire 4 include laser vapor deposition and CVD. In these vapor deposition methods, the chamber is not in a complete vacuum state, but a slight oxygen partial pressure is also ensured, and the film forming conditions are approximately 700°C for approximately 20 minutes to 2 hours, and the final heat treatment of the Bi-based wire 4 is required. Bi
This vapor deposition method is suitable for manufacturing the oxide superconducting wire in the present invention because it does not significantly affect the superconducting properties of the wire material 4.

【0016】この酸化物超電導線1の製造方法を説明す
ると、まずBi系超電導体を構成する各元素の化合物(
酸化物や炭酸塩など)を所定の比で配合し、これを仮焼
し、得られた仮焼結体を粉砕する。次にこの粉末をAg
パイプ内に充填し、伸線加工、圧延またはプレス加工な
どにより所望の寸法の線材とし、これを熱処理すること
によりBi系線材4とする。次に、このBi系線材4を
レーザ蒸着装置あるいはCVD装置のチャンバ内に入れ
、所定の基板固定位置に取り付ける。そしてレーザ蒸着
法あるいはCVD法によりBi系線材4の表面にY系超
電導体などのA−B−Cu−O系超電導薄膜5を成膜す
る。以上の操作により図1に示す酸化物超電導線1が得
られる。
To explain the manufacturing method of this oxide superconducting wire 1, first, compounds (
oxides, carbonates, etc.) in a predetermined ratio, this is calcined, and the obtained calcined body is crushed. Next, add this powder to Ag
It is filled into a pipe and made into a wire rod of desired dimensions by wire drawing, rolling, pressing, etc., and then heat treated to form a Bi-based wire rod 4. Next, this Bi-based wire 4 is put into a chamber of a laser evaporation device or a CVD device and attached to a predetermined substrate fixing position. Then, an A-B-Cu-O-based superconducting thin film 5 such as a Y-based superconductor is formed on the surface of the Bi-based wire 4 by laser evaporation or CVD. By the above operations, the oxide superconducting wire 1 shown in FIG. 1 is obtained.

【0017】この酸化物超電導線1は、単独であるいは
多数本束ね、液体窒素により冷却した状態で電力輸送用
超電導線として使用される他、スパイラル状に巻いてコ
イル化し、液体窒素冷却下で超電導マグネットとして発
電用、核融合用、リニヤモータ車両や磁気推進船などの
輸送手段、医療用などの種々の用途に適用が可能である
This oxide superconducting wire 1 can be used as a superconducting wire for power transmission either singly or in a bundle, cooled with liquid nitrogen, or can be spirally wound into a coil and made superconducting under cooling with liquid nitrogen. It can be applied as a magnet to various uses such as power generation, nuclear fusion, transportation such as linear motor vehicles and magnetic propulsion ships, and medical use.

【0018】この酸化物超電導線1は、Bi系線材4と
Y系などのA−B−Cu−O系超電導薄膜5を複合化し
たものであるので、寸法的にはBi系線材4と殆ど変化
しない導体として高Icを確保できる。また低磁界側で
大電流を確保できるBi系線材4と、Icは若干低いが
高磁界側でもBi系超電導体ほど急激な性能低下を生じ
ないY系などのA−B−Cu−O系超電導薄膜4を組み
合わせることにより低磁界から高磁界に適用できる電力
用導体となる。さらにY系などのA−B−Cu−O系超
電導薄膜5を形成する手段として、レーザ蒸着法あるい
はCVD法は、チャンバ内が完全な真空でなく若干O2
分圧も確保されること、および成膜条件も700℃〜7
50℃で20分〜2時間程度であり、Bi系線材4の最
終熱処理条件に比べると低温で短時間であることから、
最終熱処理を終えたBi系線材4の特性にあまり影響を
及ぼさずに高特性の複合超電導線を製造できる。
This oxide superconducting wire 1 is a composite of a Bi-based wire 4 and an A-B-Cu-O-based superconducting thin film 5 such as a Y-based material, so that it is almost the same size as the Bi-based wire 4. As a conductor that does not change, a high Ic can be ensured. In addition, Bi-based wire 4, which can secure a large current on the low magnetic field side, and A-B-Cu-O based superconductors such as Y-based wires, which have a slightly lower Ic but do not cause as sudden a performance drop as Bi-based superconductors even on the high magnetic field side. By combining the thin films 4, it becomes a power conductor that can be applied from low magnetic fields to high magnetic fields. Furthermore, as a means for forming the A-B-Cu-O based superconducting thin film 5 such as Y based, the laser evaporation method or the CVD method does not have a complete vacuum in the chamber but a slight O2.
The partial pressure must also be ensured, and the film forming conditions must also be 700°C to 700°C.
It is about 20 minutes to 2 hours at 50 ° C., which is a low temperature and short time compared to the final heat treatment conditions for Bi-based wire 4.
A composite superconducting wire with high characteristics can be manufactured without significantly affecting the characteristics of the Bi-based wire 4 that has undergone the final heat treatment.

【0019】図2は本発明に係わる酸化物超電導線の第
2実施例を示す図である。この酸化物超電導線11は、
図1の酸化物超電導線1のA−B−Cu−O系超電導薄
膜5上に、厚さ数μmのAg薄膜12を蒸着した構成に
なっている。このAg薄膜12を形成するには、真空蒸
着装置など周知の金属薄膜形成手段を用いることができ
る。
FIG. 2 is a diagram showing a second embodiment of the oxide superconducting wire according to the present invention. This oxide superconducting wire 11 is
It has a structure in which an Ag thin film 12 with a thickness of several μm is deposited on the AB-Cu-O based superconducting thin film 5 of the oxide superconducting wire 1 shown in FIG. To form this Ag thin film 12, a known metal thin film forming means such as a vacuum evaporation apparatus can be used.

【0020】この実施例による酸化物超電導線11は、
第1実施例の酸化物超電導線1とほぼ同様の効果が得ら
れる他、A−B−Cu−O系超電導薄膜5上にAg薄膜
12を形成したことによって、このAg薄膜12が安定
化材となるとともに超電導薄膜5の機械的強度を向上さ
せることができ、超電導線の加工性が向上する。
The oxide superconducting wire 11 according to this example is as follows:
In addition to obtaining almost the same effect as the oxide superconducting wire 1 of the first embodiment, by forming the Ag thin film 12 on the A-B-Cu-O based superconducting thin film 5, this Ag thin film 12 becomes a stabilizing material. At the same time, the mechanical strength of the superconducting thin film 5 can be improved, and the workability of the superconducting wire can be improved.

【0021】図3は本発明に係わる酸化物超電導線の第
3実施例を示す図である。この酸化物超電導線21は、
Bi系線材4の上に、この線材4のシース材料とA−B
−Cu−O系超電導薄膜5との拡散反応を防止するため
のバッファ層22を形成し、このバッファ層22上にA
−B−Cu−O系超電導薄膜5を成膜して構成されてい
る。このバッファ層22の材料としては、YSZ(安定
化ジルコニア)、MgO、SrTiO3等のセラミック
材料が好適に使用される。このバッファ層22の厚さは
数μmあれば十分である。Bi系線材4上にこの種のバ
ッファ層22を形成するには、スパッタリング法や電子
ビーム蒸着法などの他に、A−B−Cu−O系超電導薄
膜5の形成に好適に用いられるレーザ蒸着法、CVD法
などが使用される。なおBi系線材4上にバッファ層2
2を成膜し、引き続いて同一装置でターゲット材料ある
いは原料ガスを切り替えてバッファ層22上にA−B−
Cu−O系超電導薄膜5を成膜することも勿論可能であ
る。
FIG. 3 is a diagram showing a third embodiment of an oxide superconducting wire according to the present invention. This oxide superconducting wire 21 is
The sheath material of this wire 4 and A-B are placed on the Bi-based wire 4.
A buffer layer 22 is formed on this buffer layer 22 to prevent a diffusion reaction with the Cu-O based superconducting thin film 5.
-B-Cu-O based superconducting thin film 5 is formed. As the material for this buffer layer 22, ceramic materials such as YSZ (stabilized zirconia), MgO, and SrTiO3 are preferably used. It is sufficient for the thickness of this buffer layer 22 to be several μm. To form this type of buffer layer 22 on the Bi-based wire 4, in addition to sputtering, electron beam evaporation, etc., laser evaporation, which is preferably used to form the A-B-Cu-O superconducting thin film 5, can be used. method, CVD method, etc. are used. Note that a buffer layer 2 is provided on the Bi-based wire 4.
2 was formed into a film, and then the target material or raw material gas was changed using the same device to form a film A-B- on the buffer layer 22.
Of course, it is also possible to form a Cu-O based superconducting thin film 5.

【0022】この酸化物超電導線21は、Bi線材4と
A−B−Cu−O系超電導薄膜5の間に、これら各層間
の拡散反応を防止するバッファ層22を設けたので、A
−B−Cu−O系超電導薄膜22に不純物が拡散するこ
とがなく超電導薄膜22の特性が劣化するおそれがない
This oxide superconducting wire 21 has a buffer layer 22 provided between the Bi wire 4 and the A-B-Cu-O superconducting thin film 5 to prevent diffusion reactions between these layers.
Impurities do not diffuse into the -B-Cu-O-based superconducting thin film 22, and there is no possibility that the characteristics of the superconducting thin film 22 will deteriorate.

【0023】なお前述した各実施例では、Bi系線材4
の片面にのみA−B−Cu−O系超電導薄膜5を形成し
たが、この超電導薄膜22をBi系線材4の両面あるい
は全面に形成することもできる。
[0023] In each of the above-mentioned embodiments, the Bi-based wire 4
Although the A-B-Cu-O based superconducting thin film 5 is formed only on one side of the Bi based wire 4, this superconducting thin film 22 can also be formed on both sides or the entire surface of the Bi based wire 4.

【0024】また前述の各実施例ではテープ状のBi系
線材4を用いたが、Bi系線材はこれに限定される事無
く、例えば断面が円形のBi系線材を用いその周囲にA
−B−Cu−O系超電導薄膜を成膜することも可能であ
る。
Further, in each of the above-mentioned embodiments, a tape-shaped Bi-based wire 4 was used, but the Bi-based wire is not limited to this. For example, a Bi-based wire with a circular cross section may be used, and A
It is also possible to form a -B-Cu-O based superconducting thin film.

【0025】(実験例1)  Bi系超電導材料として
、Biの20%をPbで置換した(Bi,Pb)−Sr
−Ca−Cu−O(2223系)を選んだ。Bi2O3
,PbO,SrCO3,CaCO3,CuOをBi:P
b:Sr:Ca:Cu=1.6:0.4:2:2:3の
比で配合し、750〜870℃の温度範囲で8〜200
時間仮焼、焼結したものを粉砕し、Ag製パイプに充填
し、スウェージ伸線により縮径し、圧延またはプレス加
工と熱処理の組み合わせにより、Bi系Agシース線材
とした。次にこの線材をレーザ蒸着装置の基板位置に取
り付けた。ターゲット材としてY−Ba−Cu−O(Y
:Ba:Cu=1:2:3)を用い、レーザとしてAr
Fエキシマレーザを用い、基板温度=700℃、酸素分
圧=200mTorrとし、Bi系Agシース線の一方
の面側にY1Ba2Cu3Oy薄膜を成膜した。このレ
ーザ蒸着の成膜速度は1μm/時間であり、2時間かけ
て2μmの薄膜を成膜した。
(Experimental Example 1) As a Bi-based superconducting material, (Bi, Pb)-Sr in which 20% of Bi was replaced with Pb
-Ca-Cu-O (2223 series) was selected. Bi2O3
, PbO, SrCO3, CaCO3, CuO to Bi:P
B:Sr:Ca:Cu=1.6:0.4:2:2:3 ratio, 8-200℃ in the temperature range of 750-870℃
The time-calcined and sintered material was pulverized, filled into an Ag pipe, reduced in diameter by swage wire drawing, and made into a Bi-based Ag sheathed wire by a combination of rolling or press working and heat treatment. Next, this wire was attached to the substrate position of a laser evaporation device. Y-Ba-Cu-O (Y
:Ba:Cu=1:2:3) and Ar as a laser.
Using an F excimer laser, a Y1Ba2Cu3Oy thin film was formed on one side of the Bi-based Ag sheath wire at a substrate temperature of 700° C. and an oxygen partial pressure of 200 mTorr. The film formation rate of this laser vapor deposition was 1 μm/hour, and a 2 μm thin film was formed over 2 hours.

【0026】成膜前のBi系Agシース線材(厚さ0.
2mm、幅3mmのテープ状)の特性は、Jc=2×1
04A/cm2、Icは約18A(いずれも77K,0
T)であった。またY1Ba2Cu3Oy薄膜のAg単
独基板での特性は、Jc=8×104A/cm2、Ic
は約5A(いずれも77K,0T)であった。これらB
i系線材、Y系薄膜および複合材のIc−B特性を図4
に示した。図4のグラフから判るように、この複合材は
低磁界側でIcが高く、比較的高磁界側でもIcが高く
優れた磁界特性を有する高Ic線材であることが明らか
である。
[0026] Bi-based Ag sheath wire (thickness 0.
The characteristics of the tape (2 mm, width 3 mm) are Jc = 2 x 1
04A/cm2, Ic is approximately 18A (both 77K, 0
T). Furthermore, the characteristics of the Y1Ba2Cu3Oy thin film on a single Ag substrate are Jc=8×104A/cm2, Ic
was about 5A (both 77K, 0T). These B
Figure 4 shows the Ic-B characteristics of the i-based wire, Y-based thin film, and composite material.
It was shown to. As can be seen from the graph in FIG. 4, this composite material has a high Ic on the low magnetic field side and a high Ic on the relatively high magnetic field side, making it clear that it is a high Ic wire having excellent magnetic field characteristics.

【0027】(実験例2)実験例1と同様のBi系Ag
シース線材を、CVD装置の基板位置に取り付け、表1
に示した条件でCVD蒸着を行なって、Bi系Agシー
ス線材の一方の面側に厚さ8μmのY1Ba2Cu3O
y薄膜を成膜した。
(Experimental Example 2) Bi-based Ag similar to Experimental Example 1
Attach the sheath wire to the substrate position of the CVD device, and
CVD deposition was performed under the conditions shown in , and Y1Ba2Cu3O with a thickness of 8 μm was deposited on one side of the Bi-based Ag sheath wire.
A thin film was formed.

【0028】成膜前のBi系Agシース線材の特性は実
験例1と同じである。またY1Ba2Cu3Oy薄膜の
Ag単独基板での特性は、Jc=5×104A/cm2
、Ic=11A(いずれも77K,0T)であった。こ
れらBi系線材、Y系薄膜および複合材のIc−B特性
を図5に示した。図5のグラフから、この複合材は優れ
た磁界特性を有する高Ic線材であることが明らかであ
る。
The characteristics of the Bi-based Ag sheathed wire before film formation are the same as in Experimental Example 1. Furthermore, the characteristics of the Y1Ba2Cu3Oy thin film on a single Ag substrate are Jc=5×104A/cm2
, Ic=11A (both 77K, 0T). The Ic-B characteristics of these Bi-based wires, Y-based thin films, and composite materials are shown in FIG. From the graph of FIG. 5, it is clear that this composite material is a high Ic wire with excellent magnetic field properties.

【0029】[0029]

【発明の効果】以上説明したように、本発明に係わる酸
化物超電導線は、Bi系超電導線とY系などのA−B−
Cu−O系超電導薄膜を複合化したものであるので、寸
法的にはBi系超電導線と殆ど変化しない導体として高
Icを確保できる。
Effects of the Invention As explained above, the oxide superconducting wire according to the present invention is composed of a Bi-based superconducting wire and a Y-based superconducting wire.
Since it is a composite of Cu--O based superconducting thin films, it is possible to ensure a high Ic as a conductor that is dimensionally almost the same as a Bi-based superconducting wire.

【0030】また低磁界側で大電流を確保できるBi系
超電導線と、Icは若干低いが高磁界側でもBi系超電
導線ほど急激な性能低下を生じないY系などのA−B−
Cu−O系超電導薄膜を組み合わせることにより低磁界
から高磁界に適用できる電力用導体となる。
In addition, Bi-based superconducting wires that can secure a large current on the low magnetic field side, and A-B- such as Y-based superconducting wires, which have a slightly lower Ic but do not cause as sudden a drop in performance as Bi-based superconducting wires even on the high magnetic field side.
By combining Cu-O based superconducting thin films, it becomes a power conductor that can be applied from low to high magnetic fields.

【0031】Y系などのA−B−Cu−O系超電導薄膜
を形成する手段として、レーザ蒸着法あるいはCVD法
は、チャンバ内が完全な真空でなく若干O2分圧も確保
されること、および成膜条件も700℃〜750℃で2
0分〜2時間程度であり、Bi系超電導線の最終熱処理
条件に比べると低温で短時間であることから、最終熱処
理を終えたBi系超電導線の特性にあまり影響を及ぼさ
ずに高特性の複合超電導線を製造できる。
[0031] As a means of forming an A-B-Cu-O system superconducting thin film such as a Y system, the laser evaporation method or the CVD method requires that the inside of the chamber is not a complete vacuum but that a slight O2 partial pressure is also secured; The film forming conditions were 700℃~750℃ 2
The time is about 0 minutes to 2 hours, which is a lower temperature and shorter time than the final heat treatment conditions for Bi-based superconducting wires, so it is possible to achieve high characteristics without affecting the properties of the Bi-based superconducting wires after the final heat treatment. Composite superconducting wire can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の酸化物超電導線の第1実施例を示
す斜視図である。
FIG. 1 is a perspective view showing a first embodiment of an oxide superconducting wire of the present invention.

【図2】  本発明の酸化物超電導線の第2実施例を示
す断面図である。
FIG. 2 is a sectional view showing a second embodiment of the oxide superconducting wire of the present invention.

【図3】  本発明の酸化物超電導線の第3実施例を示
す断面図である。
FIG. 3 is a cross-sectional view showing a third embodiment of the oxide superconducting wire of the present invention.

【図4】  実験例1で作製した線材のIc−B特性を
示すグラフである。
4 is a graph showing the Ic-B characteristics of the wire produced in Experimental Example 1. FIG.

【図5】  実験例2で作製した線材のIc−B特性を
示すグラフである。
5 is a graph showing the Ic-B characteristics of the wire produced in Experimental Example 2. FIG.

【図6】  従来の超電導体の一例としてBi系線材の
Jc−B特性(77K)を示すグラフである。
FIG. 6 is a graph showing the Jc-B characteristics (77K) of a Bi-based wire as an example of a conventional superconductor.

【図7】  同じくBi系線材のJc−B特性(4.2
K)を示すグラフである。
[Figure 7] Similarly, Jc-B characteristics of Bi-based wire (4.2
It is a graph showing K).

【図8】  従来の超電導体の他の例としてY系薄膜の
Jc−B特性(〜1T)を示すグラフである。
FIG. 8 is a graph showing the Jc-B characteristics (~1T) of a Y-based thin film as another example of a conventional superconductor.

【図9】  同じくY系薄膜のJc−B特性(〜10T
)を示すグラフである。
[Figure 9] Similarly, Jc-B characteristics of Y-based thin film (~10T
).

【符号の説明】[Explanation of symbols]

1,11,21…酸化物超電導線、2…Agシース、3
…Bi系超電導体、4…Bi系線材、5…A−B−Cu
−O系超電導薄膜
1, 11, 21...Oxide superconducting wire, 2...Ag sheath, 3
...Bi-based superconductor, 4...Bi-based wire, 5...A-B-Cu
-O-based superconducting thin film

【表1】[Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Ag等の貴金属製シースにBi系超電
導体が充填されたBi系超電導線材の表面に、A−B−
Cu−O系(ただし、AはY,Sc,La,Yb,Er
,Eu,Ho,Dy等の周期律表IIIa族元素の1種
類以上を表わし、BはBa,Sr,Ca等の周期律表I
Ia族元素の1種類以上を表わす)超電導薄膜が成膜さ
れてなる酸化物超電導線。
[Claim 1] A-B-
Cu-O system (A is Y, Sc, La, Yb, Er
, Eu, Ho, Dy, etc., and B represents one or more elements of Group IIIa of the periodic table, such as Ba, Sr, Ca, etc.
An oxide superconducting wire formed by forming a superconducting thin film (representing one or more types of Group Ia elements).
【請求項2】  Ag等の貴金属製シースにBi系超電
導体が充填されたBi系超電導線材の表面に、レーザ蒸
着法、CVD法などの薄膜形成手段によって、A−B−
Cu−O系(ただし、AはY,Sc,La,Yb,Er
,Eu,Ho,Dy等の周期律表IIIa族元素の1種
類以上を表わし、BはBa,Sr,Ca等の周期律表I
Ia族元素の1種類以上を表わす)超電導薄膜を成膜す
ることを特徴とする酸化物超電導線の製造方法。
[Claim 2] A-B-
Cu-O system (A is Y, Sc, La, Yb, Er
, Eu, Ho, Dy, etc., and B represents one or more elements of Group IIIa of the periodic table, such as Ba, Sr, Ca, etc.
1. A method for producing an oxide superconducting wire, comprising forming a superconducting thin film (representing one or more group Ia elements).
JP03122329A 1991-04-24 1991-04-24 Oxide superconducting wire and method of manufacturing the same Expired - Fee Related JP3090709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03122329A JP3090709B2 (en) 1991-04-24 1991-04-24 Oxide superconducting wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03122329A JP3090709B2 (en) 1991-04-24 1991-04-24 Oxide superconducting wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04324209A true JPH04324209A (en) 1992-11-13
JP3090709B2 JP3090709B2 (en) 2000-09-25

Family

ID=14833279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03122329A Expired - Fee Related JP3090709B2 (en) 1991-04-24 1991-04-24 Oxide superconducting wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3090709B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270517A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Superconducting coil and superconductor used for the same
US20100099571A1 (en) * 2008-07-09 2010-04-22 Bruker Hts Gmbh Superconducting cable
US8185175B2 (en) * 2007-04-17 2012-05-22 Sumitomo Electric Industries, Ltd. Superconducting coil and superconductor used for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8185175B2 (en) * 2007-04-17 2012-05-22 Sumitomo Electric Industries, Ltd. Superconducting coil and superconductor used for the same
JP2008270517A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Superconducting coil and superconductor used for the same
US8565845B2 (en) * 2007-04-20 2013-10-22 Sumitomo Electric Industries, Ltd. Superconducting coil and superconducting conductor for use therein
US20100099571A1 (en) * 2008-07-09 2010-04-22 Bruker Hts Gmbh Superconducting cable
US8369912B2 (en) * 2008-07-09 2013-02-05 Bruker Hts Gmbh Superconducting cable

Also Published As

Publication number Publication date
JP3090709B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
Yao et al. Superconducting materials: Challenges and opportunities for large-scale applications
AU603942B2 (en) Devices and systems based on novel superconducting material
Scanlan et al. Superconducting materials for large scale applications
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
US6645313B2 (en) Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture
US6308399B1 (en) High-TC superconducting ceramic oxide products and macroscopic and microscopic methods of making the same
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JPH07111213A (en) Composite body of high-temperature superconducting bulk body and coil magnet
US5882536A (en) Method and etchant to join ag-clad BSSCO superconducting tape
Kumakura Development and prospects for the future of superconducting wires
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US5756427A (en) High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods of making the same
JP3090709B2 (en) Oxide superconducting wire and method of manufacturing the same
EP0305300B1 (en) A method for producing a superconducting article
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP4011131B2 (en) Tape-shaped oxide superconducting wire, superconducting magnet and current lead using the same
Motowidlo et al. Multifilament BPSCCO superconductor: fabrication and heat treatment study
Tachikawa et al. Potential methods for the fabrication of high-T/sub c/superconductors for wires and cables
JP2007109717A (en) Superconducting element and its fabrication process
US5206214A (en) Method of preparing thin film of superconductor
JPH06275146A (en) Composite superconducting wire
JP2835069B2 (en) Superconducting coil
JPH05211013A (en) Oxide superconductor and manufacture thereof
JPS63307150A (en) Oxide cremics based superconductor and production thereof
US7618923B2 (en) Method for making a superconductor with improved microstructure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000627

LAPS Cancellation because of no payment of annual fees