JPH0193089A - Formation of ferroelectric thin film - Google Patents

Formation of ferroelectric thin film

Info

Publication number
JPH0193089A
JPH0193089A JP62250226A JP25022687A JPH0193089A JP H0193089 A JPH0193089 A JP H0193089A JP 62250226 A JP62250226 A JP 62250226A JP 25022687 A JP25022687 A JP 25022687A JP H0193089 A JPH0193089 A JP H0193089A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
thickness
electrode
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62250226A
Other languages
Japanese (ja)
Other versions
JP2605739B2 (en
Inventor
Tadashi Hasegawa
正 長谷川
Junichi Watabe
純一 渡部
Riyoushirou Katayama
片山 良志郎
Masayuki Wakitani
雅行 脇谷
Kiyotake Sato
佐藤 精威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62250226A priority Critical patent/JP2605739B2/en
Publication of JPH0193089A publication Critical patent/JPH0193089A/en
Application granted granted Critical
Publication of JP2605739B2 publication Critical patent/JP2605739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a thin film with peeling eliminated by laminating titanate thin films having a specific thickness with consecutive heat treatments repeated at least two or more times when an amorphous-state titanic acid system thin film is formed on a glass substrate and then made a heat treatment to be a perovskite type ferroelectric thin film. CONSTITUTION:A glass substrate 1, in which an ITO transparent electrode 2 is provided on the back surface, is made to hang down with being held by a substrate holder 15 in an airtight bell jar 11, and a target electrode 14, in which a target 13 composed of a PbTiO3 sintered body is provided on the sur face of the electrode 14, is arranged facing to the substrate 1. Then an Ar gas, which is including 20 volume % O2 and made to have 1X10<-2>Torr, is sent to the jar 11 in which the inside is made to have 10.J Torr vacuum, a first PbTiO3 thin layer 3a having 300-1500Angstrom thickness is deposited on the electrode 2 by sputtering, and a heat treatment at 400-700 deg.C is made with a degree of vacuum made to 10<-6>Torr. Thus a perovskite type first dielectric thin film 31 is formed, and finally a thin film 30 having 3000Angstrom thickness can be obtained with the operation mentioned above repeated.

Description

【発明の詳細な説明】 〔概 要〕 エレクトロルミネッセンス(HL)を利用した薄膜構造
の表示デバイス等に用いられるペロブスカイト型結晶構
造のチタン酸鉛からなる強誘電薄膜を、比較的低温で形
成する方法の改良に関し、スパッタリングによるアモル
ファス状の成膜と、成膜後の熱処理工程により、比較的
低温でペロブスカイト型結晶構造のチタン酸鉛からなる
絶縁特性の良い強誘電薄膜を容易に形成し得る新規な方
法を提供することを目的とし、 ガラス基板上にスパッタリング法によりアモルファス状
のチタン酸鉛からなる薄膜を形成した後、該薄膜を熱処
理して、ペロブスカイト型結晶構造のチタン酸鉛からな
る強誘電薄膜を形成する際に、上記アモルファス状のチ
タン酸鉛からなる薄膜を300〜1500人の膜厚に成
膜し、引き続き熱処理を行う工程を少なくとも二回以上
繰り返して積層形成する。
[Detailed Description of the Invention] [Summary] A method for forming a ferroelectric thin film made of lead titanate with a perovskite crystal structure used in display devices with a thin film structure using electroluminescence (HL) at a relatively low temperature. Regarding the improvement of ferroelectric properties, we have developed a new ferroelectric thin film that can easily form a ferroelectric thin film with good insulating properties made of lead titanate with a perovskite crystal structure at a relatively low temperature by forming an amorphous film by sputtering and a heat treatment process after film formation. The purpose of the present invention is to form a thin film made of amorphous lead titanate on a glass substrate by a sputtering method, and then heat-treat the thin film to form a ferroelectric thin film made of lead titanate having a perovskite crystal structure. When forming the above-mentioned amorphous lead titanate, a thin film made of amorphous lead titanate is formed to a thickness of 300 to 1,500 layers, and then heat treatment is repeated at least twice to form a layer.

〔産業上の利用分野〕[Industrial application field]

本発明はエレクトロルミネッセンス(EL)を利用した
薄膜構造の表示デバイス等に用いられるペロブスカイト
型結晶構造のチタン酸鉛系の強誘電薄膜を、比較的低温
で形成する方法の改良に関するものである。
The present invention relates to an improvement in a method for forming a lead titanate-based ferroelectric thin film with a perovskite crystal structure, which is used in display devices with a thin film structure using electroluminescence (EL), at a relatively low temperature.

近来、エレクトロルミネッセンス(EL)を利用した薄
膜構造の表示デバイスでは、その駆動電圧を低減するた
めの透明な高誘電率絶縁膜(強誘電薄膜)や光通信用光
導波路を構成するための高誘電率薄膜を比較的低温で、
かつ膜欠陥が生じないように容易に形成し得る方法が必
要とされている。
Recently, display devices with a thin film structure using electroluminescence (EL) have been using transparent high dielectric constant insulating films (ferroelectric thin films) to reduce the driving voltage and high dielectric materials to construct optical waveguides for optical communication. rate thin film at relatively low temperature,
There is also a need for a method that can be easily formed without causing film defects.

〔従来の技術〕[Conventional technology]

一般に薄膜ELパネル等に用いられるチタン酸鉛からな
る強誘電薄膜をガラス基板上にスパッタリング法等によ
り形成する場合、成膜時の基板温度を少なくとも720
″C以上の高温にしないと、優れた高誘電率を示すペロ
ブスカイト型結晶構造のチタン酸鉛からなる強誘電薄膜
を得ることができず、また成膜時の基板温度を高温にす
るとガラス基板が軟化変形し易く、成膜が難しくなると
いった問題があった。
When forming a ferroelectric thin film made of lead titanate, which is generally used in thin-film EL panels, etc., on a glass substrate by sputtering, etc., the substrate temperature during film formation is at least 720°C.
A ferroelectric thin film made of lead titanate with a perovskite crystal structure, which exhibits an excellent high dielectric constant, cannot be obtained unless the temperature is raised to a temperature higher than ``C. There were problems in that it was easily softened and deformed, making it difficult to form a film.

そこでこのような問題を解決する方法として、例えば加
熱しない室温、または室温以下の状態のガラス基板上に
スパッタリング法によりアモルファス状のチタン酸鉛(
PbTiOi)からなる薄膜を形成した後、その薄膜を
500°C程度の温度で熱処理することにより、ガラス
基板を軟化変形させない比較的低温で容易に強誘電性を
示すペロブスカイト型結晶構造のPbTiOxからなる
強誘電薄膜を形成する方法が本発明者等により既に提案
されている。
Therefore, as a method to solve this problem, for example, amorphous lead titanate (
After forming a thin film made of PbTiOi), the thin film is heat-treated at a temperature of about 500°C to create a film made of PbTiOx with a perovskite crystal structure that easily exhibits ferroelectricity at relatively low temperatures that do not soften or deform the glass substrate. A method for forming a ferroelectric thin film has already been proposed by the present inventors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記したような先願の強誘電薄膜の形成方法で
は、スパッタリングにより成膜されたアモルファス状の
薄膜を熱処理してペロブスカイト型結晶構造の強誘電薄
膜を形成した際に、該薄膜に微小な剥離欠陥が生や、絶
縁特性が悪くなるといった問題があった。
By the way, in the method for forming a ferroelectric thin film described in the previous application, when an amorphous thin film formed by sputtering is heat-treated to form a ferroelectric thin film with a perovskite crystal structure, minute peeling occurs in the thin film. There were problems such as defects and poor insulation properties.

この薄膜の剥離欠陥の発生は、前記熱処理時に該薄膜が
膨張し、膜中の応力発生に伴う歪の増加に起因するもの
と推考され、現象としては1μm程度の領域で膜にふく
れが生じ、過度のものでは亀裂、さらには剥落する。そ
してこのような現象は膜厚が厚くなるにつれて顕著とな
る傾向がある。
The occurrence of peeling defects in the thin film is thought to be due to the expansion of the thin film during the heat treatment and an increase in strain due to the generation of stress in the film.As a phenomenon, the film bulges in an area of about 1 μm. Excessive use will cause cracks and even flaking. This phenomenon tends to become more pronounced as the film thickness increases.

従って、ELパネルの製造等に適用する少な(とも30
00人程度以上の膜厚を必要とする、例えば表示用透明
電極の絶縁層となる強誘電薄膜の形成が困難になるとい
った欠点があった。
Therefore, it is difficult to apply for manufacturing of EL panels etc.
There was a drawback that it would be difficult to form a ferromatic film, for example, an insulating layer of a transparent electrode for displaying a transparent electrode, which requires more than 00 or more film thickness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した目的を達成するため、加熱しない状態
のガラス基板上にスパッタリング法によりアモルファス
状のチタン酸鉛からなる薄膜を形成した後、該薄膜を5
00″C程度の温度で熱処理して、ペロブスカイト型結
晶構造のチタン酸鉛からなる強誘電薄膜を形成する際に
、上記アモルファス状のチタン酸鉛からなる薄膜を30
0〜1500人の薄い膜厚で成膜し、引き続き熱処理を
行う工程を少なくとも二回以上繰り返して積層形成する
ことにより、剥離欠陥の発生のない所要の厚い膜厚を有
するペロブスカイト型結晶構造のチタン酸鉛からなる強
誘電薄膜を得るようにする。
In order to achieve the above-mentioned object, the present invention forms a thin film made of amorphous lead titanate by sputtering on a glass substrate in an unheated state, and then the thin film is
When forming a ferroelectric thin film made of lead titanate with a perovskite crystal structure by heat treatment at a temperature of about 00"C, the thin film made of amorphous lead titanate is
By repeating the process of forming a film with a thin film thickness of 0 to 1,500 yen and then heat treatment at least twice to form a layer, titanium with a perovskite crystal structure has a required thick film without peeling defects. A ferroelectric thin film made of acid lead is obtained.

〔作 用〕[For production]

本発明の強誘電薄膜の形成方法では、アモルファス状の
チタン酸鉛からなる薄膜の熱処理時に、熱膨張により発
生する剥離の原因となる膜中の歪を小さくするためには
、膜厚を薄くする必要がある。
In the method for forming a ferroelectric thin film of the present invention, in order to reduce the strain in the film that causes peeling caused by thermal expansion during heat treatment of the thin film made of amorphous lead titanate, the film thickness is reduced. There is a need.

即ち、このような考えに基づきアモルファス状のチタン
酸鉛からなる薄膜の膜厚と熱処理後の剥離発生との関係
を実験し、それら薄膜の剥離状態、即ち、膨れ、剥がれ
による凹凸の高さを表面粗さの評価法から求めることに
より調べた結果、第1図に示すように1500Å以下の
膜厚の前記薄膜を熱処理した場合には剥離の発生がなく
、それ以上の膜厚の前記薄膜の熱処理により剥離が顕著
に発生することが判明した。
That is, based on this idea, we conducted an experiment on the relationship between the thickness of thin films made of amorphous lead titanate and the occurrence of peeling after heat treatment, and investigated the peeling state of these thin films, that is, the height of unevenness due to blistering and peeling. As a result of investigation using the surface roughness evaluation method, as shown in Figure 1, when the thin film with a thickness of 1500 Å or less was heat-treated, no peeling occurred, and when the thin film with a thickness of 1500 Å or less was heat-treated, no peeling occurred. It has been found that heat treatment causes significant peeling.

従って、1500Å以上の膜厚を有するペロブスカイト
型結晶構造のチタン酸鉛からなる強誘電薄膜を形成する
際には、アモルファス状のチタン酸鉛からなる薄膜を3
00〜1500人の薄い膜厚に成膜し、引き続き熱処理
を行う工程を少なくとも二回以上繰り返して積層形成す
ることにより、剥離欠陥のない所要の厚い膜厚を有する
ペロブスカイト型結晶構造のチタン酸鉛からなる強誘電
薄膜を容易に得ることができる。
Therefore, when forming a ferroelectric thin film made of lead titanate with a perovskite crystal structure having a film thickness of 1500 Å or more, a thin film made of amorphous lead titanate is
Lead titanate with a perovskite-type crystal structure that has a required thick film thickness without peeling defects is produced by repeating the process of forming a film to a thin film thickness of 00 to 1,500 people and then performing heat treatment at least twice to form a layer. A ferroelectric thin film consisting of can be easily obtained.

〔実施例〕〔Example〕

以下図面を用いて本発明を薄膜ELパネルの絶縁層形成
に適用した例について詳細に説明する。
Hereinafter, an example in which the present invention is applied to forming an insulating layer of a thin film EL panel will be described in detail with reference to the drawings.

第2図は本発明の一実施例に適用するスパッタリング装
置の一構成例を概念的に示す要部断面図である。
FIG. 2 is a sectional view of a main part conceptually showing an example of a configuration of a sputtering apparatus applied to an embodiment of the present invention.

本実施例では図示のようにまず気密ペルジャー11内の
チタン酸鉛(PbTiOz)焼結体からなるターゲ“ッ
ト13を備えたターゲット電極14と対向する水冷式基
板ホルダー15に、例えばT T O(Indium 
Tin0xide)等からなる透明電極2が形成された
EL表示パネル用のガラス基板1を配設する。
In this embodiment, as shown in the figure, first, a water-cooled substrate holder 15, for example, is placed on a water-cooled substrate holder 15 facing a target electrode 14 equipped with a target 13 made of a lead titanate (PbTiOz) sintered body in an airtight Pelger 11. (Indium
A glass substrate 1 for an EL display panel on which a transparent electrode 2 made of (TinOxide) or the like is formed is provided.

次にこの気密ペルジャー11内を排気装置12によって
10− ’Torr程度の真空度にした後、酸素(0□
)ガスを20容量%添加したアルゴン(Ar)ガスから
なるスパッタガスをI X 10− ”Torrの気圧
雰囲気となるように導入する。
Next, the inside of this airtight Pel jar 11 is brought to a vacuum level of about 10-' Torr by the exhaust device 12, and then oxygen (0□
) A sputtering gas consisting of argon (Ar) gas added with 20% by volume is introduced to create a pressure atmosphere of I x 10-'' Torr.

そして前記ターゲット電極14と基板ホルダー15との
間に500Wの高周波電力(4インチ径のターゲットを
対象とした場合)を印加して、加熱しない室温乃至室温
以下の状態の前記ガラス基板1上に、スパッタリングに
より第3図(a)に示すようにアモルファス状の第−P
bTi0J膜3aを1000人の膜厚に被着形成し、そ
の後、該薄膜3aを10− hTorr程度の真空中で
400〜700°Cに加熱、本実施例ではガラス基板1
の軟化変形を防止するために500°Cに加熱して1時
間程度熱処理を行い、第3図[有])に示すようにペロ
ブスカイト型結晶構造のPbTi0zからなる第一強誘
電薄膜31を形成する。
Then, a high frequency power of 500 W (when targeting a 4-inch diameter target) is applied between the target electrode 14 and the substrate holder 15, and the glass substrate 1 is heated at room temperature or below room temperature without being heated. By sputtering, an amorphous P-P is formed as shown in Fig. 3(a).
A bTi0J film 3a is deposited to a thickness of 1000 mm, and then the thin film 3a is heated to 400 to 700°C in a vacuum of about 10-hTorr.
In order to prevent softening and deformation, heat treatment is performed at 500° C. for about 1 hour to form a first ferroelectric thin film 31 made of PbTi0z having a perovskite crystal structure as shown in FIG. .

次に引き続き該第−強誘電薄膜31上に前記したと同様
なスパッタリング条件によって、第3図(C)に示すよ
うにアモルファス状の第二PbTi0JJ膜3bを10
00人の膜厚に被着形成した後、該第二薄膜3bを前記
したと同様な熱処理を行って第3図(d)に示すように
ペロブスカイト型結晶構造のPbTi0zからなる第二
強誘電薄膜32を形成する。
Next, under the same sputtering conditions as described above, a second amorphous PbTi0JJ film 3b is deposited on the first ferroelectric thin film 31 at a rate of 10%, as shown in FIG. 3(C).
After forming the film to a thickness of 0.00 mm, the second thin film 3b is subjected to the same heat treatment as described above to form a second ferroelectric thin film made of PbTi0z having a perovskite crystal structure, as shown in FIG. 3(d). form 32.

更に引き続き該第二強誘電薄膜32上に上記したと同様
なスパッタリング法によるアモルファス状の第三PbT
iO3薄膜(図示せず)の成膜と熱処理工程とを繰り返
して、第3図(e)に示すように1000人の膜厚のペ
ロブスカイト型結晶構造のPbTiOsからなる第三強
誘電薄膜33を形成する。
Subsequently, amorphous third PbT is deposited on the second ferroelectric thin film 32 by the same sputtering method as described above.
By repeating the formation of an iO3 thin film (not shown) and the heat treatment process, a third ferroelectric thin film 33 made of PbTiOs having a perovskite crystal structure and having a thickness of 1000 nm is formed as shown in FIG. 3(e). do.

かくすれば、従来の形成方法のように熱処理による各強
誘電薄膜の剥離が生しることなく、表示用透明電極2の
絶縁層となる3層からなる3000人の厚い膜厚を有す
る強誘電薄膜30を容易に得ることが可能となる。
In this way, peeling of each ferroelectric thin film due to heat treatment, unlike in conventional forming methods, does not occur, and a ferroelectric film having a thick film thickness of 3,000 layers consisting of three layers that becomes the insulating layer of the transparent electrode 2 for display can be formed. It becomes possible to easily obtain the thin film 30.

〔発明の効果〕 以上の説明から明らかなように本発明に係る強誘電薄膜
の形成方法によれば、アモルファス状のPbTi0z薄
膜を熱処理した際に、該薄膜の剥離が生じないため、絶
縁特性の良いペロブスカイト型結晶構造のPbTi0.
からなる厚い膜厚の強誘電薄膜を容易に形成することが
可能となる優れた利点を有する。
[Effects of the Invention] As is clear from the above description, according to the method for forming a ferroelectric thin film according to the present invention, when an amorphous PbTiOz thin film is heat-treated, peeling of the thin film does not occur, so that the insulation properties are improved. PbTi0. with good perovskite crystal structure.
It has an excellent advantage in that it is possible to easily form a thick ferroelectric thin film consisting of.

従って、表示用透明電極の絶縁層としてチタン酸鉛系の
強誘電薄膜を用いた低電圧駆動の薄膜ELパネルなどの
製造に適用して顕著なる効果を奏する。
Therefore, it can be applied to the manufacture of thin film EL panels driven at low voltage using a lead titanate-based ferroelectric thin film as an insulating layer of a transparent electrode for display, and a remarkable effect can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る強誘電薄膜の膜厚と剥離発生との
関係を示す図、 第2図は本発明に係る強誘電薄膜の形成方法に適用する
スパッタリング装置の一構成 例を示す図、 第3図(a)〜(e)は本発明に係る強誘電薄膜の形成
方法の一実施例を工程順に説明するた めの要部断面図である。 第2図及び第3図において、 ■はガラス基板、2は透明電極、3aは第一アモルファ
スPbTi0.I薄膜、3bは第ニアモルファスPbT
i03F!膜、11は気密ベルジャー、12は排気装置
、13はターゲット、14はターゲット電極、15は基
板ホルダー、30は厚い強誘電薄膜、31は第一強誘電
薄膜、32は第二強誘電薄膜、33は第三強誘電薄膜を
それぞれ示す。 → 榎3(A) 萩蹄側朝l/l侯厚X iJ&発111闇碌を零T図第
1図 ノド’iFLgFfcq形に方1ir=r@1.r、1
iJF>’at第2図
FIG. 1 is a diagram showing the relationship between the film thickness and the occurrence of peeling of a ferroelectric thin film according to the present invention, and FIG. 2 is a diagram showing an example of the configuration of a sputtering apparatus applied to the method for forming a ferroelectric thin film according to the present invention. , FIGS. 3(a) to 3(e) are sectional views of essential parts for explaining one embodiment of the method for forming a ferroelectric thin film according to the present invention in the order of steps. In FIGS. 2 and 3, 2 is a glass substrate, 2 is a transparent electrode, and 3a is a first amorphous PbTi0. I thin film, 3b is near-morphous PbT
i03F! 11 is an airtight bell jar, 12 is an exhaust device, 13 is a target, 14 is a target electrode, 15 is a substrate holder, 30 is a thick ferroelectric thin film, 31 is a first ferroelectric thin film, 32 is a second ferroelectric thin film, 33 indicate the third ferroelectric thin film, respectively. → Enoki 3 (A) Hagitei side morning l/l Houatsu r, 1
iJF>'atFigure 2

Claims (1)

【特許請求の範囲】  ガラス基板(1)上にスパッタリング法によりアモル
ファス状のチタン酸鉛系薄膜を形成した後、該薄膜を熱
処理して、ペロブスカイト型結晶構造のチタン酸鉛から
なる強誘電薄膜(30)を形成する際に、 上記アモルファス状のチタン酸鉛からなる薄膜を300
〜1500Åの膜厚に成膜し、引き続き熱処理を行う工
程を少なくとも二回以上繰り返して積層形成することを
特徴とする強誘電薄膜の形成方法。
[Claims] After forming an amorphous lead titanate-based thin film on a glass substrate (1) by sputtering, the thin film is heat-treated to form a ferroelectric thin film ( 30), the thin film made of the amorphous lead titanate was
A method for forming a ferroelectric thin film, which comprises repeating the steps of forming a film to a thickness of ~1500 Å and subsequently subjecting it to heat treatment at least twice to form a ferroelectric thin film.
JP62250226A 1987-10-02 1987-10-02 Method of forming ferroelectric thin film Expired - Lifetime JP2605739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62250226A JP2605739B2 (en) 1987-10-02 1987-10-02 Method of forming ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62250226A JP2605739B2 (en) 1987-10-02 1987-10-02 Method of forming ferroelectric thin film

Publications (2)

Publication Number Publication Date
JPH0193089A true JPH0193089A (en) 1989-04-12
JP2605739B2 JP2605739B2 (en) 1997-04-30

Family

ID=17204715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250226A Expired - Lifetime JP2605739B2 (en) 1987-10-02 1987-10-02 Method of forming ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP2605739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816626B1 (en) * 2000-08-24 2008-03-24 오우크-미츠이, 인크 . Formation of an embedded capacitor plane using a thin dielectric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816626B1 (en) * 2000-08-24 2008-03-24 오우크-미츠이, 인크 . Formation of an embedded capacitor plane using a thin dielectric

Also Published As

Publication number Publication date
JP2605739B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US20070228369A1 (en) Substratum with conductive film and process for producing the same
WO1990013149A1 (en) SOL GEL PROCESS FOR PREPARING Pb(Zr,Ti)O3 THIN FILMS
JPH11109420A (en) Display device and its production
JPH0193089A (en) Formation of ferroelectric thin film
US20060070715A1 (en) Refractory casting method
WO2015012658A1 (en) Method for handling ultra-thin glass for display panel
JPS63304670A (en) Manufacture of thin film semiconductor device
JP3118789B2 (en) Slow cooling method for glass plate
JPH0193088A (en) Formation of ferroelectric thin film
CN107728392A (en) A kind of array base palte and preparation method thereof, liquid crystal display panel
JP2002184242A (en) Substrate with electrode and method of manufacturing the substrate
JPH06103817A (en) Conductive thin film
JPS63307606A (en) Method of forming ferroelectric thin film
JPS63307692A (en) Forming method for ferroelectric thin film
JPS6230223A (en) Production of color liquid crystal display
JP3073145B2 (en) Electric field treatment method for optical element
JPS63224187A (en) Method of forming ferrodielectric thin film
JP2005181670A (en) Manufacturing method of ultra-thin ito film
JPS63225498A (en) Method of forming ferrodielectric thin film
JP2006169040A (en) Glass substrate with ito and method of manufacturing the same
JPS63224188A (en) Method of forming ferrodielectric thin film
JPS61165731A (en) Production of transparent conductive film having insulating protective film
JP3071982B2 (en) Manufacturing method of liquid crystal display element
JPH02124531A (en) Liquid crystal display panel and production thereof
TWI240812B (en) Display panel and producing method of the same