JPH0193068A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH0193068A
JPH0193068A JP62250103A JP25010387A JPH0193068A JP H0193068 A JPH0193068 A JP H0193068A JP 62250103 A JP62250103 A JP 62250103A JP 25010387 A JP25010387 A JP 25010387A JP H0193068 A JPH0193068 A JP H0193068A
Authority
JP
Japan
Prior art keywords
antimony
negative electrode
separator
positive electrode
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62250103A
Other languages
Japanese (ja)
Inventor
Katsuhiro Takahashi
勝弘 高橋
Teruaki Ishii
輝秋 石井
Yasuhiko Suzui
鈴井 康彦
Masayoshi Yuki
正義 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62250103A priority Critical patent/JPH0193068A/en
Publication of JPH0193068A publication Critical patent/JPH0193068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress the deposition of antimony in a positive electrode grid on a negative electrode and maintain the advantage of the non-antimony grid of the negative electrode for a long time by enveloping the positive electrode with a porous synthetic resin separator containing carbon fine grains in a bag shape. CONSTITUTION:A positive electrode is enveloped by a separator made of porous synthetic resin containing carbon fine grains in a bag shape. As a result, most of the antimony eluted into an electrolyte from a positive electrode grid while a battery is used is absorbed by carbon fine grains in the separator and suppressed from being deposited on a negative electrode. The separator used here is manufactured by adding carbon fine grains together with pore-forming grains such as silicon oxide and oil to polyethylene and extrusion-molding the mixture in a sheet shape. The antimony eluted from the positive electrode grid can be thereby suppressed from being moved and deposited on the negative electrode, and the advantage of the non-antimony grid of the negative electrode can be maintained for a long time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極に鉛−アンチモン系合金を、負極に非アン
チモン系合金をグリッド用合金としてそれぞれ用いる鉛
蓄電池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a lead-acid battery using a lead-antimony alloy for the positive electrode and a non-antimony alloy for the negative electrode as grid alloys.

従来の技術 近年、メンテナンスフリー電池の要求に対応する技術と
して、鉛−カルシウム合金を格子に用いる電池(カルシ
ウムタイプ)と併行して、正極にアンチモン系合金、負
極にカルシウム系合金を用いる組合せ構成のいわゆるハ
イブリッド電池が実用されつつある。この電池はカルシ
ウムタイプの正極で起こる問題の一部をアンチモンタイ
プに置きかえ負極ではカルシウム合金などアンチモンを
含まない合金の持つ液域シや水素発生を抑制する利点を
利用しようとするものであシ、中間的な産物と言って良
い。
Conventional technology In recent years, as a technology to meet the demand for maintenance-free batteries, in addition to batteries that use a lead-calcium alloy for the lattice (calcium type), a combination structure that uses an antimony alloy for the positive electrode and a calcium alloy for the negative electrode has been developed. So-called hybrid batteries are being put into practical use. This battery attempts to replace some of the problems that occur with calcium-type positive electrodes with antimony-type ones, and utilizes the advantages of antimony-free alloys such as calcium alloys in suppressing liquid range and hydrogen generation in the negative electrode. It can be said to be an intermediate product.

発明が解決しようとする問題点 ところがこの構成における最大の欠点は、電池の使用中
に正極からアンチモンが溶解し、負極では析出したアン
チモンが蓄積して、遂には負極の非アンチモン合金の利
点を失ってしまうことにある。したがって、メンテナン
スフリーの認識の下に電池を利用すると、初めに期待さ
れる液域速度よりも早く電解液がなくなり液枯れを起こ
す0このことは単に電解液が無くなるのみならず、熱暴
走現象や異常発熱を来し、不慮の事故を招くに至る0 上記トラブルの根本原因は正極に用いられているグリッ
ド中のアンチモンが負極に移動して析出することにある
Problems to be Solved by the Invention However, the biggest disadvantage of this configuration is that antimony dissolves from the positive electrode during use of the battery, and precipitated antimony accumulates on the negative electrode, eventually losing the advantage of the non-antimony alloy in the negative electrode. There is a problem with it. Therefore, if a battery is used with the understanding that it is maintenance-free, the electrolyte will run out faster than the initially expected liquid range speed and the battery will dry up.This will not only cause the electrolyte to run out, but also cause thermal runaway. This may lead to abnormal heat generation and an unexpected accident.The root cause of the above trouble is that antimony in the grid used for the positive electrode migrates to the negative electrode and precipitates.

これを基本的に抑止し、負極の非アンチモン系グリッド
の特徴を長期間継続させることが最大の課題である。
The biggest challenge is to basically suppress this and maintain the characteristics of the negative electrode non-antimony grid for a long period of time.

問題点を解決するだめの手段 上記解決の方法として、本発明では炭素微粒子を含む微
孔性合成樹脂からなるセパレータで正負極の少くとも一
方を袋状に包囲したことを特徴とするものである。
Means for Solving the Problems As a method for solving the above problems, the present invention is characterized in that at least one of the positive and negative electrodes is surrounded in a bag-like manner by a separator made of a microporous synthetic resin containing fine carbon particles. .

旧来、セパレータに炭素粉末を添加した技術は多いが極
板間に板状のセパレータの形で介在させるだけでは、そ
の効果は無い。これはセパレータの下部が比較的高濃度
硫酸にさらされ、下部でのアンチモンの流出がはげしい
にもかかわらずセパレータ下部が開放され、また横側か
らも自由にアンチモンが移動できることによる。まだ袋
状セパレータ構造は、カルシウムタイプでは用いられて
いるものの、ハイブリッドタイプでのアンチモンの影響
は、正負極いずれの格子にもアンチモンを含まないこれ
らの電池から予測できない。本発明は、ハイブリッド構
成の下で初めて確認された優れた効果に基づくものであ
る。
Conventionally, there are many techniques in which carbon powder is added to separators, but simply interposing the carbon powder in the form of a plate-shaped separator between electrode plates has no effect. This is because the lower part of the separator is exposed to a relatively high concentration of sulfuric acid, the lower part of the separator is open even though the outflow of antimony from the lower part is rapid, and antimony can move freely from the sides as well. Although bag-like separator structures are still used in calcium types, the effect of antimony on hybrid types cannot be predicted from these cells, which do not contain antimony in either the positive or negative lattice. The present invention is based on the superior effects first identified under hybrid configurations.

尚、正極の脱落物が袋状セパレータの外側に浮遊すると
充電時のガツシングによシ舞い上り易く、対極に粒子が
モス状に析出しやすくなるので、正極を袋状に包囲し、
正極からの脱落物を動きにくくしておくことが好ましい
In addition, if the debris from the positive electrode floats on the outside of the bag-shaped separator, it will easily fly up due to gassing during charging, and particles will tend to precipitate in the form of moss on the counter electrode.
It is preferable to make it difficult for objects falling off the positive electrode to move.

作   用 上記の構成によシ、電池使用中に電解液に溶出するアン
チモンの多くはセパレータ中の炭素微粒子に吸着され、
負極への析出を抑制する。
Effect Due to the above structure, most of the antimony that dissolves into the electrolyte during battery use is adsorbed by the carbon particles in the separator.
Suppresses precipitation on the negative electrode.

実施例 図は本発明を適用し、正極を炭素微粒子入りの微孔性合
成樹脂セパレータで袋状に包囲した電池Aの60℃での
SAEテストでの減液積算量を示すものであシ、従来の
板状セパレータに炭素を挿入したセパレータを用いた電
池Bと、炭素を含まない袋状セパレータに正極を包囲し
た電池Cとを比較した。
The example diagram shows the cumulative amount of liquid loss in the SAE test at 60°C of battery A in which the present invention is applied and the positive electrode is surrounded in a bag-like manner by a microporous synthetic resin separator containing carbon fine particles. A comparison was made between battery B, which uses a conventional plate-shaped separator with carbon inserted therein, and battery C, which uses a bag-shaped separator that does not contain carbon and surrounds the positive electrode.

Dは参考までに正負極共にアンチモン合金を用いる電池
の場合である。
For reference, D is the case of a battery in which both the positive and negative electrodes are made of antimony alloy.

尚、ここで用いた炭素微粒子入りセパレータは、一般に
微孔性のポリエチレンセパレータの製造過程で、ポリエ
チレンに酸化硅素などの造孔粒やオイル等と同時に炭素
微粒子を添加し、シート状に押し出し成形するなどによ
って製造したものである0 図で明らかなように、寿命試験初期では負極にアンチモ
ン合金を用いているDに比べ、いずれも液減りは極めて
低くなる。ところがB、Cでは早期に減液速度が増し、
まるでアンチモン合金と同様の速度で液域シが起こるよ
うになる。これに対して本発明Aでは液減りの速度の上
昇は完全には避けられないものの、その程度は著しく緩
やかであり、実用上メンテナンスフリー性を享受する期
間を延長することができる。
The separator containing carbon particles used here is generally produced by adding carbon particles to polyethylene at the same time as pore-forming granules such as silicon oxide, oil, etc. during the manufacturing process of microporous polyethylene separators, and extruding the mixture into a sheet. As is clear from the figure, in the early stage of the life test, the liquid loss was extremely low in all cases compared to D, which uses an antimony alloy for the negative electrode. However, in B and C, the liquid reduction rate increased early,
Liquid phase change occurs at a rate similar to that of antimony alloys. On the other hand, in the present invention A, although an increase in the rate of liquid reduction cannot be completely avoided, the degree of increase is extremely gradual, and the period during which maintenance-free property can be enjoyed in practice can be extended.

発明の効果 上記のごとく、本発明はハイブリッドの決定的な弱点を
軽減し、その実用性を高めるものである。
Effects of the Invention As described above, the present invention alleviates the critical weaknesses of hybrids and improves their practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

図はSAEテストにおける減液積算量の変化を示す図で
ある。 A・・・・・・本発明の構成、B・・・・・従来の炭素
入シ板状セパレータ構成、C・・・・・・従来の炭素な
し袋状セパレータ下部、D・・・・・・正負極共にアン
チモン合金。
The figure is a diagram showing changes in the cumulative amount of liquid reduction in the SAE test. A...Constitution of the present invention, B...Conventional carbon-filled plate-like separator structure, C...Conventional carbon-free bag-like separator lower part, D...・Antimony alloy for both positive and negative electrodes.

Claims (3)

【特許請求の範囲】[Claims] (1)正極に鉛−アンチモン系合金のグリッドを、負極
に非アンチモン系鉛合金のグリッドをそれぞれ用いると
ともに、少くとも正負いずれか一方の極板を、炭素微粒
子を含有した微孔性合成樹脂からなる袋状のセパレータ
で包囲したことを特徴とする鉛蓄電池。
(1) Use a lead-antimony alloy grid for the positive electrode and a non-antimony lead alloy grid for the negative electrode, and at least one of the positive and negative electrode plates is made of microporous synthetic resin containing carbon particles. A lead-acid battery characterized by being surrounded by a bag-like separator.
(2)包囲する極板が正極であることを特徴とする特許
請求の範囲第1項に記載の鉛蓄電池。
(2) The lead-acid battery according to claim 1, wherein the surrounding electrode plate is a positive electrode.
(3)セパレータが押出し成形による微孔性ポリエチレ
ンシートであることを特徴とする特許請求の範囲第1項
又は第2項に記載の鉛蓄電池。
(3) The lead-acid battery according to claim 1 or 2, wherein the separator is a microporous polyethylene sheet formed by extrusion molding.
JP62250103A 1987-10-02 1987-10-02 Lead-acid battery Pending JPH0193068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62250103A JPH0193068A (en) 1987-10-02 1987-10-02 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62250103A JPH0193068A (en) 1987-10-02 1987-10-02 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0193068A true JPH0193068A (en) 1989-04-12

Family

ID=17202861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250103A Pending JPH0193068A (en) 1987-10-02 1987-10-02 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0193068A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263016A (en) * 1994-03-28 1995-10-13 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2016189296A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid battery
JP2017515284A (en) * 2014-05-05 2017-06-08 ダラミック エルエルシー Improved lead-acid battery separator, battery and method for producing them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140135A (en) * 1975-05-28 1976-12-02 Nippon Mineral Fiber Mfg Method of manufacturing separator plate for storage battery
JPS61153958A (en) * 1984-12-26 1986-07-12 Shin Kobe Electric Mach Co Ltd Maintenance-free lead acid battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140135A (en) * 1975-05-28 1976-12-02 Nippon Mineral Fiber Mfg Method of manufacturing separator plate for storage battery
JPS61153958A (en) * 1984-12-26 1986-07-12 Shin Kobe Electric Mach Co Ltd Maintenance-free lead acid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263016A (en) * 1994-03-28 1995-10-13 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2017515284A (en) * 2014-05-05 2017-06-08 ダラミック エルエルシー Improved lead-acid battery separator, battery and method for producing them
JP2016189296A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid battery

Similar Documents

Publication Publication Date Title
US3457112A (en) Lead-acid storage battery
EP0809311B1 (en) Negative electrode plate for lead storage battery containing graphite powder
WO2018229875A1 (en) Liquid-type lead storage battery
JP3239556B2 (en) Lead storage battery
US4652505A (en) Sealed lead storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JPH0193068A (en) Lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2636416B2 (en) Sealed lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JP2009146727A (en) Control valve type lead-acid battery
JP2591975B2 (en) Sealed clad type lead battery
JPH0436957A (en) Lead-acid storage battery
JP3163510B2 (en) Sealed lead-acid battery
JPH0479111B2 (en)
JPS58158866A (en) Lead storage battery
JP3582068B2 (en) How to charge lead storage batteries
JPH11354128A (en) Sealed lead-acid battery
JPS60250566A (en) No-maintenance type lead storage battery
JPH0531272B2 (en)
Li Positive Electrodes of Lead-Acid Batteries
JPH0732012B2 (en) Manufacturing method of sealed lead-acid battery
JPS63202863A (en) Enclosed type lead storage battery
JPS6226155B2 (en)
JPH046757A (en) Manufacture of sealed lead-acid battery