JPS60250566A - No-maintenance type lead storage battery - Google Patents

No-maintenance type lead storage battery

Info

Publication number
JPS60250566A
JPS60250566A JP59107242A JP10724284A JPS60250566A JP S60250566 A JPS60250566 A JP S60250566A JP 59107242 A JP59107242 A JP 59107242A JP 10724284 A JP10724284 A JP 10724284A JP S60250566 A JPS60250566 A JP S60250566A
Authority
JP
Japan
Prior art keywords
lead
antimony
electrode plate
sulfur
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59107242A
Other languages
Japanese (ja)
Inventor
Masaatsu Tsubota
坪田 正温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59107242A priority Critical patent/JPS60250566A/en
Publication of JPS60250566A publication Critical patent/JPS60250566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To have the excellent charge/discharge cycle life and self-discharging performance concurrently by sticking sulfur or a compound of sulfur to a separation body inserted between a positive-electrode plate and a negative-electrode plate in a lead storage battery using a lead-antimony-series alloy grid. CONSTITUTION:A lead-antimony-series alloy is used for the grid of a positive- electrode plate 2 using lead dioxide for an active material. An lead-antimony- series alloy or a lead-calcium-series alloy is used for the grid of a negative- electrode plate 3 using spongy lead for an active material. A separation body 4 inserted between the positive and negative-electrode plates is made with a separator 4a and a glass mat 4b, and the separator 4a is coated with sulfur. The coated sulfur is reduced by the negative-electrode plate 3 into S<2-> ions to be bound with Sb ions in an electrolyte. The antimony sulfide generated has extremely little solubility in dilute sulfuric acid, and antimony is never dissolved again from these precipitates once generated.

Description

【発明の詳細な説明】 、 [産業上の利用分野コ 本発明は鉛蓄電池の無保守化に関するもゆで、特に鉛−
アンチモン系合金格子を用いた無保守形鉛蓄電池に係る
ものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to maintenance-free lead-acid batteries, and particularly to lead-acid batteries.
This relates to a non-maintenance type lead-acid battery using an antimony-based alloy lattice.

[従来技術] 鉛蓄電池は過充電されると水が電気分解されて電解液が
次第に減少するため、使用中に定期的に補水しなければ
ならない。このための保守作業は極めて面倒であるため
、従来から種々な方法によって保守を簡略化することが
試みられてきた。このうちの代表的な方法に鉛蓄電池の
極板格子を構成する鉛合金のアンチモンを減少する方法
がある。
[Prior Art] When lead-acid batteries are overcharged, water is electrolyzed and the electrolyte gradually decreases, so water must be periodically replenished during use. Since maintenance work for this purpose is extremely troublesome, attempts have been made to simplify the maintenance by various methods. A typical method among these methods is to reduce antimony in the lead alloy that constitutes the electrode grid of lead-acid batteries.

格子中のアンチモンは、負極板の水素過電圧を署しく減
少さWるたや、水素ガス発生電位が低下し、フロート充
電のような定電圧充電時にはかなりのガス発生が起る。
Antimony in the lattice significantly reduces the hydrogen overvoltage of the negative electrode plate, lowers the hydrogen gas generation potential, and causes considerable gas generation during constant voltage charging such as float charging.

さらに格子中のアンチモンは自己放電を促進して次第に
tA:i蓄電池の放電容量を減少させる。このようにア
ンチモンは水素過電圧を低下させる好ましくない金属で
あるため、最近ではこのアンチモンの添加向を減少させ
ると共に、アンチモンを全く含まない鉛−カルシウム系
合金格子が実用されるようトなってきた。しかしこの鉛
−カルシウム系合金格子は、自己放電を極めて少なくで
きる反面、深い充放電を繰り返すと早期に容量低下を引
き起すという致命的な欠陥を持っているので、このよう
な用途には使用することができない。これは鉛−カルシ
ウム系合金の基本的な性質に基づくものであって、現在
のところこれを完全に除去できる対策はなく、鉛−カル
シウム系合金格子は自動車の始動、点火用とか、据置用
のように深い放電を行なわないものにしか使用できなか
った。一方、鉛−アンチモン系合金格子は、深い充放電
サイクル使用における前記鉛−カルシウム系合金格子の
ような欠陥はない。
Furthermore, antimony in the lattice promotes self-discharge and gradually reduces the discharge capacity of the tA:i storage battery. As described above, antimony is an undesirable metal that lowers the hydrogen overvoltage, so recently, the addition of antimony has been reduced, and lead-calcium alloy lattices that do not contain antimony at all have been put into practical use. However, although this lead-calcium alloy lattice can minimize self-discharge, it has a fatal flaw in that repeated deep charging and discharging causes early capacity loss, so it should not be used for such applications. I can't. This is based on the basic properties of lead-calcium alloys, and there is currently no measure to completely eliminate them. It could only be used for devices that did not produce deep discharges. On the other hand, the lead-antimony alloy lattice does not have the same defects as the lead-calcium alloy lattice during deep charge/discharge cycle use.

このように格子中のアンチモンは鉛蓄電池の充放電サイ
クル性能に極めて有益な影響を有しているので、鉛−ア
ンチモン系合金(δ子を用いた鉛蓄電池において、前述
した水素過電圧を低下させるという有害な影響を除去づ
゛るか、或いは極めて少なくすることができれば、非常
に優れた無保守形6°(1蓄電池を得ることができる。
In this way, antimony in the lattice has a very beneficial effect on the charge-discharge cycle performance of lead-acid batteries, and therefore, in lead-acid batteries using lead-antimony alloys (δ atoms), antimony in the lattice has a very beneficial effect on the charge-discharge cycle performance of lead-acid batteries. If the harmful effects can be eliminated or minimized, a very good maintenance-free 6° battery can be obtained.

[発明の目的・構成] 本発明は−l−述した如き事柄に鑑み、正、負極板の両
方、或いは正極板のみに鉛−アンチモン系合金格子を使
用した鉛蓄電池にあって、優れた充放電サイクル寿命と
鉛−カルシウム系合金格子&!度の優れた自己放電性能
とを合わけ持った無保守形鉛蓄電池を提供することを目
的とするもので、その要旨は正・負極板間に介在さVた
隔離体にイオウまたはイオウの化合物を付着保持させる
ことにある。
[Objective/Structure of the Invention] In view of the above-mentioned matters, the present invention provides a lead-acid battery that uses a lead-antimony alloy lattice on both the positive and negative electrode plates or only on the positive electrode plate, and provides excellent charging performance. Discharge cycle life and lead-calcium alloy lattice &! The purpose of this technology is to provide a maintenance-free lead-acid battery that also has excellent self-discharge performance. The purpose is to keep it attached.

[実施例] 取量、本発明無保守形鉛蓄電池を図に示す一実施例を用
いて説明する。図において、1は電槽、2はニー他船を
活物質に持つ正1を板で、格子には鉛−アンチモン系合
金が使用されている。3は海綿状鉛を活物質に持つ負極
板で、格子には鉛−アンチモン系合金か、または鉛−カ
ルシウム系合金が使用されている。4は正・負極板間に
介在するセパレータ4aとガラスマット/I l)から
なる隔離体で、セパレータ4aは負極板3面に当接され
ている。またセパレータ4aにはイオウが塗布されてい
る。塗布されているイ珂つは負極板3で還元されてS→
S2−イオンとなり、電解液中のSbイオンと結合する
。5は電解液、6は電槽蓋に設けた排気口である。
[Example] The maintenance-free lead-acid battery of the present invention will be explained using an example shown in the drawings. In the figure, 1 is a battery case, 2 is a plate having a carbon fiber as an active material, and a lead-antimony alloy is used for the grid. 3 is a negative electrode plate having spongy lead as an active material, and a lead-antimony alloy or a lead-calcium alloy is used for the grid. Reference numeral 4 denotes a separator consisting of a separator 4a and a glass mat/Il) interposed between the positive and negative electrode plates, and the separator 4a is in contact with the surface of the negative electrode plate 3. Moreover, sulfur is applied to the separator 4a. The applied slag is reduced by the negative electrode plate 3 and S→
It becomes S2- ion and combines with Sb ion in the electrolyte. 5 is an electrolytic solution, and 6 is an exhaust port provided on the lid of the container.

さて鉛蓄電池の自己放電は主に負極板3のアンチモンに
起因するものであることは既に述べたが、これは次のよ
うな現象によるものである。正極板2の格子が腐蝕され
た時、その格子中のアンチモンも酸化されて酸化アンチ
モンとなる。この酸化アンチモンは希硫酸に溶解しやす
く、種々なナンチモンのイオンや化合物となり°C電解
液5中に存在する。アンチモン金属イオンとしてはs 
b”+および31)’+という31jliと5115の
イオンになる。これが負極板3に拡散や泳動によって到
蓬すると、釜属sbとなって負極板3の表面に電析し、
これが自己放電つまり水素過電圧を低下させる原因とな
る。しかし、本発明実施例においては前記電解液5中の
アンチモンイオンをセパレータ4aに付着保持させたイ
オウから発生する$2−イAンと化学的に結合させて、
以下のような硫化アンチモジにして除去することができ
る。
It has already been mentioned that the self-discharge of a lead-acid battery is mainly caused by antimony in the negative electrode plate 3, but this is due to the following phenomenon. When the lattice of the positive electrode plate 2 is corroded, the antimony in the lattice is also oxidized to become antimony oxide. This antimony oxide is easily dissolved in dilute sulfuric acid, and exists in the °C electrolyte 5 as various antimony ions and compounds. As an antimony metal ion, s
It becomes 31jli and 5115 ions, b"+ and 31)'+. When these reach the negative electrode plate 3 by diffusion or migration, they become sb and are deposited on the surface of the negative electrode plate 3.
This causes self-discharge, that is, a reduction in hydrogen overvoltage. However, in the embodiment of the present invention, the antimony ions in the electrolytic solution 5 are chemically combined with $2-ion A generated from the sulfur attached and held on the separator 4a.
It can be removed by making antimodium sulfide as shown below.

2Sb+3S =Sl)zS3 23b”−+−5s −)Sl)ZSsなd3、生成し
た硫化アンチモンは共に希硫酸への溶解度が極めて小さ
く、一旦生成したこれらの沈澱物から再びアンチモンが
溶出することはない。
2Sb+3S = Sl)zS3 23b"-+-5s -)Sl)ZSs d3 and the generated antimony sulfide have extremely low solubility in dilute sulfuric acid, and once formed, antimony will not be eluted again from these precipitates. .

上記のように本発明無保守形鉛蓄電池は、アンチモンイ
オンと極めて化学親和力のあるイオウのイオンを電解液
中に添加するために、正・負極板間に介在する隔離体に
イオウイオンの供給源であるイオウまたはその化合物を
付着保持させたものであり、付着方法として1jイオウ
の微粉末を適当な粘着剤と混ぜて単に塗布してもよいし
、また合成樹脂製のセバレiりの場合においては、プラ
スチック原料とイオウ粉末とを混合して成形するj:う
にしてもよい。さらにはイオウは二硫化炭素によく溶け
ることを利用して、これにイAつを溶解させた溶液をセ
パレータやガラスマツ1〜に含浸付着させてもよい。
As mentioned above, in the non-maintenance lead-acid battery of the present invention, in order to add sulfur ions, which have a strong chemical affinity with antimony ions, into the electrolyte, the separator interposed between the positive and negative electrode plates is used as a source of sulfur ions. It is made by adhering and retaining sulfur or its compounds, and can be attached by simply applying a mixture of fine powder of 1J sulfur with a suitable adhesive, or in the case of synthetic resin sebari. Alternatively, plastic raw materials and sulfur powder may be mixed and molded. Furthermore, taking advantage of the fact that sulfur dissolves well in carbon disulfide, a solution in which sulfur is dissolved in carbon disulfide may be impregnated and adhered to the separator or glass pine 1 to 1.

[発明の効宋] 以上述べたように本発明による無保守形鉛蓄電池は、鉛
−アンチモン系合金格子を正極板に使用しているため、
深い充放電リイクル性能が良く、鉛−カルシウム系合金
格子を用いた従来形の無保守形鉛蓄電池の重大な欠点を
除去せるものであり、しかも自己放電特性は鉛−カルシ
ウム系合金格子と同等であるという優れた特徴を持つも
のである。
[Effects of the invention in Song Dynasty] As described above, the non-maintenance type lead-acid battery according to the present invention uses a lead-antimony alloy lattice for the positive electrode plate.
It has good deep charge/discharge recycle performance and eliminates the serious drawbacks of conventional non-maintenance lead-acid batteries that use lead-calcium alloy lattices, and its self-discharge characteristics are equivalent to lead-calcium alloy lattices. It has some excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明無保守形鉛蓄電池の構成要素の一実施例を示
す説明図である。
The figure is an explanatory diagram showing one embodiment of the components of the non-maintainable lead-acid battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 正、負極板の両方に、或いは正極板の1ノに鉛−アンチ
モン系合金格子を用いた鉛蓄電池において、正・負極板
間に介在する隔離体にイ、9オウまたはイオウの化合物
を付着保持させたことを特徴とする無保守形鉛蓄電池。
In a lead-acid battery that uses a lead-antimony alloy lattice on both the positive and negative electrode plates or on one of the positive electrode plates, a compound of A, 9, or sulfur is attached and retained on the separator interposed between the positive and negative electrode plates. A maintenance-free lead-acid battery characterized by:
JP59107242A 1984-05-25 1984-05-25 No-maintenance type lead storage battery Pending JPS60250566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107242A JPS60250566A (en) 1984-05-25 1984-05-25 No-maintenance type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107242A JPS60250566A (en) 1984-05-25 1984-05-25 No-maintenance type lead storage battery

Publications (1)

Publication Number Publication Date
JPS60250566A true JPS60250566A (en) 1985-12-11

Family

ID=14454078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107242A Pending JPS60250566A (en) 1984-05-25 1984-05-25 No-maintenance type lead storage battery

Country Status (1)

Country Link
JP (1) JPS60250566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4108176C1 (en) * 1991-03-09 1992-08-27 Grace Gmbh, 2000 Norderstedt, De

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156139A (en) * 1978-05-31 1979-12-08 Shin Kobe Electric Machinery Lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156139A (en) * 1978-05-31 1979-12-08 Shin Kobe Electric Machinery Lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4108176C1 (en) * 1991-03-09 1992-08-27 Grace Gmbh, 2000 Norderstedt, De
US5221587A (en) * 1991-03-09 1993-06-22 W. R. Grace & Co.-Conn. Lead/sulphuric acid storage battery

Similar Documents

Publication Publication Date Title
EP1052713A4 (en) Non-aqueous electrolyte secondary cell and its charging method
JPS60250566A (en) No-maintenance type lead storage battery
JP4081698B2 (en) Lead-acid battery charging method
JPH08339819A (en) Sealed lead-acid battery
US4006035A (en) Maintenance-free battery and method for reducing the current draw of such batteries
JPS58117658A (en) Sealed lead-acid battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JP3216450B2 (en) Electrolyte for lead-acid batteries
JP3582068B2 (en) How to charge lead storage batteries
JPS6164078A (en) Alkaline zinc storage battery
JPH01149376A (en) Sealed lead-acid battery
KR860000820B1 (en) Storage battery
JP3496241B2 (en) How to charge lead storage batteries
JPH07147160A (en) Lead-acid battery
JPH10199562A (en) Sealed lead-acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JPH0193068A (en) Lead-acid battery
JPS63211574A (en) Sealed lead-acid battery
KR100333838B1 (en) Alkali-zinc secondary battery
JPS63198264A (en) Lead storage cell
JP2000058105A (en) Lead-acid battery
JPH01117279A (en) Lead-acid battery
JPS58212056A (en) Separator for enclosed lead battery
JP2002260717A (en) Valve controlled lead storage battery
JPS5971261A (en) Hermetically sealed lead storage battery