JPH0156860B2 - - Google Patents

Info

Publication number
JPH0156860B2
JPH0156860B2 JP14865182A JP14865182A JPH0156860B2 JP H0156860 B2 JPH0156860 B2 JP H0156860B2 JP 14865182 A JP14865182 A JP 14865182A JP 14865182 A JP14865182 A JP 14865182A JP H0156860 B2 JPH0156860 B2 JP H0156860B2
Authority
JP
Japan
Prior art keywords
nickel
mold
coating layer
alloy
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14865182A
Other languages
Japanese (ja)
Other versions
JPS5939449A (en
Inventor
Akira Ichihara
Hiroshi Kanayama
Toshihiro Tsuyuki
Hiroshi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Japan Kanigen Co Ltd
Original Assignee
Japan Kanigen Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Kanigen Co Ltd, Kawasaki Steel Corp filed Critical Japan Kanigen Co Ltd
Priority to JP14865182A priority Critical patent/JPS5939449A/en
Publication of JPS5939449A publication Critical patent/JPS5939449A/en
Publication of JPH0156860B2 publication Critical patent/JPH0156860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、耐熱性、耐摩耗性、耐衝撃性およ
び耐熱疲労性にすぐれた新規な鉄鋼連続鋳造用鋳
型に関する。 従来から鉄鋼連続鋳造用鋳型(以下単に鋳型と
いう)は、溶鋼を冷却、固化するという機能上の
制約から、熱伝導度の良い銅または銅合金が利用
されてきた。しかるに、銅および銅合金は、熱伝
導性にすぐれる反面硬度が低く耐摩耗性に劣るこ
とから、常時溶鋼と接触し摩擦される鋳型の内壁
面の損耗が著しく早期に到つてしまう。そのう
え、銅あるいは銅合金と溶鋼とが直接接触する結
果、摩耗した銅が鋳造された鋼に混入し、得られ
る製品にスタークラツクと称する微小割れを生じ
るといつた難点があつた。 そこで、鋳型の内壁面を保護すると同時に鋳造
された鋼に銅の混入を防ぐ目的でクロムめつき処
理することが初期に試みられた。このクロムめつ
きは、一般的には硬度がHV700〜1000と高く、
耐熱、耐摩耗性に富んだ処理であるが、鋳型に適
用した場合鋳型材である銅や銅合金と熱膨張係数
に差がありすぎ、また伸びも小さいため、もとも
と微細クラツクを内在するクロムめつきではクラ
ツクを通して鋳型材が腐食し、凝固した鋳片と摩
擦することにより、比較的早期にクロム層がはく
離、脱落し、鋳型下部の銅または銅合金が露出し
てしまうなどの難点があり、鋳型を保護するため
の処理としては耐久性のないことがわかつた。 また、硬度や耐摩耗性はクロムめつきに比較し
て劣るが熱膨張係数が銅と比較的近く、また伸び
の良いニツケルで鋳型内壁面を処理することが提
案され、この場合クロムめつき処理に比較して著
しく耐久性の向上をみたが、ニツケルはもともと
耐摩耗性にすぐれた金属ではないために、ニツケ
ルめつきによる処理層を厚くして耐久性の向上を
計る必要があつた。その結果、銅と比べて熱伝導
性に劣ることから、上記皮膜厚みの増加によつて
抜熱効果が低下し、鋳型上部のメニスカス部では
被熱温度が上昇してニツケルめつきにヒートクラ
ツクを生じ、結局鋳片の正常な凝固が妨害されて
ブレークアウトを誘発し易くなる欠点があつた。
また、摩耗量が多いことから、精度保持のため整
面(中間改削)を必要とするなど多くの問題を抱
えていた。 ニツケルめつきの厚肉化に伴う上述のごとき幣
害を避けるために、鋳型上方から下方に向つてニ
ツケルめつき処理層の厚みを漸増させた、いわゆ
るテーパ形状のニツケル層を有する鋳型も提案さ
れてある程度効果をあげている。しかし、かかる
工夫をこらしたものでも整面を必須とすることは
避けられず、また近年の鋳造速度を向上させた高
速連続鋳造に対しては被熱量の増加によつて再び
ヒートクラツクの問題を生じているのが実状であ
る。 この発明者らは、クロムやニツケルをめつき処
理した鋳型の難点を解決し、また近年の高速鋳造
化に要求される鋳型の表面処理を達成する観点か
ら、つまり鋳型内壁の保護層としては、(1)抜熱効
果を高めるために極力薄肉で熱伝導性が良く、(2)
かつ溶鋼と常時接触しても溶着しないすぐれた耐
熱性と共にすぐれた耐熱疲労性を有し、(3)また高
温下においても耐摩耗性が良く、(4)しかも熱応力
や機械的応力によつてもクラツクを生じないだけ
の物性を具備していなければならないとの認識に
立つて、鋭意研究した結果、遂にこの発明の鋳型
を完成するに至つたものである。 すなわち、この発明の鋳型は、鋳型本体を構成
する銅および銅合金の溶鋼と接触する内壁面に、
鉄含有率0.1〜7.0重量%のニツケル−鉄合金また
はマンガン含有率0.01〜2重量%のニツケル−マ
ンガン合金からなる第1の被覆層を設け、この上
に無機超硬粒子を分散含有させたニツケルおよ
び/またはコバルトとリンおよび/またはホウ素
との合金からなる被覆層であつて、この被覆層中
に占める無機超硬粒子の割合が0.1〜40容量%で
あり、かつこの無機超硬粒子を除いた上記の合金
中に占めるリンおよび/またはホウ素の割合が
0.1〜15容量%である第2の被覆層を設けたこと
を特徴とする。 この発明における上記第2の被覆層は、耐熱性
と耐摩耗性とに非常にすぐれ、これが第1の被覆
層との合計厚みを薄肉可能にして抜熱効果を高め
鋳型の熱伝導性を大きく向上させるものである。 第1図は、テーベ摩耗試験法により、ニツケル
−リン合金に無機超硬粒子としてダイヤモンド
(曲線−1a)、アルミナ;Al2O3(曲線−1b)
およびシリコーンカーバイド;SiC(曲線−1c)
をそれぞれ20容量%分散含有させてなるめつき皮
膜、つまり前記第2の被覆層に相当する皮膜の各
温度における摩耗量を調べた結果である。なお、
図中、曲線−1d〜gは、比較のために、従来の
ニツケル(曲線−1d)またはクロム(曲線−1
e)単独からなるめつき皮膜、およびシリコーン
カーバイドを20容量%分散含有させてなるニツケ
ルめつき皮膜(曲線−1f)または無機超硬粒子
を含有させないニツケル−リン合金めつき皮膜
(曲線−1g)の試験結果を示したものである。 この図から明らかなように、ニツケル−リン合
金中に無機超硬粒子を分散含有させてなるめつき
皮膜は、従来のめつき皮膜に較べて改善された耐
摩耗性および耐熱性を発揮する。この効果は、無
機超硬粒子を分散含有させるマトリツクスがニツ
ケル−リン合金の場合に限られず、ニツケル−ホ
ウ素合金、コバルト−リン合金、コバルト−ホウ
素合金またはこれらの組み合せからなる合金、つ
まりニツケルおよび/またはコバルトとリンおよ
び/またはホウ素との合金であれば同様に認めら
れる。 また、第1図から理解できるように、上記耐熱
耐摩耗の改善効果は、無機超硬粒子としてなにを
選択するかによつてかなり相違し、たとえば曲線
−1a,1bの如きダイヤモンドやアルミナを用
いると、曲線−1cの如きシリコーンカーバイド
を用いる場合に較べて、高温下での耐摩耗性が著
しく改善されたものとなり、常温から800℃まで
のあらゆる温度域でも安定した摩耗特性を呈す
る。 このような高温下での耐摩耗性にとくに好結果
を与える無機超硬粒子としては、上述のダイヤモ
ンドや金属酸化物としての酸化アルミニウム(ア
ルミナ)のほか、チタンカーバイド(TiC)、ボ
ロンカーバイド(B4C)およびクロムカーバイド
(Cr3C2)から選ばれる金属炭化物、また金属ホ
ウ化物としてのチタンボライド{TiB2)が挙げ
られる。 一方、前記シリコーンカーバイドの如く、従来
のめつき皮膜に比べれば少なくとも耐熱性および
耐摩耗性に好結果を与えうる無機超硬粒子のなか
には、酸化クロム、二酸化ケイ素などの酸化物、
モリブデンカーバイド、タングステンカーバイ
ド、タリウムカーバイドなどの炭化物、クロムボ
ライド、モリブデンボライド、ジルコニウムボラ
イドなどのホウ化物などがある。 このように、この発明の第2の被覆層における
無機超硬粒子とは、そ自体耐熱性および耐摩耗性
にすぐれる硬度(HV)2000以上の無機粒子で、
一般には0.1〜50μ、好適には0.5〜20μ程度の平均
粒子径を有するものであり、第2の被覆層形成用
のめつき液中に均一かつ安定に分散させうるよう
な適度な比重を有していることが望ましく、前記
ダイヤモンドや各種金属ないし半金属の酸化物、
炭化物、ホウ化物などが広く包含される。 この無機超硬粒子の第2の被覆層中に占める割
合は一般に0.1〜40容量%、好適には10〜20容量
%である。またこの無機超硬粒子を分散含有させ
るニツケルおよび/またはコバルトとリンおよ
び/またはホウ素との合金は、合金中に占めるリ
ンおよび/またはホウ素の割合が一般に0.1〜15
容量%、好適には1〜12容量%であるのがよい。
無機超硬粒子やリンおよび/またはホウ素の含有
率を上記所定割合とすることにより、耐熱耐摩耗
特性にとくに好結果がもたらされる。 上記第2の被覆層は電解めつきの如く他の手段
で形成することもできるが、一般には下記の如き
無電解めつきによつて容易かつ有利に形成でき
る。すなわち、ニツケルイオンまたはコバルトイ
オンの少なくとも1種の金属イオンを含み、還元
剤として次亜リン酸塩またはホウ素化合物のいず
れかを含有し、さらに通常錯化剤としてカルボン
酸塩、オキシカルボン酸塩などを含有する無電解
めつき液中に、無機超硬粒子をめつき液に対して
通常0.1〜50g/の割合で添加し、これを空気
かきまぜ、ポンプ噴流、プロペラかきまぜ、超音
波振動などの方法で液中に均一に分散懸濁させ、
これに被めつき体を浸漬すればよい。 上記方法で形成される無機超硬粒子を分散含有
させてなる無電解めつき層は、還元剤として次亜
リン酸塩を選定したものではニツケルおよび/ま
たはコバルトとリンとの合金が、また還元剤とし
てホウ素化合物を選定したものではニツケルおよ
び/またはコバルトとホウ素との合金が、それぞ
れマトリツクスとされたものであり、このマトリ
ツクス中のリンまたはホウ素の含有量は、ニツケ
ルイオンないしコバルトイオンに対する還元剤の
量、液のPH、温度などを適宜選択することによつ
て、前記所定割合に設定される。 この発明の第2の被覆層は、上述の如く形成さ
れ広い範囲の温度域にわたつてすぐれた耐摩耗性
を有しているために、相対的に薄い皮膜厚みでも
つて鋳型本体に対して充分なる保護層として機能
し、従来のニツケルめつきに比しはるかに改善さ
れた抜熱効果をもたらすが、この被覆層を鋳型内
壁面の保護層として、単独で利用するのは難点が
ある。 すなわち、鋳型の内壁は高温の溶鋼(湯)と常
時接触するために繰返し熱応力が印加されるだけ
でなく、常時膨張しようとする鋳片と接触するこ
とによる荷重を印加されるなど苛酷な条件下にあ
る。したがつて、鋳型内壁に設けられる保護層
は、これにヒートクラツクや衝撃などによるクラ
ツクが生じないように、高温下においても熱劣化
しない物性と荷重に対する耐衝撃性とが要求され
るが、上記第2の被覆層は合金めつき皮膜中に無
機超硬粒子を分散含有させてなるものであるため
皮膜の連続性に欠け、とくに荷重に対する衝撃性
に乏しい問題がある。 この発明の第1の被覆層は上記第2の被覆層と
の密着性ないし親和性に寄与して第2の被覆層の
機械的応力などを間接的に補助する役割を果すと
共に、第2の被覆層がしだいに摩損ないしはく離
したときにこの層に代わる保護層として有効に機
能して鋳型の耐久性を大巾に改善するものであ
る。 第2図ないし第4図は0.1mm厚のニツケルおよ
びニツケル合金めつき皮膜を700℃までの各温度
に1時間放置したときの各温度における引張強さ
(第2図)、伸び(第3図)および硬度(第4図)
を、第5図は0.5mm厚のニツケルおよびニツケル
合金めつき皮膜を450℃に保持したときの伸びの
経日変化をそれぞれ示したものである。各図にお
いて、曲線2a,3a,4a,5aは鉄含有率5
重量%のニツケル−鉄合金めつき皮膜の場合、曲
線−2b,3b,4b,5bはマンガン含有量
0.1重量%のニツケル−マンガン合金めつき皮膜
の場合、曲線−2c,3c,4c,5cはニツケ
ル単独からなるめつき皮膜の場合である。 これらの図から明らかなように、ニツケルと鉄
またはマンガンとの合金めつき皮膜は、ニツケル
単独のめつき皮膜に較べて常温から700℃までの
広い温度領域に亘つて良好な引張強さと硬度を与
え、しかも高温領域においてニツケル単独よりも
はるかに改善された伸び特性を示すと共に、その
経日特性に著しくすぐれていることがわかる。 このような効果が得られる理由、とくに高温下
でのすぐれた伸びないしその経日特性が得られる
理由は、今のところ必ずしも明らかではない。し
かし、ニツケル−鉄合金では400〜500℃に存在す
るニツケルの再結晶温度以上でその再結晶にもと
づく結晶の粗大化を鉄が阻止する作用を有してい
ること、またニツケル−マンガン合金ではニツケ
ルの再結晶温度以上で合金皮膜中に僅かながら存
在する硫黄が脆い硫化ニツケルとなつて結晶粒界
に偏析するのを硫化マンガンとなることで阻止す
ることにその原因があるように思われる。 このように、第1の被覆層は従来のニツケル単
独のめつき皮膜に比し良好な引張強さと硬度並び
に高温におけるすぐれた伸び特性とその経日特性
とを備えていることによつて、前記第2の被覆層
の長所を助長しかつその短所を補つて保護層とし
て要求される高度の耐熱疲労性と改善された耐衝
撃性とをもたらし、鋳型の耐久性の向上に大きく
寄与するものである。 上記第1の被覆層における鉄ないしマンガンの
含有量としては、ニツケル−鉄合金では0.1〜7.0
重量%、好適には1.0〜5.0重量%の鉄含有量、ニ
ツケル−マンガン合金では0.01〜2.0重量%、好
適には0.05〜1.00重量%のマンガン含有量である
のがよい。これら各場合に、鉄ないしマンガンが
必要以上に多くなりすぎると、内部応力の増加に
よつて鋳型の変形を生じたり熱応力を受けない場
合でも皮膜にクラツクを生じたりするなどの問題
が生じてくるから好ましくない。 このような第1の被覆層の形成は前記第2の被
覆層の形成に先立つて一般には電解めつき法を採
用して行なうことができる。この場合のめつき液
としては低応力の析出物が得られるスルフアミン
酸浴が望ましく、その組成や電解めつきの条件と
しては、ニツケル−鉄およびニツケル−マンガン
の各二成分系の合金めつきを例にとると以下のと
おりである。 <ニツケル−鉄合金めつき> PH 2〜4 スルフアミン酸ニツケル 300〜500g/ 塩化ニツケル 0〜50g/ 第一鉄イオン(スルフアミン酸第一鉄として)
0.5〜5g/ 安定剤 1〜50g/ ホウ酸 20〜60g/ 湿潤剤 適量 電流密度 0.5〜10A/dm2 温 度 30〜60℃ かくはん方法
カソードロツカーおよびプロペラかくはん <ニツケル−マンガン合金めつき> PH 3〜5 スルフアミン酸ニツケル 300〜500g/ 塩化ニツケル 0〜50g/ マンガンイオン(スルフアミン酸マンガンとし
て) 0.5〜30g/ ホウ酸 20〜60g/ 湿潤剤 適量 電流密度 1〜10A/dm2 温 度 40〜60℃ かくはん方法
カソードロツカーおよびプロペラかくはん 上記の如くして第1の被覆層を形成し、この上
にさらに前記の第2の被覆層を形成することによ
り、この発明の鋳型が得られるが、上記第1、第
2の被覆層の厚みとしては、第2の被覆層で通常
約0.2mm程度までとし、これと第1の被覆層との
合計厚みが一般に1mmを超えない厚みとなるよう
にするのが望ましい。 また、この発明の鋳型は、第6図Aに示される
如く、鋳型本体3の内壁面に形成される第1およ
び第2の被覆層1,2の各膜厚がいずれも溶鋼の
導入側(図の上方側)から導出側(図の下方側)
に亘つて一定とされたものであつても、第6図B
〜Dの如く、第1および第2の被覆層1,2のい
ずれか一方または両方が溶鋼の導入側から導出側
に向けてしだいに厚くなるテーパ形状の保護層と
されたものであつてもよい。後者のテーパ形状と
することによつて耐久性の向上を一段と図ること
ができる。 以上詳述したとおり、この発明は鋳型本体の内
壁面にニツケル−鉄合金またはニツケル−マンガ
ン合金からなる第1の被覆層を設け、この上にさ
らに無機超硬粒子と分散含有させたニツケルおよ
び/またはコバルトとリンおよび/またはホウ素
との合金からなる第2の被覆層を設けるようにし
たから、これら被覆層の厚みを可及的に薄くして
(熱伝導性良好にして)かつ耐熱性、耐摩耗性、
耐衝撃性および耐熱疲労性などにすぐれる耐久性
の高度に改善された鋳型を提供することができ
る。 以下に、この発明の実施例を記載してより具体
的に説明する。 実施例 1 横幅229mm、高さ700mm、厚さ50mmのスラプ用銅
板(短辺)2枚を、常法によつて脱脂、清浄化し
たのち、PH3.0、スルフアミン酸ニツケル450g/
、塩化ニツケル5g/、第二鉄イオン1g/
、ホウ酸32g/、安定剤30g/、ピツト防
止剤0.1g/のスルフアミン酸ニツケル−鉄合
金めつき浴から、浴温53℃、電流密度3A/dm2
の条件で20時間めつきして、0.5mm厚のニツケル
−鉄合金めつきからなる第1の被覆層を形成し
た。この層の鉄含有量は4重量%であつた。 つぎに、平均粒径4μのダイヤモンド粉末を5
g/の割合で分散懸濁させた硫酸ニツケル30
g/、次亜リン酸ナトリウム25g/、酢酸ナ
トリウム35g/、コハク酸ナトリウム25g/
の無電解ニツケル−リン合金めつき浴に、浴温93
℃、PH5.0の条件で2時間浸漬して、上記の第1
の被覆層上に42μの厚さのダイヤモンド分散ニツ
ケル−リン合金めつきからなる第2の被覆層を形
成した。 このようにして保護層を形成したスラブ用短辺
銅板2枚を用いて鋳型を構成し、この鋳型を用い
て実際にスラブを1600ヒート鋳造した。その結
果、上記短辺のメニスカス部にはヒートクラツク
が全く認められず、また鋳型下方位置における第
2の被覆層の脱落や銅の露出は全然認められなか
つた。 実施例 2 横幅229mm、高さ900mm、厚さ50mmのスラブ用銅
板(短辺)1枚を、常法により清浄化したのち、
PH4.0、スルフアミン酸ニツケル435g/、スル
フアミン酸マンガン56g/、ホウ酸35g/、
ピツト防止剤0.2g/のスルフアミン酸ニツケ
ル−マンガン合金めつき浴から、浴温50℃、電流
密度3.5A/dm2の条件でめつきして、0.6mm厚の
ニツケル−マンガン合金からなる第1の被覆層を
形成した。この層のマンガン含有量は0.16重量%
であつた。 また、横幅229mm、高さ900mm、厚さ50mmのスラ
ブ用銅板(短辺)1枚に、実施例1と同様のスル
フアミン酸ニツケル−鉄合金めつき浴を用いて実
施例1と同一の条件で、0.3mm厚で鉄含有率4重
量%のニツケル−鉄合金からなる第1の被覆層を
形成した。 つぎに、上記合計2枚の銅板を、平均粒径5μ
のアルミナを8g/の割合で分散懸濁させた実
施例1と同様の無電解ニツケル−リン合金めつき
浴に浸漬し、それぞれ80μ厚のアルミナを分散含
有させたニツケル−リン合金めつきからなる第2
の被覆層を形成した。このようにして保護層を形
成したスラブ用短辺銅板2枚を用いて鋳型をつく
つた。この鋳型を用いて850チヤージスラブを生
産したが、上記両短辺のメニスカス部にはなんら
異常は認められず、また銅の露出も認められなか
つた。 実施例 3 鋳型用銅材より作成した幅30mm×長さ90mm×厚
さ20mmの供試片を常法によつて清浄化したのち、
スルフアミン酸浴を用いて鉄含有量3重量%、厚
さ0.8mmのニツケル−鉄合金めつきからなる第1
の被覆層を形成した。つぎに、平均1μの粒径を
持つたアルミナ6g/を空気かきまぜして懸濁
させた硫酸ニツケル20g/、次亜リン酸ナトリ
ウム25g/、酢酸ナトリウム30g/、コハク
酸ナトリウム20g/の無電解ニツケル液中に、
PH5.5、液温90℃の条件で約2時間浸漬して、約
40μ厚のアルミナ分散無電解ニツケル−リン合金
めつきからなる第2の被覆層を形成した。 このようにして得た供試片を半分に切断して幅
30mm×長さ40mm×厚さ20mmとしたのち、その一方
をそのまま硬球押込み試験し、他方を800℃×20
分保持後20℃に保持された冷水に投入するヒート
シヨツクを50回くり返したのち硬球押込み試験し
た。この試験後硬球押込部を切断し、常法により
樹脂封入して断面より第1および第2の被覆層を
検鏡した。その結果、両供試片共第2の被覆層に
クラツクの発生をみたが第1の被覆層には全く認
められず、被覆層全体としての耐熱疲労性に著し
くすぐれていることがわかつた。 つぎに、第1の被覆層を厚さ0.8mm、マンガン
含有量0.1重量%のニツケル−マンガン合金めつ
きとし、第2の被覆層を前記同様のアルミナ分散
無電解ニツケル−リン合金めつきとした供試片に
つき、上記同様の試験を行なつたところ、上記同
様の良好な結果が得られた。 一方、第1の被覆層を厚さ0.8mmのニツケル単
独のめつきとし、第2の被覆層を前記同様のアル
ミナ分散無電解ニツケル−リン合金めつきとした
供試片につき、上記同様の試験を行なつたとこ
ろ、この場合はヒートシヨツク試験後の硬球押込
み試験で第1の被覆層にもクラツクが発生し、被
覆層全体としての耐熱疲労性に著しく劣つている
ことがわかつた。 以上の実施例1〜3から、この発明に係る第1
および第2の被覆層の形成によつて耐久性に格段
にすぐれる鋳型が得られることはすでに明らかで
あるが、この耐久性向上の要因のひとつが第2の
被覆層の良好な耐熱・耐摩耗特性にあることをさ
らに明確にするために以下の試験例1〜4につき
記述する。 試験例 1 硫酸ニツケル20g/、次亜リン酸ナトリウム
25g/、酢酸ナトリウム30g/、コハク酸ナ
トリウム20g/、PH5.0、液温95℃の無電解ニ
ツケル−リン合金めつき液に、このめつき液を空
気かきまぜしながら、つぎの第1表に示される平
均粒径5μの乾燥した3種の無機超硬粒子を、そ
れぞれ5g/の割合で添加し、これを供試片を
浸漬して約2時間めつきした。 このようにして無機超硬粒子としてシリコーン
カーバイド、アルミナ、ダイヤモンドをそれぞれ
分散含有させてなる厚さ約40μのニツケル−リン
合金めつき皮膜を有する供試片を作成し、この供
試片の上記めつき皮膜の硬度とテーベ摩耗試験法
による摩耗量とを調べた。つぎの第1表に硬度の
試験結果を、第1図に摩耗量の試験結果を、それ
ぞれ示した。なお、第1表および第1図には比較
のために無機超硬粒子無添加の場合の試験結果を
も併記した。さらに第1図には上記以外の比較例
をも記述した。
The present invention relates to a novel continuous casting mold for steel that has excellent heat resistance, wear resistance, impact resistance, and thermal fatigue resistance. Conventionally, molds for continuous steel casting (hereinafter simply referred to as molds) have been made of copper or copper alloys, which have good thermal conductivity, due to the functional constraints of cooling and solidifying molten steel. However, although copper and copper alloys have excellent thermal conductivity, they have low hardness and poor wear resistance, so that the inner wall surface of the mold, which is constantly in contact with molten steel and subjected to friction, wears out extremely quickly. In addition, as a result of direct contact between copper or copper alloys and molten steel, worn copper is mixed into the cast steel, causing microscopic cracks called star cracks in the resulting product. Therefore, early attempts were made to apply chromium plating to protect the inner walls of the mold and at the same time to prevent copper from being mixed into the cast steel. This chrome plating generally has a high hardness of HV700 to 1000.
Although this treatment is highly heat resistant and wear resistant, when applied to molds, the coefficient of thermal expansion is too different from that of the mold material, copper or copper alloy, and the elongation is also small. When casting, the mold material corrodes through the cracks, and due to friction with the solidified slab, the chromium layer peels off and falls off relatively early, exposing the copper or copper alloy at the bottom of the mold. It was found that the treatment to protect the mold was not durable. In addition, it has been proposed to treat the inner wall surface of the mold with nickel, which has a thermal expansion coefficient relatively close to that of copper and has good elongation, although its hardness and wear resistance are inferior to that of chrome plating. However, since nickel is not originally a metal with excellent wear resistance, it was necessary to increase the durability by increasing the thickness of the nickel plating layer. As a result, it has inferior thermal conductivity compared to copper, so the increase in film thickness reduces the heat removal effect, and the heated temperature increases in the meniscus area at the top of the mold, causing heat cracks in the nickel plating. However, the problem was that the normal solidification of the slab was hindered and breakout was likely to occur.
In addition, due to the large amount of wear, there were many problems such as the need for surface preparation (intermediate modification) to maintain accuracy. In order to avoid the above-mentioned damage caused by thickening of the nickel plating, a mold having a so-called tapered nickel layer in which the thickness of the nickel plating layer is gradually increased from the top to the bottom of the mold has also been proposed. It has been effective to some extent. However, even with such ingenuity, it is unavoidable that surface leveling is required, and the problem of heat cracks occurs again due to the increase in the amount of heat received by high-speed continuous casting, which has improved the casting speed in recent years. The reality is that These inventors solved the problems of molds plated with chromium or nickel, and from the viewpoint of achieving the mold surface treatment required for high-speed casting in recent years, in other words, as a protective layer for the inner wall of the mold, (1) Extremely thin wall with good thermal conductivity to enhance heat removal effect; (2)
It also has excellent heat resistance that does not weld even when in constant contact with molten steel, as well as excellent thermal fatigue resistance. (3) It also has good wear resistance even at high temperatures, and (4) it is resistant to thermal stress and mechanical stress. Recognizing that it must have physical properties that do not cause cracks even when it is used, we have conducted extensive research and have finally completed the mold of this invention. That is, in the mold of the present invention, the inner wall surface that comes into contact with the molten steel of copper and copper alloy constituting the mold body,
A first coating layer made of a nickel-iron alloy with an iron content of 0.1 to 7.0% by weight or a nickel-manganese alloy with a manganese content of 0.01 to 2% by weight is provided, and inorganic carbide particles are dispersed thereon. and/or a coating layer made of an alloy of cobalt, phosphorus, and/or boron, in which the ratio of inorganic carbide particles in the coating layer is 0.1 to 40% by volume, and in which the inorganic carbide particles are excluded. The proportion of phosphorus and/or boron in the above alloy is
It is characterized by providing a second coating layer having a content of 0.1 to 15% by volume. The second coating layer in this invention has very good heat resistance and abrasion resistance, and this makes it possible to reduce the total thickness of the first coating layer, thereby increasing the heat removal effect and greatly increasing the thermal conductivity of the mold. It is something that improves. Figure 1 shows diamond (curve-1a) and alumina; Al 2 O 3 (curve-1b) as inorganic carbide particles in a nickel-phosphorus alloy using the Thebe abrasion test method.
and silicone carbide; SiC (curve-1c)
These are the results of examining the amount of wear at various temperatures of a plating film containing 20% by volume of each of the above-mentioned materials, that is, a film corresponding to the second coating layer. In addition,
In the figure, curves -1d to g are for comparison with conventional nickel (curve -1d) or chrome (curve -1).
e) A plating film consisting of a single plating film, a nickel plating film containing 20% by volume of silicone carbide dispersed therein (curve-1f), or a nickel-phosphorus alloy plating film containing no inorganic carbide particles (curve-1g) This shows the test results. As is clear from this figure, the plating film formed by dispersing inorganic cemented carbide particles in a nickel-phosphorus alloy exhibits improved wear resistance and heat resistance compared to conventional plating films. This effect is not limited to the case where the matrix in which the inorganic cemented carbide particles are dispersed is a nickel-phosphorus alloy, but is also applicable to nickel-boron alloys, cobalt-phosphorus alloys, cobalt-boron alloys, or alloys made of combinations thereof, that is, nickel and/or phosphorus alloys. Alternatively, an alloy of cobalt and phosphorus and/or boron is similarly permitted. Furthermore, as can be understood from Figure 1, the effect of improving heat and wear resistance varies considerably depending on what inorganic carbide particles are selected. For example, diamond and alumina as shown in curves 1a and 1b are When used, the wear resistance at high temperatures is significantly improved compared to the case of using silicone carbide as shown in curve 1c, and stable wear characteristics are exhibited in all temperature ranges from room temperature to 800°C. Inorganic carbide particles that give particularly good results in wear resistance under such high temperatures include the aforementioned diamond and aluminum oxide (alumina) as a metal oxide, as well as titanium carbide (TiC) and boron carbide (B). 4 C) and chromium carbide (Cr 3 C 2 ), as well as titanium boride {TiB 2 ) as a metal boride. On the other hand, among inorganic carbide particles such as silicone carbide, which can provide better results in heat resistance and wear resistance than conventional plating films, oxides such as chromium oxide and silicon dioxide,
These include carbides such as molybdenum carbide, tungsten carbide, and thallium carbide, and borides such as chromium boride, molybdenum boride, and zirconium boride. As described above, the inorganic carbide particles in the second coating layer of the present invention are inorganic particles having a hardness (HV) of 2000 or more, which themselves have excellent heat resistance and wear resistance.
It generally has an average particle diameter of about 0.1 to 50μ, preferably about 0.5 to 20μ, and has an appropriate specific gravity so that it can be uniformly and stably dispersed in the plating solution for forming the second coating layer. It is desirable that the diamond and oxides of various metals or metalloids,
It broadly includes carbides, borides, etc. The proportion of the inorganic cemented carbide particles in the second coating layer is generally 0.1 to 40% by volume, preferably 10 to 20% by volume. In addition, alloys of nickel and/or cobalt and phosphorus and/or boron in which inorganic cemented carbide particles are dispersed generally have a proportion of phosphorus and/or boron in the alloy of 0.1 to 15.
% by volume, preferably from 1 to 12% by volume.
By setting the content of inorganic cemented carbide particles and phosphorus and/or boron to the above-mentioned predetermined ratios, particularly good results are brought about in terms of heat and wear resistance properties. Although the second coating layer can be formed by other means such as electrolytic plating, it can generally be formed easily and advantageously by electroless plating as described below. That is, it contains at least one kind of metal ion such as nickel ion or cobalt ion, contains either hypophosphite or a boron compound as a reducing agent, and usually contains a carboxylate, oxycarboxylate, etc. as a complexing agent. Inorganic carbide particles are usually added to an electroless plating solution containing 0.1 to 50 g of the plating solution, and the inorganic carbide particles are mixed with air, pump jets, propeller agitation, ultrasonic vibration, etc. Uniformly disperse and suspend in the liquid with
The covered body may be immersed in this. The electroless plated layer formed by the above method and containing dispersed inorganic cemented carbide particles contains hypophosphite as the reducing agent, nickel and/or an alloy of cobalt and phosphorous, and the reducing agent. In cases where a boron compound is selected as the agent, nickel and/or an alloy of cobalt and boron is used as a matrix, and the content of phosphorus or boron in this matrix is determined by the reducing agent for nickel ions or cobalt ions. The predetermined ratio is set by appropriately selecting the amount of liquid, pH of the liquid, temperature, etc. The second coating layer of the present invention is formed as described above and has excellent wear resistance over a wide temperature range, so even a relatively thin coating layer is sufficient for the mold body. However, it is difficult to use this coating layer alone as a protective layer for the inner wall surface of the mold. In other words, the inner wall of the mold is not only subjected to repeated thermal stress due to constant contact with high-temperature molten steel (molten metal), but also subjected to severe conditions such as constant load due to contact with the slab, which is constantly expanding. It's below. Therefore, the protective layer provided on the inner wall of the mold is required to have physical properties that do not deteriorate due to heat even at high temperatures and impact resistance against loads so that it does not suffer from heat cracks or cracks due to impact. Since the coating layer No. 2 is formed by dispersing inorganic carbide particles in an alloy plating film, there is a problem that the film lacks continuity and, in particular, has poor impact resistance against loads. The first coating layer of the present invention contributes to the adhesion or affinity with the second coating layer and plays a role of indirectly assisting the mechanical stress of the second coating layer. When the coating layer gradually wears out or peels off, it functions effectively as a protective layer to replace this layer, greatly improving the durability of the mold. Figures 2 to 4 show the tensile strength (Figure 2) and elongation (Figure 3) of 0.1 mm thick nickel and nickel alloy plating films left at temperatures up to 700°C for 1 hour. ) and hardness (Figure 4)
Figure 5 shows the elongation changes over time for 0.5 mm thick nickel and nickel alloy plating films held at 450°C. In each figure, curves 2a, 3a, 4a, and 5a are iron content 5
In the case of a nickel-iron alloy plating film in weight%, curves -2b, 3b, 4b, and 5b indicate the manganese content.
In the case of a 0.1% by weight nickel-manganese alloy plating film, curves -2c, 3c, 4c, and 5c are for a plating film consisting of nickel alone. As is clear from these figures, the alloy plating film of nickel and iron or manganese has better tensile strength and hardness over a wide temperature range from room temperature to 700°C compared to the plating film of nickel alone. Moreover, it shows far improved elongation properties than nickel alone in the high-temperature range, and its aging properties are also significantly superior. The reason why such an effect is obtained, particularly the reason why excellent elongation at high temperatures and its aging properties are obtained, is not necessarily clear at present. However, in nickel-iron alloys, iron has the effect of inhibiting the coarsening of crystals due to recrystallization above the recrystallization temperature of nickel, which exists at 400 to 500°C, and in nickel-manganese alloys, iron has the effect of inhibiting crystal coarsening due to recrystallization. The reason for this seems to be that the small amount of sulfur present in the alloy film at temperatures above the recrystallization temperature of the alloy film becomes brittle nickel sulfide and segregates at the grain boundaries, which is prevented by forming manganese sulfide. As described above, the first coating layer has better tensile strength and hardness as well as better elongation properties at high temperatures and aging properties than the conventional plated film made of nickel alone, thereby achieving the above-mentioned properties. It enhances the advantages of the second coating layer and compensates for its disadvantages, providing the high degree of thermal fatigue resistance and improved impact resistance required for a protective layer, and greatly contributing to improving the durability of the mold. be. The content of iron or manganese in the first coating layer is 0.1 to 7.0 for a nickel-iron alloy.
An iron content of 1.0 to 5.0% by weight, preferably a manganese content of 0.01 to 2.0% by weight, preferably 0.05 to 1.00% by weight for nickel-manganese alloys. In each of these cases, if the amount of iron or manganese is too much than necessary, problems such as mold deformation due to increased internal stress and cracks in the coating may occur even when no thermal stress is applied. I don't like it because it comes. The formation of such a first coating layer can generally be carried out by employing an electrolytic plating method prior to the formation of the second coating layer. In this case, the plating solution is preferably a sulfamic acid bath that produces precipitates with low stress, and its composition and electrolytic plating conditions include two-component alloy plating of nickel-iron and nickel-manganese. The results are as follows. <Nickel-iron alloy plating> PH 2-4 Nickel sulfamate 300-500g/Nickel chloride 0-50g/Ferrous ion (as ferrous sulfamate)
0.5-5g/ Stabilizer 1-50g/ Boric acid 20-60g/ Wetting agent Appropriate amount Current density 0.5-10A/dm 2 Temperature 30-60℃ Stirring method Cathode rocker and propeller stirring <Nickel-manganese alloy plating> PH 3-5 Nickel sulfamate 300-500g / Nickel chloride 0-50g / Manganese ion (as manganese sulfamate) 0.5-30g / Boric acid 20-60g / Wetting agent Appropriate amount Current density 1-10A/dm 2 Temperature 40-60 C. Stirring method Cathode rocker and propeller stirring The mold of the present invention can be obtained by forming the first coating layer as described above and further forming the second coating layer thereon. As for the thickness of the first and second coating layers, the second coating layer should normally be up to about 0.2 mm, and the total thickness of this and the first coating layer should generally not exceed 1 mm. is desirable. Furthermore, as shown in FIG. 6A, the mold of the present invention has a thickness of both the first and second coating layers 1 and 2 formed on the inner wall surface of the mold body 3 on the molten steel introduction side ( (upper side of the figure) to the derived side (lower side of the figure)
Even if it is constant over
~D, even if one or both of the first and second coating layers 1 and 2 is a tapered protective layer that gradually becomes thicker from the molten steel introduction side to the outlet side. good. By adopting the latter tapered shape, durability can be further improved. As described in detail above, the present invention provides a first coating layer made of a nickel-iron alloy or a nickel-manganese alloy on the inner wall surface of a mold body, and further includes nickel and/or inorganic carbide particles dispersed thereon. Alternatively, since a second coating layer made of an alloy of cobalt, phosphorus, and/or boron is provided, the thickness of this coating layer can be made as thin as possible (good thermal conductivity), and the heat resistance and wear resistance,
It is possible to provide a mold with highly improved durability and excellent impact resistance and thermal fatigue resistance. EXAMPLES Below, examples of the present invention will be described in more detail. Example 1 After degreasing and cleaning two slab copper plates (short sides) with a width of 229 mm, a height of 700 mm, and a thickness of 50 mm using a conventional method, they were coated with 450 g of nickel sulfamate with a pH of 3.0.
, nickel chloride 5g/, ferric ion 1g/
, boric acid 32g/, stabilizer 30g/, pitting inhibitor 0.1g/nickel sulfamic acid-iron alloy plating bath, bath temperature 53℃, current density 3A/dm 2
Plating was carried out for 20 hours under these conditions to form a first coating layer of 0.5 mm thick nickel-iron alloy plating. The iron content of this layer was 4% by weight. Next, add 5 pieces of diamond powder with an average particle size of 4μ.
Nickel sulfate 30 dispersed and suspended at a ratio of
g/, sodium hypophosphite 25g/, sodium acetate 35g/, sodium succinate 25g/
In the electroless nickel-phosphorus alloy plating bath, the bath temperature was 93℃.
℃, pH 5.0 for 2 hours, and then
A second coating layer consisting of a diamond-dispersed nickel-phosphorous alloy plating having a thickness of 42 microns was formed on the coating layer. A mold was constructed using the two short-side copper plates for slabs on which protective layers were formed in this way, and a slab was actually heat-cast at 1,600 degrees using this mold. As a result, no heat cracks were observed in the meniscus portions on the short sides, and no drop-off of the second coating layer or exposure of copper at the lower position of the mold was observed. Example 2 A slab copper plate (short side) with a width of 229 mm, a height of 900 mm, and a thickness of 50 mm was cleaned using a conventional method.
PH4.0, nickel sulfamate 435g/, manganese sulfamate 56g/, boric acid 35g/,
A first plate made of 0.6 mm thick nickel-manganese alloy was plated from a nickel-manganese sulfamate alloy plating bath containing 0.2 g of pitting inhibitor at a bath temperature of 50°C and a current density of 3.5 A/ dm2 . A coating layer was formed. The manganese content in this layer is 0.16% by weight
It was hot. In addition, a nickel sulfamate-iron alloy plating bath similar to that in Example 1 was used on a slab copper plate (short side) with a width of 229 mm, a height of 900 mm, and a thickness of 50 mm under the same conditions as in Example 1. A first coating layer made of a nickel-iron alloy having a thickness of 0.3 mm and an iron content of 4% by weight was formed. Next, the above-mentioned total of two copper plates were
Each plate was immersed in the same electroless nickel-phosphorus alloy plating bath as in Example 1 in which alumina was dispersed and suspended at a ratio of 8 g/distance, and each plate was made of a nickel-phosphorus alloy plating containing 80μ thick alumina dispersed therein. Second
A coating layer was formed. A mold was made using two short-side copper plates for slabs with protective layers formed in this manner. An 850 charge slab was produced using this mold, but no abnormalities were observed in the meniscus areas on both short sides, and no exposed copper was observed. Example 3 A test piece of 30 mm width x 90 mm length x 20 mm thickness made from copper material for molds was cleaned by the usual method, and then
The first layer consists of a nickel-iron alloy plated with an iron content of 3% by weight and a thickness of 0.8 mm using a sulfamic acid bath.
A coating layer was formed. Next, 20 g of nickel sulfate, 25 g of sodium hypophosphite, 30 g of sodium acetate, and 20 g of sodium succinate were prepared by suspending 6 g of alumina with an average particle size of 1 μm in air. In the liquid,
After soaking for about 2 hours at a pH of 5.5 and a liquid temperature of 90℃,
A second coating layer consisting of alumina-dispersed electroless nickel-phosphorus alloy plating having a thickness of 40 microns was formed. The specimen thus obtained was cut in half and the width
After measuring 30mm x length 40mm x thickness 20mm, one side was subjected to a hard ball indentation test, and the other was heated at 800℃ x 20mm.
After holding the sample for 50 minutes, the sample was placed in cold water kept at 20°C and subjected to a heat shock 50 times, followed by a hard ball indentation test. After this test, the hard ball push-in part was cut, sealed with resin by a conventional method, and the first and second coating layers were examined through a cross section. As a result, cracks were observed in the second coating layer of both specimens, but no cracks were observed in the first coating layer, indicating that the coating layer as a whole had excellent thermal fatigue resistance. Next, the first coating layer was plated with a nickel-manganese alloy having a thickness of 0.8 mm and a manganese content of 0.1% by weight, and the second coating layer was plated with an electroless nickel-phosphorous alloy with alumina dispersed therein as described above. When the test piece was subjected to the same test as above, the same good results as above were obtained. On the other hand, the same test as above was carried out on a test piece in which the first coating layer was plated with nickel alone with a thickness of 0.8 mm, and the second coating layer was plated with alumina-dispersed electroless nickel-phosphorus alloy as described above. As a result, it was found that in this case, cracks also occurred in the first coating layer in the hard ball indentation test after the heat shock test, and that the thermal fatigue resistance of the coating layer as a whole was significantly inferior. From the above Examples 1 to 3, the first example according to the present invention
It is already clear that a mold with significantly superior durability can be obtained by forming a second coating layer, but one of the factors contributing to this improved durability is the good heat resistance and resistance of the second coating layer. In order to further clarify the wear characteristics, Test Examples 1 to 4 will be described below. Test example 1 Nickel sulfate 20g/, sodium hypophosphite
25g/, sodium acetate 30g/, sodium succinate 20g/, PH5.0, electroless nickel-phosphorus alloy plating solution with a liquid temperature of 95℃, while stirring the plating solution with air, as shown in Table 1 below. Three kinds of dried inorganic carbide particles having an average particle size of 5 μm as shown were added at a rate of 5 g/each, and the test pieces were immersed in the powder and plated for about 2 hours. In this way, a test piece having a nickel-phosphorus alloy plating film with a thickness of approximately 40 μm containing silicone carbide, alumina, and diamond dispersed therein as inorganic carbide particles was prepared, and the above-mentioned properties of this test piece were prepared. The hardness of the coated film and the amount of wear measured using the Thebe abrasion test method were investigated. Table 1 below shows the hardness test results, and FIG. 1 shows the wear amount test results. For comparison, Table 1 and FIG. 1 also show the test results when no inorganic cemented carbide particles were added. Further, FIG. 1 also describes comparative examples other than the above.

【表】 試験例 2 つぎの第2表に示される3種の乾燥無機超硬粒
子(平均粒径5μ)を用いた以外は、試験例1の
場合と同様にして厚さ約40μのニツケル−リン合
金めつき皮膜を有する供試片を作成した。この供
試片につき前記同様にして硬度および摩耗量を調
べた結果は、つぎの第2表に示されるとおりであ
つた。
[Table] Test Example 2 The same procedure as in Test Example 1 was carried out except that three types of dry inorganic carbide particles (average particle size 5 μ) shown in Table 2 below were used. A test piece with a phosphorus alloy plating film was prepared. The hardness and wear amount of this specimen were examined in the same manner as described above, and the results were as shown in Table 2 below.

【表】 試験例 3 平均粒子径2μのチタンカーバイドとクロムカ
ーバイドとを、それぞれ8g/ずつ、硫酸ニツ
ケル30g/、クエン酸ナトリウム10g/、コ
ハク酸ナトリウム20g/、ジエチルボラザン3
ml/、メタノール50ml/、PH6〜7、温度65
℃の無電解めつき液中に別個に加え、マグネチツ
クステーラーで十分にかきまぜながら、これにあ
らかじめ準備した供試片を浸漬してめつきした。 このようにして無機超硬粒子としてチタンカー
バイド、クロムカーバイドをそれぞれ分散含有さ
せてなる厚さ40μのニツケル−ホウ素合金めつき
皮膜を有する供試片を作製し、この供試片につき
前記同様にして摩耗量を調べた。その結果、無機
超硬粒子としてチタンカーバイドを用いたもので
は常温で0.0110g、400℃で0.0059g、700℃で
0.0078gであつた。またクロムカーバイドを用い
たものでは、常温で0.0294、400℃で0.0097、700
℃で0.0155であつた。 試験例 4 硫酸コバルト30g/、クエン酸ナトリウム50
g/、酢酸ナトリウム20g/、次亜リン酸ナ
トリウム18g/、PH6.0、温度90℃の無電解コ
バルト液をプロペラかきまぜしつつ、平均粒径
5μのアルミナを4g/添加し、懸濁させた。
この液の中に供試片を浸漬してめつきした。 このようにして無機超硬粒子としてアルミナを
分散含有させてなる厚さ60μのコバルト−リン合
金めつき皮膜を有する供試片を作製し、この供試
片につき前記同様に摩耗量を調べた。その結果、
常温および800℃で加熱した場合の試験結果は、
前記第1図に示されるアルミナ分散ニツケル−リ
ン合金めつきの場合とほぼ同一であつた。
[Table] Test Example 3 Titanium carbide and chromium carbide with an average particle size of 2μ, 8g each, nickel sulfate 30g, sodium citrate 10g, sodium succinate 20g, diethylborazane 3
ml/, methanol 50ml/, PH6~7, temperature 65
They were separately added to an electroless plating solution at 100° C., and while stirring thoroughly with a magnetic stirrer, the test pieces prepared in advance were immersed and plated. In this way, a test piece having a 40μ thick nickel-boron alloy plating film containing titanium carbide and chromium carbide dispersed therein as inorganic carbide particles was prepared, and this test piece was treated in the same manner as described above. The amount of wear was investigated. As a result, when titanium carbide was used as the inorganic cemented carbide particles, the results were as follows: 0.0110g at room temperature, 0.0059g at 400℃, and 0.0059g at 700℃.
It was 0.0078g. In addition, those using chromium carbide are 0.0294 at room temperature, 0.0097 at 400℃, and 700
It was 0.0155 in °C. Test example 4 Cobalt sulfate 30g/, sodium citrate 50g
g/, sodium acetate 20g/, sodium hypophosphite 18g/, PH6.0, temperature of 90℃ while stirring the electroless cobalt liquid with a propeller, the average particle size
4g/5μ alumina was added and suspended.
A test piece was immersed in this solution and plated. In this way, a test piece having a cobalt-phosphorous alloy plating film with a thickness of 60 μm containing alumina dispersed therein as inorganic carbide particles was prepared, and the wear amount of this test piece was examined in the same manner as described above. the result,
The test results when heated at room temperature and 800℃ are as follows:
It was almost the same as the case of alumina-dispersed nickel-phosphorus alloy plating shown in FIG. 1 above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属めつき皮膜のテーベ摩耗試験によ
る摩耗量と温度との関係を示す特性図、第2図〜
第4図は金属めつき皮膜を各温度に1時間放置し
たときの引張強さ、伸びおよび硬度をそれぞれ示
す特性図、第5図は金属めつき皮膜を450℃に放
置したときの放置日数と伸びとの関係を示す特性
図、第6図A〜Dはこの発明の鋳型のそれぞれ異
なる例を示す断面図である。 1……第1の被覆層、2……第2の被覆層、3
……鋳型本体。
Figure 1 is a characteristic diagram showing the relationship between the amount of wear and temperature in the Thebe abrasion test for metal plating films, and Figures 2~
Figure 4 is a characteristic diagram showing the tensile strength, elongation, and hardness of a metal plating film left at each temperature for 1 hour, and Figure 5 is a graph showing the number of days the metal plating film was left at 450°C. Characteristic diagrams showing the relationship with elongation, and FIGS. 6A to 6D are sectional views showing different examples of the mold of the present invention. 1...First coating layer, 2...Second coating layer, 3
...Mold body.

Claims (1)

【特許請求の範囲】 1 鋳型本体を構成する銅および銅合金の溶鋼と
接触する内壁面に、鉄含有率0.1〜7.0重量%のニ
ツケル−鉄合金またはマンガン含有率0.01〜2重
量%のニツケル−マンガン合金からなる第1の被
覆層を設け、この層上に無機超硬粒子を分散含有
させたニツケルおよび/またはコバルトとリンお
よび/またはホウ素との合金からなる被覆層であ
つて、この被覆層中に占める無機超硬粒子の割合
が0.1〜40容量%であり、かつこの無機超硬粒子
を除いた上記の合金中に占めるリンおよび/また
はホウ素の割合が0.1〜15容量%である第2の被
覆層を設けたことを特徴とする鉄鋼連続鋳造用鋳
型。 2 無機超硬粒子がダイヤモンド、金属の酸化
物、炭化物またはホウ化物からなる特許請求の範
囲第1項記載の鉄鋼連続鋳造用鋳型。 3 金属の酸化物が酸化アルミニウム(アルミ
ナ)である特許請求の範囲第2項記載の鉄鋼連続
鋳造用鋳型。 4 金属の炭化物がチタンカーバイト(TiC)、
ボロンカーバイト(B4C)またはクロムカーバイ
ト(Cr3C2)である特許請求の範囲第2項記載の
鉄鋼連続鋳造用鋳型。 5 金属のホウ化物がチタンボライド(TiB2
である特許請求の範囲第2項記載の鉄鋼連続鋳造
用鋳型。 6 第2の被覆層が無電解めつき層からなる特許
請求の範囲第1〜5項のいずれかに記載の鉄鋼連
続鋳造用鋳型。
[Scope of Claims] 1. Nickel with an iron content of 0.1 to 7.0% by weight or nickel with a manganese content of 0.01 to 2% by weight is applied to the inner wall surface of the mold body which is in contact with the molten steel of copper and copper alloy. A first coating layer made of a manganese alloy, and a coating layer made of an alloy of nickel and/or cobalt and phosphorus and/or boron, on which inorganic carbide particles are dispersed. A second alloy in which the proportion of inorganic cemented carbide particles is 0.1 to 40% by volume, and the proportion of phosphorus and/or boron in the above alloy excluding the inorganic carbide particles is 0.1 to 15% by volume. A mold for continuous casting of steel, characterized by having a coating layer of. 2. The mold for continuous casting of steel according to claim 1, wherein the inorganic carbide particles are made of diamond, metal oxide, carbide, or boride. 3. The mold for continuous casting of steel according to claim 2, wherein the metal oxide is aluminum oxide (alumina). 4 Metal carbide is titanium carbide (TiC),
The mold for continuous casting of steel according to claim 2, which is made of boron carbide (B 4 C) or chromium carbide (Cr 3 C 2 ). 5 Metal boride is titanium boride (TiB 2 )
A mold for continuous casting of steel according to claim 2. 6. The mold for continuous casting of steel according to any one of claims 1 to 5, wherein the second coating layer is an electroless plated layer.
JP14865182A 1982-08-26 1982-08-26 Casting mold for continuous casting of iron and steel Granted JPS5939449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14865182A JPS5939449A (en) 1982-08-26 1982-08-26 Casting mold for continuous casting of iron and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14865182A JPS5939449A (en) 1982-08-26 1982-08-26 Casting mold for continuous casting of iron and steel

Publications (2)

Publication Number Publication Date
JPS5939449A JPS5939449A (en) 1984-03-03
JPH0156860B2 true JPH0156860B2 (en) 1989-12-01

Family

ID=15457565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14865182A Granted JPS5939449A (en) 1982-08-26 1982-08-26 Casting mold for continuous casting of iron and steel

Country Status (1)

Country Link
JP (1) JPS5939449A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284475A (en) * 1988-05-09 1989-11-15 S T K Ceramics Kenkyusho:Kk Low melting metal treating means
CN102363341B (en) * 2011-11-01 2013-11-06 黄光洁 Medicinal capsule mold and making technology thereof
CN103182489A (en) * 2011-12-27 2013-07-03 上海宝钢设备检修有限公司 Method for electroplating non-uniform performance alloy coating on continuous casting crystallizer
CN103820828A (en) * 2014-01-28 2014-05-28 秦皇岛首钢长白结晶器有限责任公司 Nanometer Ni-Co-B coating technology for copper plate/copper tube of continuous casting crystallizer

Also Published As

Publication number Publication date
JPS5939449A (en) 1984-03-03

Similar Documents

Publication Publication Date Title
CA1097024A (en) Molds for continuous casting of metals
JPS6117581B2 (en)
US4404232A (en) Method of depositing metal coating layers containing particles on the walls of chill moulds
TWI276706B (en) Iron-phosphorus electroplating bath and method
Arulvel et al. Comparative study on the friction-wear property of As-plated, Nd-YAG laser treated, and heat treated electroless Nickel-Phosphorus/Crab shell particle composite coatings on mild steel
Seah et al. Corrosion characteristics of ZA-27-graphite particulate composites
US3921701A (en) Method for improving bond between transplanted coating and die-casting
JPH0156860B2 (en)
JPS5953143B2 (en) Continuous casting mold
Kedward et al. The development of electrodeposited composites for use as wear control coatings on aero engines
EP0383934B1 (en) Mold for continuously casting steel
Srivastava Electrodeposition of ternary alloys: Developments in 1972–1978
US4911225A (en) Mould for billets
JP2000218346A (en) Continuous casting mold for steel and its manufacturing method
JPS5941823B2 (en) Continuous casting mold
JPS62207534A (en) Mold for continuous casting
JPS60145247A (en) Mold for continuous casting and its production
JPS635176B2 (en)
JPS59123793A (en) Composite plating film
JPS61179861A (en) Zn alloy hot dipped steel plate having high corrosion resistance
JPS5953142B2 (en) Continuous casting mold
JPH01233047A (en) Production of mold for continuous casting
JPS5825534B2 (en) Steel continuous casting mold
JP3380425B2 (en) Twin drum type continuous casting drum
JPH0741373B2 (en) Mold for continuous casting