JPS635176B2 - - Google Patents

Info

Publication number
JPS635176B2
JPS635176B2 JP57153308A JP15330882A JPS635176B2 JP S635176 B2 JPS635176 B2 JP S635176B2 JP 57153308 A JP57153308 A JP 57153308A JP 15330882 A JP15330882 A JP 15330882A JP S635176 B2 JPS635176 B2 JP S635176B2
Authority
JP
Japan
Prior art keywords
mold
weight
copper
alloy
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57153308A
Other languages
Japanese (ja)
Other versions
JPS5954444A (en
Inventor
Takesaburo Yoshida
Takayuki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15330882A priority Critical patent/JPS5954444A/en
Publication of JPS5954444A publication Critical patent/JPS5954444A/en
Publication of JPS635176B2 publication Critical patent/JPS635176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉄鋼、例えば低炭素鋼、高炭素鋼、
ステンレス鋼、特殊鋼等の連続鋳造に使用する銅
又は銅合金製鋳型に関する。 スラブ、ブルーム、チユーブ状鋳片等の連続鋳
造に使用される鋳型は、一般に熱伝導性に優れた
銅又は銅合金を素材としている。この銅又は銅合
金からなる鋳型の内面(以下単に鋳型内面とい
う)は、溶鋼又は鋳片と直接接触しない様に全面
的に保護皮膜で被覆するのが通例である。そし
て、鋳込みにより保護皮膜が次第に摩耗して、鋳
型内面の銅が一定限度以上に露出して来れば、鋳
型の寿命が尽きたものとされている。この銅の露
出を出来るだけ長期にわたり防止することにより
鋳型寿命を延長する為にNiめつき層、Crめつき
層等の各種の保護皮膜が提案され、実用に供され
ている。しかしながら、これ等公知の保護皮膜
は、いずれも満足すべきものとは言い難い。例え
ば、Niめつき層は、硬度が低い為摩耗しやすく、
従つて寿命延長を目的としてその厚みを増大すれ
ば鋳型の熱伝導度を低下させる難点がある。Cr
めつき層は、高温での硬度が低い為短期間内に損
耗するのみならず、その内包するクラツクが高温
下に発達して剥離することさえある。 本発明者は、上記の如き現況に鑑みて種々研究
を重ねた結果、タングステン及びホウ素を特定量
含有するニツケル系合金が銅及び銅合金製の連続
鋳造用鋳型の保護皮膜として極めて優れた性質を
発揮することを見出し、更に実験及び研究を重ね
て遂に本発明を完成するにいたつたものである。
即ち、本発明は、銅又は銅合金製の鉄鋼連続鋳造
用鋳型において、鋳型の溶鋼注入面上にタングス
テン3〜15重量%及びホウ素0.3〜3重量%を含
有するニツケル−タングステン−ホウ素合金の無
電解めつき層を形成させたことを特徴とする鉄鋼
連続鋳造用鋳型に係る。 本発明鋳型内面の保護被覆層たるNi−W−B
合金層は、融点が約1600℃であつて耐熱性に優
れ、高温でも高い硬度を保持し、熱伝導率が高く
且つ線膨脹係数が低いという特性を有している。
従つて、鋳型と溶鋼との間にガラス質パウダー等
の固体潤滑剤を溶鋼の流動に合せて流動させる様
に介在させる通常の使用方法において、本発明保
護被覆層は、優れた耐摩耗性、密着性、熱耐久性
等を発揮するので、その寿命は著るしく延長され
る。 本発明においては、無電解めつき法により形成
されるNi−W−B合金層中のWは、3〜15重量
%、より好ましくは4〜8重量%とする。Wの含
有量が15重量%を上回る場合には、合金めつき層
の形成が困難となり、一方3重量%未満では耐摩
耗性が十分でない。又、B成分は、0.3〜3重量
%、より好ましくは、0.5〜2重量%とする。B
の含有量が0.3重量%未満では、耐摩耗性が不十
分となり、一方3重量%を上回ると鋳鋼の性質を
低下させる場合がある。Ni−W−B合金層の厚
みは、通常5〜100μm程度であり、より好まし
くは、10〜50μm程度である。5μm未満では、保
護被覆層としての効果を充分に発揮し得ず、
100μmを上回る場合には、皮膜の形成が次第に
困難となり、又抜熱不足による冷却不良を生ずる
傾向がある。 尚、本発明においては、銅又は銅合金製の鋳型
内面上に公知の電解めつき法により先ず200〜
2000μm程度のNiめつき層を設け、次いで該Niめ
つき層上に無電解めつき法によりNi−W−B合
金めつき層を設けることにより、鋳型の寿命を更
に延長させることが出来る。従つて、本発明は、
銅又は銅合金製の鉄鋼連続鋳造用鋳型において、
鋳型の溶鋼注入面上に、(i)ニツケルめつき層及び
(ii)タングステン3〜15重量%及びホウ素0.3〜3
重量%を含有するニツケル−タングステン−ホウ
素合金の無電解めつき層を順次形成させたことを
特徴とする鉄鋼連続鋳造用鋳型をも提供するもの
である。この二層めつきの場合には、Ni−W−
B合金めつき層の厚みを10〜50μm程度とするこ
とが好ましい。 本発明鋳型におけるNi−W−B合金めつき層
は、常法に従つて前処理及びめつき操作を行なう
ことにより形成される。即ち、銅又は銅合金製鋳
型の溶鋼注入面以外の部分を例えば塩化ビニル樹
脂系塗料等の適当な被覆剤によりマスキングし、
次いで常法に従つて脱脂、酸処理による活性化、
水洗等の前処理を行なう。前処理を終えた鋳型を
下記第1表に1例として示す組成の無電解めつき
浴に浸漬し、H2SO4、NH4OH等により浴のPHを
6.5〜6.9程度に保持し且つ浴温を60〜65℃程度に
保持しつつ、ゆるやかな機械的攪拌下にめつき操
作を行なう。上記の条件下に第1表に示す組成の
浴中でめつきを行なう場合、厚み30μmのNi−W
−B合金めつき(W5重量%及びB1重量%)を形
成させるのに約5時間を要する。
The present invention is applicable to steel, such as low carbon steel, high carbon steel,
Related to copper or copper alloy molds used for continuous casting of stainless steel, special steel, etc. Molds used for continuous casting of slabs, blooms, tube-shaped slabs, etc. are generally made of copper or copper alloy, which has excellent thermal conductivity. The inner surface of the mold made of copper or copper alloy (hereinafter simply referred to as the inner surface of the mold) is usually completely coated with a protective film so as not to come into direct contact with molten steel or slabs. When the protective coating gradually wears away during casting and copper on the inner surface of the mold becomes exposed beyond a certain limit, the life of the mold has come to an end. In order to extend the life of the mold by preventing exposure of this copper for as long as possible, various protective films such as Ni plating layer and Cr plating layer have been proposed and put into practical use. However, none of these known protective films can be said to be satisfactory. For example, the Ni plating layer has low hardness and is easily abraded.
Therefore, if the thickness is increased for the purpose of extending the life of the mold, there is a problem in that the thermal conductivity of the mold is reduced. Cr
Since the plating layer has low hardness at high temperatures, it not only wears out within a short period of time, but also cracks contained therein may develop and even peel off at high temperatures. As a result of various studies in view of the above-mentioned current situation, the present inventor has discovered that a nickel-based alloy containing specific amounts of tungsten and boron has extremely excellent properties as a protective coating for continuous casting molds made of copper and copper alloys. After further experiments and research, the present invention was finally completed.
That is, the present invention provides a mold for continuous casting of steel made of copper or copper alloy, in which a nickel-tungsten-boron alloy containing 3 to 15% by weight of tungsten and 0.3 to 3% by weight of boron is placed on the molten steel injection surface of the mold. The present invention relates to a mold for continuous casting of steel, characterized in that an electroplated layer is formed. Ni-W-B as a protective coating layer on the inner surface of the mold of the present invention
The alloy layer has a melting point of about 1600° C., has excellent heat resistance, maintains high hardness even at high temperatures, has high thermal conductivity, and has a low coefficient of linear expansion.
Therefore, in a normal usage method in which a solid lubricant such as glass powder is interposed between the mold and the molten steel so as to flow in accordance with the flow of the molten steel, the protective coating layer of the present invention has excellent wear resistance, Since it exhibits adhesion and heat durability, its lifespan is significantly extended. In the present invention, W in the Ni-W-B alloy layer formed by electroless plating is 3 to 15% by weight, more preferably 4 to 8% by weight. If the W content exceeds 15% by weight, it will be difficult to form an alloy plating layer, while if it is less than 3% by weight, the wear resistance will not be sufficient. The content of component B is 0.3 to 3% by weight, more preferably 0.5 to 2% by weight. B
If the content is less than 0.3% by weight, the wear resistance will be insufficient, while if it exceeds 3% by weight, the properties of the cast steel may deteriorate. The thickness of the Ni-W-B alloy layer is usually about 5 to 100 μm, more preferably about 10 to 50 μm. If it is less than 5 μm, it will not be able to fully exhibit its effect as a protective coating layer,
If it exceeds 100 μm, it becomes increasingly difficult to form a film, and there is a tendency for cooling failure due to insufficient heat removal. In the present invention, 200~
The life of the mold can be further extended by providing a Ni plating layer of approximately 2000 μm and then providing a Ni-W-B alloy plating layer on the Ni plating layer by electroless plating. Therefore, the present invention
In a mold for continuous casting of steel made of copper or copper alloy,
On the molten steel injection surface of the mold, (i) nickel plating layer and
(ii) 3-15% by weight of tungsten and 0.3-3% boron;
The present invention also provides a mold for continuous casting of steel, characterized in that electroless plated layers of a nickel-tungsten-boron alloy containing 10% by weight are successively formed. In the case of this double layer plating, Ni-W-
The thickness of the B alloy plating layer is preferably about 10 to 50 μm. The Ni--W--B alloy plating layer in the mold of the present invention is formed by pretreatment and plating operations according to conventional methods. That is, the parts of the copper or copper alloy mold other than the molten steel injection surface are masked with a suitable coating material such as vinyl chloride resin paint,
Next, degreasing according to conventional methods, activation by acid treatment,
Perform pretreatment such as washing with water. The pretreated mold is immersed in an electroless plating bath having the composition shown in Table 1 below as an example, and the pH of the bath is adjusted using H 2 SO 4 , NH 4 OH, etc.
While maintaining the bath temperature at about 6.5 to 6.9°C and the bath temperature at about 60 to 65°C, the plating operation is performed under gentle mechanical stirring. When plating is carried out in a bath having the composition shown in Table 1 under the above conditions, Ni-W with a thickness of 30 μm is used.
It takes about 5 hours to form the -B alloy plating (5% by weight of W and 1% by weight of B).

【表】 尚、第1表に示す浴組成は、本発明合金めつき
層を形成させるに際し使用可能な一例を示したも
のに過ぎず、合金組成の相違等に応じて種々の変
更が可能なることは言うまでもない。 実施例 1 銀1重量%を含有する脱酸銅製のスラブ連続鋳
造用鋳型の短辺(巾250mm×高さ700mm)の溶鋼接
触面に厚さ1000μmのNiめつき層及び厚さ30μm
のNi−W(5重量%)−B(1重量%)の合金めつ
き層を順次形成させた。 得られた鋳型を鋳込み速度0.8m/minで普通
鋼の鋳造に使用したところ、625チヤージ後にも
スプラツシユの附着等の異常は全くなく、鋳片の
表面品質も極めて良好であり、鋳造を更に継続す
ることが可能であつた。 実施例 2 銀1重量%を含有する脱酸銅製のスラブ連続鋳
造用鋳型の長辺(巾2400mm、高さ700mm)の溶鋼
接触面に厚さ1000μmのNiめつき層及び厚さ30μ
mのNi−W(5重量%)−B(1重量%)の合金め
つき層を順次形成させた。 得られた鋳型を実施例1と同様にして連続鋳造
に使用したところ、やはり812チヤージ後にも何
らの異常は認められず、鋳片の表面品質も極めて
良好であり、鋳造を更に続行することが可能であ
つた。 比較例 1 実施例2と同様の鋳型長辺の溶鋼接触面に厚さ
1000μmのNiめつき層及び30μmのCrめつき層を
形成させた。 この鋳型を使用して実施例1と同様の連続鋳造
に使用したところ、430チヤージ後には、めつき
層が大きく損耗して、使用不能となつた。 実施例 3 銀1重量%を含有する脱酸銅製のスラブ連続鋳
造用鋳型の短辺(巾250mm×高さ700mm)の溶鋼接
触面に、厚さ50μmのNi−W(5重量%)−B(1
重量%)の合金めつき層を形成させた。 得られた鋳型を鋳込み速度0.8m/minで普通
鋼の鋳造に使用し、161チヤージまで連続鋳造を
行なつたところ、鋳型表面には左右両側の下端に
巾約30mm、高さ約70mmの銅露出が認められたにす
ぎず、特に異常も見られなかつた。 比較例 2 Ni−W−B合金めつき層に代えて、Crめつき
層を形成させる以外は実施例3と同様にして、
Crめつき層を施した鋳型を得た。 この鋳型を鋳込み速度0.8m/minで普通鋼の
鋳型に使用したところ、85チヤージで鋳型表面の
下端部全面に高さ約60mm(左右両端では約110mm)
もの銅露出が認められた。 実施例 4 銀1重量%を含有する脱酸銅製のスラブ連続鋳
造用鋳型の短辺(巾250mm×高さ700mm)の溶鋼接
触面に、下記組成の浴中で、浴温55℃、電流密度
2A/dm2で25時間電解し、マイクロビツカース
硬度530の硬質ニツケルめつきを500μmの厚さで
施した。 硫酸ニツケル 180g/ 塩化アンモニウム 25g/ ホウ酸 30g/ 添加剤 少 量 上記硬質ニツケルめつき層上に、実施例1と同
様に厚さ50μmのNi−W(5重量%)−B(1重量
%)の合金めつき層を形成させた。 得られた鋳型を用いて実施例1と同様にして連
続鋳造を610チヤージまで行なつたところ、特に
異常もなく、鋳片の表面品質も良好であつた。 実施例 5 銀1重量%を含有する脱酸銅製のテストピース
片(150×50×5mm)に下記第2表に示す各組成
のめつき皮膜を50μm厚に形成し、高温下での耐
摩耗性試験を行なつた。 耐摩耗性試験は、直径約25mmの重量約600gの
鋼球を用いて、めつき皮膜を施した銅板に対する
鋼球の荷重が1Kgになるように調整し、鋼球及び
めつき皮膜の表面温度が500±20℃となる様に加
熱した状態で、銅板を移動量100mmで1分間に60
回の割合で1時間往復運動させることによつて行
なつた。 この試料を放置して室温に冷却した後、めつき
皮膜の摩耗状態及びクラツクの発生状態を調べ
た。結果を第2表に示す。評価基準は以下に示す
とおりである。 <摩耗状態> ××:銅表面が露出。 ×:目視観察で摩耗が確認できる。 △:目視では摩耗は確認できないが、指触によ
り摩耗が確認できる。 〇:指触によつても摩耗は認められない。 <クラツク発生状態> ×:目視でクラツクが認められる。 △:顕微鏡観察でクラツクが認められる。 〇:顕微鏡観察でもクラツクは認められない。
[Table] The bath composition shown in Table 1 is merely an example that can be used to form the alloy plating layer of the present invention, and various changes can be made depending on the difference in alloy composition. Needless to say. Example 1 A Ni plating layer with a thickness of 1000 μm and a Ni plating layer with a thickness of 30 μm was placed on the short side (width 250 mm x height 700 mm) of a molten steel contact surface of a slab continuous casting mold made of deoxidized copper containing 1% by weight of silver.
Ni-W (5% by weight)-B (1% by weight) alloy plating layers were sequentially formed. When the obtained mold was used for casting ordinary steel at a casting speed of 0.8 m/min, there were no abnormalities such as adhesion of splashes even after 625 charge, and the surface quality of the slab was extremely good, so casting was continued. It was possible to do so. Example 2 A 1000 μm thick Ni plating layer and a 30 μm thick Ni plating layer were placed on the long side (width 2400 mm, height 700 mm) of the molten steel contact surface of a deoxidized copper slab continuous casting mold containing 1% by weight of silver.
Ni-W (5% by weight)-B (1% by weight) alloy plating layers were sequentially formed. When the obtained mold was used for continuous casting in the same manner as in Example 1, no abnormalities were observed even after 812 charges, and the surface quality of the slab was extremely good, making it possible to continue casting further. It was possible. Comparative Example 1 Similar to Example 2, the thickness was increased on the long side of the mold in contact with molten steel.
A 1000 μm Ni plating layer and a 30 μm Cr plating layer were formed. When this mold was used for continuous casting in the same manner as in Example 1, the plating layer was severely worn out after 430 charges and became unusable. Example 3 A 50 μm thick Ni-W (5 wt %)-B was placed on the short side (width 250 mm x height 700 mm) of a molten steel contact surface of a slab continuous casting mold made of deoxidized copper containing 1 wt % silver. (1
% by weight) was formed. The obtained mold was used for casting ordinary steel at a casting speed of 0.8 m/min, and continuous casting was performed up to 161 charges. Only exposure was observed, and no abnormalities were observed. Comparative Example 2 Same as Example 3 except that a Cr plated layer was formed instead of the Ni-W-B alloy plated layer,
A mold with a Cr plating layer was obtained. When this mold was used in a regular steel mold at a casting speed of 0.8 m/min, the height of the entire lower end of the mold surface was approximately 60 mm (approximately 110 mm at both left and right ends) at 85 charges.
Copper exposure was observed. Example 4 The short side (width 250 mm x height 700 mm) of a slab continuous casting mold made of deoxidized copper containing 1% by weight of silver was placed in contact with molten steel in a bath having the following composition at a bath temperature of 55°C and a current density.
Electrolysis was carried out at 2 A/dm 2 for 25 hours, and hard nickel plating with a microvitkers hardness of 530 was applied to a thickness of 500 μm. Nickel sulfate 180g / Ammonium chloride 25g / Boric acid 30g / Additives small amount On the above hard nickel plating layer, Ni-W (5% by weight) with a thickness of 50 μm as in Example 1 -B (1% by weight) An alloy plating layer was formed. Using the obtained mold, continuous casting was carried out up to 610 charges in the same manner as in Example 1, and there were no particular abnormalities, and the surface quality of the slab was good. Example 5 A plating film of each composition shown in Table 2 below was formed to a thickness of 50 μm on a deoxidized copper test piece (150 x 50 x 5 mm) containing 1% by weight of silver, and was tested for wear resistance at high temperatures. A sex test was conducted. In the wear resistance test, a steel ball with a diameter of about 25 mm and a weight of about 600 g was adjusted so that the load of the steel ball against the copper plate coated with a plating film was 1 kg, and the surface temperature of the steel ball and the plating film was measured. While heating the copper plate to a temperature of 500±20°C, the copper plate is moved at a rate of 60° per minute with a travel distance of 100 mm.
This was done by reciprocating the motion for 1 hour at a rate of 1 hour. After this sample was left to cool to room temperature, the state of wear of the plating film and the state of occurrence of cracks were examined. The results are shown in Table 2. The evaluation criteria are as shown below. <Abrasion condition> ××: Copper surface exposed. ×: Wear can be confirmed by visual observation. △: Wear cannot be visually confirmed, but wear can be confirmed by finger touch. ○: No wear is observed even when touched with fingers. <Crack occurrence state> ×: Cracks are visually observed. △: Cracks are observed by microscopic observation. ○: No cracks are observed even by microscopic observation.

【表】 以上の結果から判る様に、タングステン3〜15
重量%及びホウ素0.3〜3重量%を含むニツケル
−タングステン−ホウ素合金めつきは、高温下に
おいて優れた耐摩耗性を示し、また、クラツクが
生じ難い。 これに対して、タングステン量が2重量%以下
では、高温下での耐摩耗性が悪くなり、また、16
重量%では、めつき皮膜にクラツクが生じ易くな
つて耐用性に劣るものとなる。
[Table] As can be seen from the above results, tungsten 3 to 15
Nickel-tungsten-boron alloy plating containing 0.3-3% by weight of boron exhibits excellent wear resistance at high temperatures and is less prone to cracking. On the other hand, if the amount of tungsten is less than 2% by weight, the wear resistance at high temperatures deteriorates, and 16
If the weight percentage is too high, cracks are likely to occur in the plating film, resulting in poor durability.

Claims (1)

【特許請求の範囲】 1 銅又は銅合金製の鉄鋼連続鋳造用鋳型におい
て、鋳型の溶鋼注入面上にタングステン3〜15重
量%及びホウ素0.3〜3重量%を含有するニツケ
ル−タングステン−ホウ素合金の無電解めつき層
を形成させたことを特徴とする鉄鋼連続鋳造用鋳
型。 2 銅又は銅合金製の鉄鋼連続鋳造用鋳型におい
て、鋳型の溶鋼注入面上に、(i)ニツケルめつき層
及び(ii)タングステン3〜15重量%及びホウ素0.3
〜3重量%を含有するニツケル−タングステン−
ホウ素合金の無電解めつき層を順次形成させたこ
とを特徴とする鉄鋼連続鋳造用鋳型。
[Claims] 1. In a mold for continuous casting of steel made of copper or copper alloy, a nickel-tungsten-boron alloy containing 3 to 15% by weight of tungsten and 0.3 to 3% by weight of boron is placed on the molten steel injection surface of the mold. A mold for continuous casting of steel, characterized by forming an electroless plating layer. 2. In a mold for continuous casting of steel made of copper or copper alloy, (i) a nickel plating layer and (ii) 3 to 15% by weight of tungsten and 0.3% boron on the molten steel injection surface of the mold.
Nickel-tungsten containing ~3% by weight
A mold for continuous casting of steel, characterized by sequentially forming electroless plated layers of boron alloy.
JP15330882A 1982-09-01 1982-09-01 Casting mold for continuous casting of iron and steel Granted JPS5954444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15330882A JPS5954444A (en) 1982-09-01 1982-09-01 Casting mold for continuous casting of iron and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15330882A JPS5954444A (en) 1982-09-01 1982-09-01 Casting mold for continuous casting of iron and steel

Publications (2)

Publication Number Publication Date
JPS5954444A JPS5954444A (en) 1984-03-29
JPS635176B2 true JPS635176B2 (en) 1988-02-02

Family

ID=15559639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15330882A Granted JPS5954444A (en) 1982-09-01 1982-09-01 Casting mold for continuous casting of iron and steel

Country Status (1)

Country Link
JP (1) JPS5954444A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230380A (en) * 1988-07-22 1993-07-27 Satosen Co., Ltd. Molds for continuous casting of steel
JPH0459064B2 (en) * 1988-07-22 1992-09-21
JP4864195B2 (en) * 2000-08-30 2012-02-01 三井金属鉱業株式会社 Coated copper powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147431A (en) * 1975-06-13 1976-12-17 Sumitomo Metal Ind Mould for continuous iron and steel casting
JPS5754545A (en) * 1980-09-18 1982-04-01 Keisuke Kotake Coating apparatus of chemical liquid
JPS5785650A (en) * 1980-11-17 1982-05-28 Satoosen:Kk Continuous casting mold for billet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147431A (en) * 1975-06-13 1976-12-17 Sumitomo Metal Ind Mould for continuous iron and steel casting
JPS5754545A (en) * 1980-09-18 1982-04-01 Keisuke Kotake Coating apparatus of chemical liquid
JPS5785650A (en) * 1980-11-17 1982-05-28 Satoosen:Kk Continuous casting mold for billet

Also Published As

Publication number Publication date
JPS5954444A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
CA1097024A (en) Molds for continuous casting of metals
CA1047732A (en) Molds for continuously casting steel
US4404232A (en) Method of depositing metal coating layers containing particles on the walls of chill moulds
US4538667A (en) Molds for continuously casting steel
JPS6117912B2 (en)
JPS635176B2 (en)
US5230380A (en) Molds for continuous casting of steel
JPH02160145A (en) Cooling roll for producing rapidly cooled strip and production thereof
CN104120461A (en) Method for preparing gradient alloy plating layer on surface of thin strip continuous casting crystallization roller and plating solution
JP2000218346A (en) Continuous casting mold for steel and its manufacturing method
EP0383934B1 (en) Mold for continuously casting steel
JP4175720B2 (en) Continuous casting mold
Wearmouth Nickel alloy electrodeposits for non-decorative applications
US2327676A (en) Plating process
JP2975027B2 (en) Continuous casting mold
JPS6199650A (en) Alloy for electrically conductive roll
US4911225A (en) Mould for billets
JP4579706B2 (en) Articles with improved zinc erosion resistance
JP5161842B2 (en) Continuous casting mold
JPS6260879A (en) Wear resistant copper alloy member
JPH0735259B2 (en) Mold for glass molding
JPS5939449A (en) Casting mold for continuous casting of iron and steel
JPS58167058A (en) Casting mold for continuous casting of iron and steel
JPS58212840A (en) Casting mold for continuous casting
JP2002226992A (en) Mold for continuous casting