JPH0143172B2 - - Google Patents

Info

Publication number
JPH0143172B2
JPH0143172B2 JP5894284A JP5894284A JPH0143172B2 JP H0143172 B2 JPH0143172 B2 JP H0143172B2 JP 5894284 A JP5894284 A JP 5894284A JP 5894284 A JP5894284 A JP 5894284A JP H0143172 B2 JPH0143172 B2 JP H0143172B2
Authority
JP
Japan
Prior art keywords
working fluid
flange
fluid reservoir
case
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5894284A
Other languages
Japanese (ja)
Other versions
JPS60201122A (en
Inventor
Kuniaki Kabayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exedy Corp
Original Assignee
Daikin Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Manufacturing Co Ltd filed Critical Daikin Manufacturing Co Ltd
Priority to JP5894284A priority Critical patent/JPS60201122A/en
Publication of JPS60201122A publication Critical patent/JPS60201122A/en
Publication of JPH0143172B2 publication Critical patent/JPH0143172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/1217Motion-limiting means, e.g. means for locking the spring unit in pre-defined positions
    • F16F15/1218Motion-limiting means, e.g. means for locking the spring unit in pre-defined positions by means of spring-loaded radially arranged locking means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内部に作動流体溜めを形成したダンパ
ーデイスクに係り、特に駆動系の捩り作動を効果
的に吸収して継続フイーリングを向上させるよう
にしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a damper disk having a working fluid reservoir formed therein, and particularly to a damper disk that effectively absorbs torsional operation of a drive system and improves continuous feeling. related to what was done.

(従来例) 従来から、この種ダンパーデイスクには流体式
シヨツクアブソーバを内蔵して、駆動系の捩り振
動を吸収するようにしたものが知られているが
(例えば、特開昭56−120844号)、流体式シヨツク
アブソーバでは、捩り振動を有効に吸収し得る固
有のヒステリシスを安定して発生させるオリフイ
ス機構を設けることが困難であり、また、オリフ
イス機構そのものも捩り角度が変化しても一定の
ヒステリシスのみしか発生させ得ず、捩り振動を
効果的に吸収できないという不具合が発生してい
る。
(Conventional example) This type of damper disk has been known to have a built-in fluid shock absorber to absorb torsional vibrations of the drive system (for example, Japanese Patent Laid-Open No. 56-120844). ), in fluid type shock absorbers, it is difficult to provide an orifice mechanism that stably generates the inherent hysteresis that can effectively absorb torsional vibrations, and the orifice mechanism itself does not maintain a constant level even when the torsional angle changes. The problem is that only hysteresis can be generated, and torsional vibration cannot be effectively absorbed.

(発明の目的) 本発明は以上の不具合を考慮してなされたもの
であつて、その目的とするところは、捩り振動を
有効に吸収し得る作動流体溜めを内蔵するととも
に、その作動流体溜めで発生するヒステリシスを
捩り角度の増加につれて増大させることができる
ダンパーデイスクを提供する点にある。
(Object of the Invention) The present invention has been made in consideration of the above-mentioned problems, and its purpose is to provide a built-in working fluid reservoir that can effectively absorb torsional vibrations, and to The object of the present invention is to provide a damper disk that can increase the generated hysteresis as the torsion angle increases.

(発明の構成) 上記目的を達成すべく、本発明によるダンパー
デイスクの構成は、外周部にトルクが導入される
ケースと該ケースの外周に設けられたスペーサと
によりスプラインハブのフランジを液密状態に覆
い、フランジの窓孔と該窓孔に対向するケースの
窪みにトーシヨンスプリングを配置してフランジ
とケースとを連結し、該フランジの周縁部を切欠
いて作動流体溜めを形成し、前記スペーサの内周
に作動流体溜め内に突出する突起を設け、該突起
の先端と作動流体溜めの内周面との間の間隙が前
記ケースとフランジの捩り角の増大に伴なつて減
少するように前記作動流体溜めの内周面を形成
し、ケース内に作動流体を満たしたことを要旨と
するものである。
(Structure of the Invention) In order to achieve the above object, the structure of the damper disk according to the present invention is such that the flange of the spline hub is kept in a liquid-tight state by a case into which torque is introduced into the outer periphery and a spacer provided on the outer periphery of the case. a torsion spring is disposed in the window hole of the flange and a recess in the case opposite to the window hole to connect the flange and the case, a working fluid reservoir is formed by cutting out the peripheral edge of the flange, and the spacer A protrusion that protrudes into the working fluid reservoir is provided on the inner periphery of the housing, such that the gap between the tip of the protrusion and the inner peripheral surface of the working fluid reservoir decreases as the torsion angle between the case and the flange increases. The gist is that the inner circumferential surface of the working fluid reservoir is formed and the case is filled with working fluid.

(実施例) 以下、図面を参照して本発明の一実施例を説明
する。第1図は本発明を適用したクラツチデイス
クの第2図におけるZ−O−Z縦断面を示してい
る。第1図において、図示されていない出力軸に
スプライン嵌合するスプラインハブ1のフランジ
2は両側から1対のケース3,4で覆われてい
る。ケース3,4はフランジ2よりも外径が大き
く、両ケース3,4の外周部は環状のスペーサ
5、サブプレート6、クツシヨニングプレート7
および環状パツキン8を挾んでリベツト9により
液密を保持して一体に連結されている。10はリ
ベツト11によりクツシヨニングプレート7に固
定されたフエーシングである。ケース3,4の内
周縁には外向きに延びる筒状フランジ12,13
が形成してあり、フランジ12,13はハブ1の
外周面上の環状溝に嵌合したシール14に接して
いる。そして、ケース3,4内には高粘性の作動
流体であるシリコンオイルが満たされている。1
5,16は同芯に配置された小径および大径の圧
縮コイルスプリング(トーシヨンスプリング)
で、第1図の一部切欠き矢視図である第2図の
如く、フランジ2に内周方向に180゜間隔を隔てて
設けた2個の窓孔17にそれぞれ1組のスプリン
グ15,16が配置されている。このスプリング
15の両端はスプリングシート18に圧接し、ス
プリング16はスプリングシート18の外周に設
けられており、ケース3,4がフランジ2に対し
て捩れていない図示の状態において各スプリング
シート18はフランジ2の窓孔17の両側縁に形
成された突起部17aに当接している。また、フ
ランジ2には窓孔17と円周方向に90゜間隔を隔
てて2個の窓孔19が設けられており、これらの
窓孔19にはそれぞれ前記スプリング16よりも
さらに大径のコイルスプリング(トーシヨンスプ
リング)20が配置されている。このスプリング
20は対応した位置に窓孔6aを有する前記サブ
プレート6で支持されており、ケース3,4がフ
ランジ2に対して捩れてない図示の状態におい
て、スプリング20の両端と窓孔19の両側縁と
の間に等間隔を隔てた位置、すなわち窓孔19の
円周方向中央位置にスプリング20が位置決めさ
れている。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a Z-O-Z longitudinal section in FIG. 2 of a clutch disk to which the present invention is applied. In FIG. 1, a flange 2 of a spline hub 1 that is spline-fitted to an output shaft (not shown) is covered from both sides with a pair of cases 3 and 4. The cases 3 and 4 have a larger outer diameter than the flange 2, and the outer peripheries of both cases 3 and 4 are provided with an annular spacer 5, a sub-plate 6, and a cushioning plate 7.
The annular packing 8 is sandwiched between the two parts and they are connected integrally by a rivet 9 in a liquid-tight manner. 10 is a facing fixed to the cushioning plate 7 by rivets 11. Cylindrical flanges 12, 13 extending outward are provided on the inner peripheral edges of the cases 3, 4.
The flanges 12 and 13 are in contact with a seal 14 fitted in an annular groove on the outer peripheral surface of the hub 1. The cases 3 and 4 are filled with silicone oil, which is a highly viscous working fluid. 1
5 and 16 are small and large diameter compression coil springs (torsion springs) arranged concentrically.
As shown in FIG. 2, which is a partially cutaway view of FIG. 1, a pair of springs 15, 16 are arranged. Both ends of the spring 15 are in pressure contact with the spring seat 18, and the spring 16 is provided on the outer periphery of the spring seat 18. In the illustrated state where the cases 3 and 4 are not twisted relative to the flange 2, each spring seat 18 is attached to the flange. It abuts on protrusions 17a formed on both side edges of the window hole 17 of No. 2. Further, the flange 2 is provided with two window holes 19 spaced apart by 90 degrees in the circumferential direction from the window hole 17, and each of these window holes 19 is equipped with a coil having a larger diameter than the spring 16. A spring (torsion spring) 20 is arranged. This spring 20 is supported by the sub-plate 6 having window holes 6a at corresponding positions, and in the illustrated state where the cases 3 and 4 are not twisted relative to the flange 2, both ends of the spring 20 and the window holes 19 The spring 20 is positioned at a position equally spaced from both side edges, that is, at the center of the window hole 19 in the circumferential direction.

さらに、フランジ2の周縁部における窓孔1
7,19の中間位置には円周方向に90゜間隔を隔
てて、フランジ2を切欠いて形成した4個の作動
流体溜め21が設けられており、これらの作動流
体溜め21内にはそれぞれスペーサ5の内周面か
ら連続して一体に突出された4個の突起5aが設
けられている。これらの突起5aも円周方向に
90゜間隔を隔てて設けられており、図示の捩れ角
が0の中立位置で、突起5aは作動流体溜め21
の中央に配置してある。作動流体溜め21の内周
面22は中立軸(中立時における突起5aの中心
線)から±a゜の範囲で突起5aの先端との間に、
比較的大きなクリアランスを形成する半円形をな
し、中立軸から±a゜〜±c゜の範囲で突起5aの先
端との間に極く小さなクリアランスC1を形成す
る円弧状をなし、中立軸から±c゜の位置に半径方
向に沿つた側壁22aを設けてある。また、フラ
ンジ2の窓孔17の両側縁とスプリング16の両
端との位相差もa゜に設定してあり、窓孔19の両
側縁とスプリング20の両端との位相差はb゜に設
定してあり、これらa゜、b゜、c゜の関係は a゜<b゜<c゜ に設定してある。さらに、スプリング15,1
6,20の窓孔17,19から第1図において左
右に張り出した部分は、両ケース3,4に設けた
スプリング16,20に概ね対応する形状の窪み
23,24で覆われている。前記スプリングシー
ト18は窪み23,24(スプリング15,16
の設置空間)の端壁内面にスプリング15,16
で押圧されており、スプリングシート18の端面
18aは窪み23,24に圧接している。
Further, the window hole 1 at the peripheral edge of the flange 2
7 and 19 are provided with four working fluid reservoirs 21 formed by notching the flange 2 at intervals of 90° in the circumferential direction, and spacers are installed in each of these working fluid reservoirs 21. Four protrusions 5a are provided that continuously and integrally protrude from the inner circumferential surface of 5. These protrusions 5a are also circumferentially
They are provided at 90° intervals, and in the neutral position where the helix angle shown is 0, the protrusions 5a are connected to the working fluid reservoir 21.
It is placed in the center of. The inner circumferential surface 22 of the working fluid reservoir 21 is located between the tip of the protrusion 5a within a range of ±a° from the neutral axis (the center line of the protrusion 5a in the neutral state),
It has a semicircular shape that forms a relatively large clearance, and an arc shape that forms an extremely small clearance C1 between the tip of the protrusion 5a in the range of ±a° to ±c° from the neutral axis. Side walls 22a are provided along the radial direction at positions of ±c°. Furthermore, the phase difference between both side edges of the window hole 17 of the flange 2 and both ends of the spring 16 is set to a degree, and the phase difference between both side edges of the window hole 19 and both ends of the spring 20 is set to b degree. The relationship between a゜, b゜, and c゜ is set as a゜<b゜<c゜. Furthermore, springs 15,1
The portions projecting from the window holes 17, 19 of the cases 6, 20 to the left and right in FIG. The spring seat 18 has depressions 23, 24 (springs 15, 16
Spring 15, 16 is installed on the inner surface of the end wall of the
The end surface 18a of the spring seat 18 is pressed against the depressions 23 and 24.

次に動作を説明する。第1図に示す如く、本発
明をクラツチデイスクに適用した場合、このクラ
ツチを接続し、図示されていないフライホイール
から第2図のクラツチ回転方向Aのトルクがフエ
ーシング10に伝わると、該トルクはクツシヨニ
ングプレート7を介してケース3,4に導入さ
れ、さらに窪み23,24の反回転方向側の端壁
内面からスプリング15,16,20を介して窓
孔17,19の回転方向A側の側縁に伝わり、フ
ランジ2からハブ1、出力軸へと伝わる。その
際、捩れ角Dが0〜a゜範囲ではスプリング15の
みが圧縮され、a゜〜b゜の範囲ではスプリング1
5,16が圧縮され、b゜〜c゜の範囲ではスプリン
グ15,16,20が圧縮されながら。、ケース
3,4が回転方向Aに捩れる。第3図の特性Xは
スプリング15,16,20のみを介して伝達さ
れるトルクTと捩れ角Dとの関係を示している
が、0〜a゜の範囲ではスプリング15の伝達トル
クは無視し得る程度に微小であり、0〜a゜、a゜〜
b゜、b゜〜c゜の各範囲内でトルクTと捩れ角Dとは
比例している。
Next, the operation will be explained. As shown in FIG. 1, when the present invention is applied to a clutch disk, when the clutch is connected and torque in the clutch rotation direction A in FIG. 2 is transmitted from the flywheel (not shown) to the facing 10, the torque is It is introduced into the cases 3, 4 via the cushioning plate 7, and further from the inner surface of the end wall on the counter-rotation direction side of the recesses 23, 24 via the springs 15, 16, 20 on the rotation direction A side of the window holes 17, 19. It is transmitted from the flange 2 to the hub 1 to the output shaft. At this time, only the spring 15 is compressed when the torsion angle D is in the range of 0 to a degree, and the spring 1 is compressed in the range of a to b degree.
5 and 16 are compressed, while the springs 15, 16, and 20 are compressed in the range b° to c°. , the cases 3 and 4 are twisted in the rotational direction A. Characteristic X in Fig. 3 shows the relationship between the torque T transmitted only through the springs 15, 16, and 20 and the torsion angle D, but in the range of 0 to a degree, the torque transmitted by the spring 15 is ignored. It is minute enough to obtain, 0~a゜, a゜~
The torque T and the torsion angle D are proportional within each range of b° and b° to c°.

一方、第2図においてケース3,4が回転方向
Aに移動すると、スペーサ5の突起5aもA方向
に作動流体溜め21内で移動する。この際、0〜
a゜の範囲内では、突起5aの先端と作動流体溜め
21の内周面とのクリアランスが比較的大きく設
定されているので、内部のシリコンオイルの圧縮
および押出しによる抵抗力はほとんど発生しな
い。やがて、捩れ角Dがa゜に達すると、突起5a
の先端と作動流体溜め21の内周面とのクリアラ
ンスは極く僅かなC1となるので、シリコンオイ
ルの圧縮および押出しによる抵抗力が突起5aと
フランジ2に伝わる。また、捩り行程中にクリア
ランスC1以外の他の隙間、すなわち各ブレート
間、スペーサ5とフランジ2との間からシリコン
オイルが漏出するが、シリコンオイルは高粘性で
あるので、上記の隙間から漏出するシリコンオイ
ルは極く微量であり、その影響はほとんど無視で
きる程度である。
On the other hand, when the cases 3 and 4 move in the rotational direction A in FIG. 2, the protrusion 5a of the spacer 5 also moves in the A direction within the working fluid reservoir 21. At this time, 0~
Within the range of a°, the clearance between the tip of the protrusion 5a and the inner circumferential surface of the working fluid reservoir 21 is set relatively large, so that almost no resistance force is generated due to compression and extrusion of the silicone oil inside. Eventually, when the twist angle D reaches a degree, the protrusion 5a
Since the clearance between the tip and the inner circumferential surface of the working fluid reservoir 21 is extremely small C 1 , the resistance force due to compression and extrusion of the silicone oil is transmitted to the projection 5 a and the flange 2 . Also, during the torsion process, silicone oil leaks from other gaps other than clearance C 1 , namely between each plate and between spacer 5 and flange 2, but since silicone oil has high viscosity, it leaks from the above gaps. The amount of silicone oil used is extremely small, and its effect is almost negligible.

このようにケース3,4の捩れに対してシリコ
ンオイルによる抵抗力が加わると、その抵抗力に
応じたトルクがシリコンオイルを介して(スプリ
ング15,16,20を介さずに)ケース3,4
からフランジ2に伝達され、第3図の如く実際の
伝達トルク特性は前記特性Xにヒステリシスhが
加重されて特性Yになる。第3図の特性Yは捩り
角速度が一定の場合を示しているが、ケース3,
4の捩り角速度が変化すると、作動流体溜め21
内のシリコンオイルに加えられる圧縮力が変化す
るので、捩りに対するシリコンオイルの抵抗力も
変化し、したがつてヒステリシスhも捩り角速度
に対応して変化する。
In this way, when a resistance force is applied by the silicone oil to the twisting of the cases 3 and 4, a torque corresponding to the resistance force is applied to the cases 3 and 4 through the silicone oil (not through the springs 15, 16, and 20).
As shown in FIG. 3, the actual transmitted torque characteristic becomes characteristic Y by adding hysteresis h to characteristic X. Characteristic Y in Figure 3 shows the case where the torsional angular velocity is constant, but Case 3,
When the torsional angular velocity of 4 changes, the working fluid reservoir 21
As the compressive force applied to the silicone oil inside changes, the resistance of the silicone oil to torsion also changes, and therefore the hysteresis h also changes in response to the torsional angular velocity.

なお、捩り角度Dがc゜になると、突起5aの側
面が作動流体溜め21の内周面22に当接し、そ
れ以上の捩れは阻止される。
Note that when the twisting angle D reaches c°, the side surface of the protrusion 5a comes into contact with the inner circumferential surface 22 of the working fluid reservoir 21, and further twisting is prevented.

(発明の効果) 以上説明したように、本発明によるダンパーデ
イスクでは、ケース3,4内にシリコンオイルを
満たし、フランジ2の周縁部に作動流体溜め21
を設け、この作動流体溜め21内に突出する突起
5aをスペーサ5に設け、作動流体溜めめ21の
内周面22と突起5aの先端との間隙が捩り角の
増大に伴なつて減少するように前記内周面22を
形成したので、捩り角度の増大に伴なつてヒステ
リシストルクを増加させることとができ、発進・
停止時、高速運転時にも常にトルク変働および振
動を効果的に吸収することができる。また、作動
流体の粘性を変更することにより簡単にヒステリ
シス特性を調整することができ、用途に応じて最
適のダンパーデイスクとすることができる。しか
も、前記一実施例においては捩り角Dの増大に伴
なつてスプリング15,16,20が順次圧縮さ
れるようになつているので、第3図の特性Yは捩
り角a゜、b゜で段階的に傾斜角度が急になり、一層
クラツチ断続時のフイーリングを向上させること
ができる。
(Effects of the Invention) As explained above, in the damper disk according to the present invention, the cases 3 and 4 are filled with silicone oil, and the working fluid reservoir 21 is provided at the peripheral edge of the flange 2.
A protrusion 5a protruding into the working fluid reservoir 21 is provided on the spacer 5 so that the gap between the inner circumferential surface 22 of the working fluid reservoir 21 and the tip of the protrusion 5a decreases as the torsion angle increases. Since the inner circumferential surface 22 is formed on the inner circumferential surface 22, the hysteresis torque can be increased as the torsion angle increases.
Torque fluctuations and vibrations can be effectively absorbed at all times, even when stopped or during high-speed operation. In addition, the hysteresis characteristics can be easily adjusted by changing the viscosity of the working fluid, and the damper disk can be optimized depending on the application. Moreover, in the above-described embodiment, the springs 15, 16, and 20 are sequentially compressed as the torsion angle D increases, so that the characteristic Y in FIG. The inclination angle becomes steeper in stages, further improving the feeling when the clutch is engaged and engaged.

(別の実施例) (a) 作動流体溜め21は必ずしも4個のものに限
らず、例えば第4図に示すように、作動流体溜
め21の容積を倍増して円周方向に180゜間隔を
隔てて2個の作動流体溜め21を設けてもよ
い。
(Another Embodiment) (a) The number of working fluid reservoirs 21 is not necessarily limited to four; for example, as shown in FIG. Two working fluid reservoirs 21 may be provided separately.

(b) 作動流体溜め21の内周面22の形状は第2
図、第3図に示すように、捩り角a゜でクリアラ
ンスC1に減少するものに限らず、例えば第5
図に示すように、捩り角Dの増大につれてクリ
アランスがC0、C1、C2に段階的に減少するよ
うにして、いわゆる多段ヒステリシス特性を発
生させることもできる。
(b) The shape of the inner circumferential surface 22 of the working fluid reservoir 21 is the second shape.
As shown in FIG .
As shown in the figure, as the torsion angle D increases, the clearance decreases stepwise to C 0 , C 1 , and C 2 , thereby creating a so-called multi-stage hysteresis characteristic.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示す
図で、第1図はダンパーデイスクの縦断面図、第
2図は一部を切り欠いて示す第1図の矢視図、
第3図は伝達トルク一捩り角特性を示すグラフ、
第4図は別の実施例を示す一部を切り欠いて軸方
向から見た部分図、第5図はさらに別の実施例を
示す作動流体溜めの内周面の部分図である。1…
…スプラインハブ、2……フランジ、3,4……
ケース、5……スペーサ、5a……突起、15,
16,20……コイルスプリング(トーシヨンス
プリング)、17,19……窓孔、21……作動
流体溜め、22……内周面。
1 to 3 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a longitudinal sectional view of a damper disk, FIG. 2 is a partially cutaway view in the direction of the arrow in FIG. 1,
Figure 3 is a graph showing the transmission torque per torsion angle characteristic.
FIG. 4 is a partially cutaway view of another embodiment seen from the axial direction, and FIG. 5 is a partial view of the inner circumferential surface of the working fluid reservoir showing still another embodiment. 1...
...Spline hub, 2...Flange, 3, 4...
Case, 5...Spacer, 5a...Protrusion, 15,
16, 20... Coil spring (torsion spring), 17, 19... Window hole, 21... Working fluid reservoir, 22... Inner peripheral surface.

Claims (1)

【特許請求の範囲】[Claims] 1 外周部にトルクが導入されるケースと該ケー
スの外周に設けられたスペーサとによりスプライ
ンハブのフランジを液密状態に覆い、フランジの
窓孔と該窓孔に対向するケースの窪みにトーシヨ
ンスプリングを配置してフランジとケースとを連
結し、該フランジの周縁部を切欠いて作動流体溜
めを形成し、前記スペーサの内周に作動流体溜め
内に突出する突起を設け、該突起の先端と作動流
体溜めの内周面との間の間隙が前記ケースとフラ
ンジの捩り角の増大に伴なつて減少するように前
記作動流体溜めの内周面を形成し、ケース内に作
動流体を満たしたことを特徴とするダンパーデイ
スク。
1 The flange of the spline hub is covered in a liquid-tight state by a case into which torque is introduced into the outer periphery and a spacer provided on the outer periphery of the case, and the torsion is applied to the window hole of the flange and the recess of the case opposite to the window hole. A spring is arranged to connect the flange and the case, a working fluid reservoir is formed by cutting out the peripheral edge of the flange, a projection is provided on the inner periphery of the spacer that projects into the working fluid reservoir, and the tip of the projection and The inner circumferential surface of the working fluid reservoir is formed such that a gap between the inner circumferential surface of the working fluid reservoir and the inner circumferential surface of the working fluid reservoir decreases as the torsional angle between the case and the flange increases, and the case is filled with working fluid. A damper disc characterized by:
JP5894284A 1984-03-26 1984-03-26 Damper disc Granted JPS60201122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5894284A JPS60201122A (en) 1984-03-26 1984-03-26 Damper disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5894284A JPS60201122A (en) 1984-03-26 1984-03-26 Damper disc

Publications (2)

Publication Number Publication Date
JPS60201122A JPS60201122A (en) 1985-10-11
JPH0143172B2 true JPH0143172B2 (en) 1989-09-19

Family

ID=13098881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5894284A Granted JPS60201122A (en) 1984-03-26 1984-03-26 Damper disc

Country Status (1)

Country Link
JP (1) JPS60201122A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613801B2 (en) * 1986-06-19 1991-07-12 Valeo SHOCK ABSORBER, IN PARTICULAR FOR A TORQUE TRANSMISSION DEVICE
DE3624498C2 (en) * 1986-07-19 1995-11-02 Fichtel & Sachs Ag Torsional vibration damper with lubricant filling and hydraulic end stop
JPS63149447A (en) * 1986-12-13 1988-06-22 Atsugi Motor Parts Co Ltd Torsion damper
JPH0645727Y2 (en) * 1989-08-29 1994-11-24 株式会社大金製作所 Liquid viscosity damper
JPH0645728Y2 (en) * 1989-12-22 1994-11-24 株式会社大金製作所 Liquid viscosity damper
JP2018035932A (en) * 2016-09-02 2018-03-08 株式会社エクセディ Clutch structure and clutch disc assembly

Also Published As

Publication number Publication date
JPS60201122A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US4743217A (en) Damper disc having sealed spring chambers
US4565273A (en) Damper disk having hydraulic shock absorbers
JPH09229140A (en) Viscous damper mechanism
US5505288A (en) Damper disc assembly
US5562541A (en) Folded flat-spring and device into which the folded flat-spring is incorporated
JPH0155692B2 (en)
US4485906A (en) Torsional vibration damper, particularly for the clutch disk of a motor vehicle friction disk clutch
GB2278662A (en) Torque- transmitting torsional-vibration damper
JPH0143172B2 (en)
JPH01220747A (en) Torsional damper for car
JPS6151686B2 (en)
JPS6151171B2 (en)
US5595539A (en) Viscous vibration damping mechanism with variable fluid flow resistance
JPH021539Y2 (en)
JPH0729346U (en) Viscous torsional vibration damping device
JPH0143171B2 (en)
JP2676997B2 (en) Damper mechanism of fluid transmission with lock-up clutch
EP0708265B1 (en) Undulated spring and damper mechanism
JPS61189325A (en) Viscous damper disc
JPS6151685B2 (en)
JPH0137225Y2 (en)
JPS6021252B2 (en) damper disc
US6145820A (en) Fluid filled dampening mechanism utilizing a fluid having a thick viscosity
JP3429574B2 (en) Bent leaf spring and damper disk assembly
JPH06137341A (en) Bent leaf spring and damper disk

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term