JPH0136112B2 - - Google Patents

Info

Publication number
JPH0136112B2
JPH0136112B2 JP11008280A JP11008280A JPH0136112B2 JP H0136112 B2 JPH0136112 B2 JP H0136112B2 JP 11008280 A JP11008280 A JP 11008280A JP 11008280 A JP11008280 A JP 11008280A JP H0136112 B2 JPH0136112 B2 JP H0136112B2
Authority
JP
Japan
Prior art keywords
light
thin film
transmittance
film
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11008280A
Other languages
Japanese (ja)
Other versions
JPS5734641A (en
Inventor
Masakatsu Itatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP11008280A priority Critical patent/JPS5734641A/en
Publication of JPS5734641A publication Critical patent/JPS5734641A/en
Publication of JPH0136112B2 publication Critical patent/JPH0136112B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/30Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines
    • H01J29/32Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines with adjacent dots or lines of different luminescent material, e.g. for colour television
    • H01J29/327Black matrix materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/185Luminescent screens measures against halo-phenomena

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 この発明は周囲光の反射を防止した表示装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a display device that prevents reflection of ambient light.

従来、表示デバイス装置たとえばカラーブラウ
ン管は第1図に示す構造となつている。カラーブ
ラウン管21は透明なガラスパネル22を含み、
ガラスパネル内面には3色螢光体スクリーン23
がアルミニウムのメタルバツク層と共にもうけら
れている。3色螢光体スクリーンの近くにはシヤ
ドウマスク24がとりつけられている。
Conventionally, a display device such as a color cathode ray tube has a structure shown in FIG. The color cathode ray tube 21 includes a transparent glass panel 22,
Three-color phosphor screen 23 on the inside of the glass panel
is fabricated with a metal backing layer of aluminum. A shadow mask 24 is attached near the three-color phosphor screen.

カラーブラウン管のネツクには3本の電子銃2
5と26と27がある。電子銃25と26と27
から発せられた電子ビームRとBとGはそれぞれ
異なつた角度からシヤドウマスク24に到達す
る。偏向ヨーク28がネック部29を取り巻いて
おりラスター走査を行う。
There are three electron guns 2 in the color cathode ray tube network.
There are 5, 26 and 27. Electron guns 25, 26 and 27
The electron beams R, B, and G emitted from the electron beams reach the shadow mask 24 from different angles. A deflection yoke 28 surrounds the neck portion 29 and performs raster scanning.

第2図は第1図の3色螢光体スクリーン部の拡
大断面図である。ガラスパネル22の内面にはブ
ラツクマトリスク膜30がもうけられ、その上に
3色螢光体ドツト23Rと23Gと23Bがもう
けられ、更にその上にアルミニウムのメタルバツ
ク層31がもうけられている。
FIG. 2 is an enlarged sectional view of the three-color phosphor screen section of FIG. 1. A black matrix film 30 is formed on the inner surface of the glass panel 22, on which three color phosphor dots 23R, 23G, and 23B are formed, and an aluminum metal back layer 31 is further formed thereon.

この様な構成より成るカラーブラウン管を動作
させると人間の目に入射する光は3色螢光体ドツ
ト23Rと23Gと23Bとにより発光した光I
の他に周囲光によるガラスパネル内外表面での反
射光R1と3色螢光体ドツト23Rと23Gと2
3Bとの表面の反射光R2とがある。反射光R1
R2が3色螢光体ドツト23Rと23Gと23B
とにより発光した光Iに比し強くなればなるほど
カラーブラウン管の画像コントラストが低下し画
像が不鮮明となつてしまう。
When a color cathode ray tube with such a configuration is operated, the light that enters the human eye is the light I emitted by the three-color phosphor dots 23R, 23G, and 23B.
In addition, there is light R1 reflected by ambient light on the inner and outer surfaces of the glass panel, and three-color phosphor dots 23R, 23G, and 2.
3B and the surface reflected light R2 . Reflected light R 1 +
R 2 is three color phosphor dots 23R, 23G and 23B
As the intensity of the light I increases compared to the emitted light I, the image contrast of the color cathode ray tube decreases and the image becomes unclear.

従来よりこのコントラスト低下を防ぐための手
段がいくつかとられて来た。螢光体からの反射を
少なくする手段として主なものはいわゆるブラツ
クマトリツクスクリーンであり、更には螢光体の
表面に着色フイルター粒子を付着せしめたもので
ある。
Conventionally, several measures have been taken to prevent this contrast reduction. The main means for reducing reflection from the phosphor is a so-called black matrix screen, and furthermore, colored filter particles are attached to the surface of the phosphor.

ガラスパネルに対する手段として、透過率の高
いクリヤーパネルの代りに透過率の低いグレーパ
ネルを使用することである。この方法では、ガラ
スパネルの製造設備をクリヤーパネル用とグレー
パネル用の2本立としなければならい欠点を生ず
る。他方カラーブラウン管の製造においては両者
のパネルの製造条件が若干異なるため、生産管理
が複雑となる欠点を生ずる。
A solution to the glass panel is to use a gray panel with low transmittance instead of a clear panel with high transmittance. This method has the disadvantage that the glass panel manufacturing equipment must be equipped with two systems, one for clear panels and one for gray panels. On the other hand, in the manufacture of color cathode ray tubes, the manufacturing conditions for both panels are slightly different, resulting in a drawback that production management is complicated.

ガラスパネルに対する他の手段としては、非吸
収薄膜による反射防止膜をもうけることである。
可視光全域にわたつて低い反射率に保つため、こ
の反射防止膜は厚さ1/4波長又は1/2波長との組合
せから成る薄膜を3層以上積層しなければなら
ず、製造コストが高くなる欠点を有する。
Another option for glass panels is to provide an anti-reflection coating with a non-absorbing thin film.
In order to maintain a low reflectance over the entire visible light spectrum, this anti-reflection coating must be made by laminating three or more thin films with a thickness of 1/4 wavelength or 1/2 wavelength, which is expensive to manufacture. It has some drawbacks.

本発明の目的は、上述の欠点を除去してコント
ラストの高い表示デバイス装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a display device with high contrast.

上記目的を達成するため、本願発明において
は、ガラスパネルの表面に光吸収性薄膜と非吸収
性薄膜とから成るわずか2層の薄膜からなる反射
防止膜をもうけることを特徴とする。
In order to achieve the above object, the present invention is characterized in that an antireflection film consisting of only two thin films consisting of a light-absorbing thin film and a non-absorbing thin film is provided on the surface of a glass panel.

以下本願の発明を詳細に説明する。 The invention of the present application will be explained in detail below.

第3図に示す様に屈折率n0の基板と屈折率n3
空気との間に、厚さd1なる複素屈折率n1−ikを有
する光吸収性薄膜と厚さd2なる屈折率n2を有する
薄膜をもうける。基板n0と光吸収性薄膜n1−ikと
の界面を第1面P1、光吸収性薄膜n1−ikと薄膜n2
との界面を第2面P2、薄膜n2と空気n3との界面
を第3面P3とする。この薄膜に対し空気n3側か
ら基板n0側へ波長λの光が面に垂直に透過する場
合の薄膜の多重反射による振幅反射率(r30)と
振幅透過率(t30)は次式で与えられる。
As shown in Figure 3, between a substrate with a refractive index of n 0 and air with a refractive index of n 3 , there is a light-absorbing thin film with a thickness of d 1 and a complex refractive index of n 1 -ik and a refractive film with a thickness of d 2 . A thin film with a ratio n 2 is produced. The interface between the substrate n 0 and the light-absorbing thin film n 1 -ik is the first surface P1, and the interface between the light-absorbing thin film n 1 -ik and the thin film n 2
Let the interface between the thin film n 2 and the air n 3 be the second surface P2, and the interface between the thin film n 2 and the air n 3 be the third surface P3. When light with wavelength λ is transmitted perpendicularly to the surface of this thin film from the air n 3 side to the substrate n 0 side, the amplitude reflectance (r 30 ) and amplitude transmittance (t 30 ) due to multiple reflections of the thin film are calculated by the following equations. is given by

ここでΥ32、t32は面P3による振幅反射率、振幅
透過率を、Υ20、t20は面P2、P1による振幅反射
率、空気透過率をΥ2は位相差をそれぞれ示す。
ここでΥ32、Υ20、t20、r2は次式で与えられる。
Here, Υ 32 and t 32 represent the amplitude reflectance and amplitude transmittance due to the surface P3, Υ 20 and t 20 represent the amplitude reflectance and air transmittance due to the surfaces P2 and P1, and Υ 2 represents the phase difference, respectively.
Here, Υ 32 , Υ 20 , t 20 , and r 2 are given by the following equations.

Υ32=n3−n2/n3+n2 ……(3) Υ20=Υ21+Υ10・ei1・e-xd1/1+Υ21+Υ10・ei
1・e-xd1……(4) γ2=4π/λn2d2 ……(6) さらにΥ21、t21は面P2による振幅反射率、振幅
透過率を、Υ10、t10は面P1による振幅反射率、振
幅透過率を、γ1は位相差を、xは光吸収性薄膜の
光吸収系数をそれぞれ示す。ここでΥ21、Υ10
γ1、xは次式で与えられる。
Υ 32 =n 3 −n 2 /n 3 +n 2 ...(3) Υ 202110・e i1・e -xd1 /1+Υ 2110・e i
1・e -xd1 ……(4) γ 2 = 4π/λn 2 d 2 ...(6) Furthermore, Υ 21 and t 21 are the amplitude reflectance and amplitude transmittance due to surface P2, and Υ 10 and t 10 are the amplitude reflectance and amplitude transmittance due to surface P1. , γ 1 represents the phase difference, and x represents the light absorption system number of the light-absorbing thin film. Here Υ 21 , Υ 10 ,
γ 1 and x are given by the following equations.

Υ21=n2−n1+ik/n2+n1−ik ……(7) Υ10=n1−n0−ik/n1+n0−ik ……(8) γ1=4π/λn1d1 ……(9) x=4π/λk ……(10) これによりエネルギー反射率R、エネルギー透
過率Tはそれぞれ次式で与えられる。
Υ 21 =n 2 −n 1 +ik/n 2 +n 1 −ik ……(7) Υ 10 =n 1 −n 0 −ik/n 1 +n 0 −ik ……(8) γ 1 =4π/λn 1 d 1 ...(9) x=4π/λk ...(10) Accordingly, the energy reflectance R and the energy transmittance T are given by the following equations.

R=Υ30・Υ30※ ……(11) T=t30・t30※ ……(12) ここで※ は共役複素数を示す。 R=Υ 30・Υ 30 *...(11) T=t 30・t 30 *...(12) Here * indicates a conjugate complex number.

反射率がゼロとなるためには(1)、(11)式より次式
が成立しなければならない。
In order for the reflectance to be zero, the following equation must hold from equations (1) and (11).

Υ32+Υ20・ei2=0 ……(13) Υ32※ +Υ20※ ・e-i2=0 ……(14) これより次式を得る。 Υ 32 + Υ 20・e i2 = 0 ... (13) Υ 32 * + Υ 20 * ・e -i2 = 0 ... (14) From this, the following equation is obtained.

Υ32+Υ21・ei2+(ei2+Υ32・Υ21)・Υ
10・ei1・e-Xd1=0……(15) Υ32※ +Υ21※ ・ei2+(e-i2+Υ32※ ・Υ21※ )・Υ10※ ・e-i1・e-Xd1=0 ……(16) これよりe-2xd1は次式で与えられる。
Υ 32 + Υ 21・e i2 + (e i2 + Υ 32・Υ 21 )・Υ
10・e i1・e -Xd1 =0...(15) Υ 32 * +Υ 21 * ・e i2 + (e -i232 * ・Υ 21 * )・Υ 10 * ・e - i1・e -Xd1 = 0 ... (16) From this, e -2xd1 is given by the following formula.

e-2xd1=Υ32 2+Υ32(Υ21ei2+Υ21※ e-i2)+Υ21・Υ21※ /Υ10・Υ10※ {1+Υ32(Υ31e-i2+Υ21※ ei2)+Υ32 2・Υ21・Υ21※ } =(n1+n02+k2/(n1−n02+k2×(n3 2+n2 2
(n2 2+n1 2)−4n3n2 2n1/(n3 2+n2 2)(n2 2+n1 2)+
4n3n2 2n1 +(n3 2+n2 2)k2+(n3 2−n2 2){(n2 2−n1 2−k2
cosγ2+2n2ksinγ2}/+(n3 2+n2 2)k2+(n3 2−n2 2
){(n2 2−n1 2−k2)cosγ2−2n2ksinγ2}≦1……(
17) γ2=πすなわちn2d2=λ/4の場合(17)式は
次の如く与えられる。
e -2xd1 = Υ 32 2 + Υ 3221 e i2 + Υ 21 * e -i2 ) + Υ 21・Υ 21 * /Υ 10・Υ 10 * {1 + Υ 3231 e -i2 + Υ 21 * e i2 ) + Υ 32 2・Υ 21・Υ 21 * } = (n 1 + n 0 ) 2 + k 2 / (n 1 − n 0 ) 2 + k 2 × (n 3 2 + n 2 2 )
(n 2 2 + n 1 2 ) −4n 3 n 2 2 n 1 / (n 3 2 + n 2 2 ) (n 2 2 + n 1 2 ) +
4n 3 n 2 2 n 1 + (n 3 2 + n 2 2 ) k 2 + (n 3 2 − n 2 2 ) {(n 2 2 − n 1 2 − k 2 )
cosγ 2 +2n 2 ksinγ 2 }/+(n 3 2 +n 2 2 )k 2 +(n 3 2 −n 2 2
) {(n 2 2 −n 1 2 −k 2 )cosγ 2 −2n 2 ksinγ 2 }≦1……(
17) When γ 2 =π, that is, n 2 d 2 =λ/4, equation (17) is given as follows.

e-2xd1(n1+n02+k2/(n1−n02+k2×
(n3n1−n2 22+k2n3 2/(n3n1+n2 22+k2n3 2≦1…
…(18) これより反射率がゼロ即ち無反射の条件は次の
如く与えられる。
e -2xd1 (n 1 + n 0 ) 2 + k 2 / (n 1 − n 0 ) 2 + k 2 ×
(n 3 n 1 −n 2 2 ) 2 +k 2 n 3 2 / (n 3 n 1 +n 2 2 ) 2 +k 2 n 3 2 ≦1…
...(18) From this, the conditions for zero reflectance, that is, no reflection, are given as follows.

n1{(n2 2−n3n0)(n3n1 2−n2n0)+(n3n2 2−n
3 2n0)k2}≧0……(19) k=0の場合は非吸収性薄膜の場合の無反射条
件であつてn3n1 2=n2n0なるよく知られた結論を
得る。
n 1 {(n 2 2 −n 3 n 0 )(n 3 n 1 2 −n 2 n 0 )+(n 3 n 2 2 −n
3 2 n 0 ) k 2 } ≧ 0 (19) When k = 0, it is a non-reflection condition for a non-absorbing thin film, and the well-known conclusion that n 3 n 1 2 = n 2 n 0 get.

k≠0の場合は光吸収性薄膜を含む場合の無反
射条件であり、例えば、空気(n3=1)とガラス
基板(n0=1.51)の間に、ZnS(n2=2.30)、MgF2
(n2=1.38)、SiO(n2=2)、TiO2(n2=2.4)、
CeO2(n2=2.30)等の非吸収性薄膜と、光吸収性
のCr(n1=2.97、k=4.85)薄膜とを組合せた2
層の薄膜を形成した場合には(19)式が満たされ
無反射となる。このように多くの非吸収性薄膜と
Cr薄膜の組合せで反射率を零とすることができ
る。
When k≠0, it is a non-reflection condition when a light-absorbing thin film is included. For example, between air (n 3 = 1) and a glass substrate (n 0 = 1.51), ZnS (n 2 = 2.30), MgF2
(n 2 = 1.38), SiO (n 2 = 2), TiO 2 (n 2 = 2.4),
2, which combines a non-absorbing thin film such as CeO 2 (n 2 = 2.30) and a light-absorbing Cr (n 1 = 2.97, k = 4.85) thin film.
When a thin layer is formed, equation (19) is satisfied and there is no reflection. In this way, many non-absorbent thin films and
The reflectance can be reduced to zero by combining Cr thin films.

以上はγ2=πすなわちn2d2=λ/4の場合の無反 射条件を示したがγ2≠πにおいても無反射とする
ことが出来る。第4図は光吸収性薄膜としてCr
を用いた場合の(17)式に示すe-2xd1とγ2との関
係を示すもので、曲線aはCrとZnSの組合せの薄
膜、曲線bはCrとMgF2の組合せの薄膜の場合で
ある。図においてe-2xd1が1より小さい無反射の
領域はγ2=πにかぎらないことが示される。
Although the above shows the no-reflection condition when γ 2 =π, that is, n 2 d 2 =λ/4, no reflection can also be achieved when γ 2 ≠π. Figure 4 shows Cr as a light-absorbing thin film.
This shows the relationship between e -2xd1 and γ 2 shown in equation (17) when using be. The figure shows that the non-reflection region where e -2xd1 is less than 1 is not limited to γ 2 =π.

図において、0からπの間の二点α、β(α<
β)において同じe-2xd1の値を与えることを示し
ている。このことはn2d2=λ/4πβなる反射防止膜 にλ以外の波長即ちβ/αλの波長の光が入射して も無反射となることを示している。従つて可視光
領域における二波長で無反射となるようxとn2d2
を選べば、可視光全域にわたつて極めて低い反射
率にすることが出来る。
In the figure, two points α and β between 0 and π (α<
β) gives the same value of e -2xd1 . This shows that even if light with a wavelength other than λ, that is, β/αλ, is incident on the antireflection film where n 2 d 2 =λ/4πβ, no reflection occurs. Therefore, x and n 2 d 2 are set so that there is no reflection at two wavelengths in the visible light region.
By selecting , it is possible to achieve extremely low reflectance over the entire visible light range.

反射率ゼロの場合のエネルギー透過率T30は(2)
(5)(12)(13)(14)式より次の如く与えられる。
The energy transmittance T 30 when the reflectance is zero is (2)
From equations (5), (12), (13), and (14), it is given as follows.

T30=t32 (・t21・t21※ ・t10・t10※ /(1−Υ32 22 ×1+Υ32(Υ21・e-i2+Υ21※ ・ei2)+Υ32 2・Υ21・Υ21※ /(1−Υ21 2X1−Υ212)・e-xd1 ……(20) T30は光吸収性薄膜の薄膜d1がゼロ即ち非吸収
性薄膜のみの透過率と関係づけて次式の如く変形
される。
T 30 = t 32 (・t 21・t 21 * ・t 10・t 10 * / (1−Υ 32 2 ) 2 × 1 + Υ 3221・e -i2 + Υ 21 * ・e i2 ) + Υ 32 2・Υ 21 Υ 21 * / ( 1 − Υ 21 2 It is transformed as shown in the following equation in relation to the transmittance of only the thin film.

T30=4n3n2 2n0/(n3n0+n2 22×1+Υ32(Υ21・e
−iγ2+Υ21※ eiγ2)+Υ32 2・Υ21・Υ21※ /11+Υ32(Υ21+Υ21※ )+Υ32 2・Υ21・Υ21※ ・e-xd1 =4n3n2 2n0/(n3n0+n2 2)×(n3 2+n2 2)(n2 2+n1
2)+4n3n2 2n1/(n32+n2 2)(n2 2+n1 2)+4n3n2 2n1 +(n3 2+n2 2)k2+(n3 2+n2 2){(n2 2−n1 2+k2
crsγ2−2n2ksinγ2}/+(n3 2+n2 2)k2+(n3 2−n2 2
)(n2 2−n1 2−k2)・e-xd1……(21) 次に本発明を実施例により詳細に説明する。第
1の実施例は、第1図に示す従来のカラーブラウ
ン管の透明なガラスパネル(n0=1.51)の表面に
真空蒸着法によつてCr膜(n1=2.97、k=4.85)
を約3mμ形成し、さらにその上にMgF2膜(n2
=1.38)を同じく真空蒸着法によつて約100mμ
形成したものである。この場合には可視光(λ=
55mμ)の光に対して反射率は零、透過率は約80
%である。
T 30 = 4n 3 n 2 2 n 0 / (n 3 n 0 + n 2 2 ) 2 × 1 + Υ 32 (Υ21・e
−iγ2+Υ 21 * eiγ2) + Υ 32 2・Υ21・Υ21* /11+Υ32 (Υ21+Υ21*) + Υ 32 2・Υ21・Υ21* ・e -xd1 =4n 3 n 2 2 n 0 / (n 3 n 0 + n 2 2 ) ×(n 3 2 +n 2 2 )(n 2 2 +n 1
2 ) +4n 3 n 2 2 n 1 / (n 32 + n 2 2 ) (n 2 2 + n 1 2 ) +4n 3 n 2 2 n 1 + (n 3 2 + n 2 2 ) k 2 + (n 3 2 + n 2 2 ) {(n 2 2 − n 1 2 + k 2 )
crsγ 2 −2n 2 ksinγ 2 }/+(n 3 2 +n 2 2 )k 2 +(n 3 2 −n 2 2
)(n 2 2 −n 1 2 −k 2 )·e −xd1 (21) Next, the present invention will be explained in detail with reference to Examples. In the first embodiment, a Cr film (n 1 = 2.97, k = 4.85) is deposited on the surface of a transparent glass panel (n 0 = 1.51) of a conventional color cathode ray tube (n 0 = 1.51) by vacuum evaporation as shown in Fig. 1.
3 mμ, and then a MgF 2 film (n 2
= 1.38) to approximately 100 mμ using the same vacuum evaporation method.
It was formed. In this case, visible light (λ=
Reflectance is 0 and transmittance is approximately 80 for light of 55mμ)
%.

ここで反射防止膜を設けない場合とこの実施例
のように反射防止膜を設けた場合の相対揮度と相
対コントラストを求める。今、反射防止膜を設け
ない場合の相対揮度および相対コントラストをそ
れぞれ1とし、反射防止膜の透過率をηとする
と、この実施例の反射防止膜をガラスパネルの表
面に設けた場合の揮度はη、コントラストは1/
ηになる。従つて、この実施例の場合透過率80%
(η=0.8)であるから揮度は少し低くなるが、コ
ントラストは1.25倍に高めることができる。
Here, the relative volatility and relative contrast are determined in the case where no antireflection film is provided and in the case where an antireflection film is provided as in this example. Now, if the relative volatility and relative contrast when no antireflection film is provided are each 1, and the transmittance of the antireflection film is η, then the volatility when the antireflection film of this example is provided on the surface of the glass panel is The degree is η, the contrast is 1/
becomes η. Therefore, in this example, the transmittance is 80%.
(η = 0.8), so the volatility is slightly lower, but the contrast can be increased by 1.25 times.

第2の実施例は、適当な基板ガラスの上に反射
防止膜を形成し、これをカラーブラウン管のガラ
スパネル表面に接着することによつて構成され
る。すなわち、適当な基板ガラスの表面にCr膜
を真空蒸着によつて約3mμ形成し、その上に
ZnS膜(n2=2.3)を約120mμ形成したものをガ
ラスパネルの表面にガラスとほぼ同等の屈折率を
有するエポキシ樹脂を用いて薄膜側が外表面にな
るように貼りつける。この場合にも可視光に対し
て反射率は零、透過率は約80%になり、コントラ
ストは1.25倍になる。
The second embodiment is constructed by forming an antireflection coating on a suitable substrate glass and adhering it to the surface of a glass panel of a color cathode ray tube. That is, a Cr film of about 3 mμ is formed on the surface of a suitable substrate glass by vacuum deposition, and then
A ZnS film (n 2 = 2.3) of about 120 mμ is attached to the surface of a glass panel using an epoxy resin having a refractive index almost the same as that of glass, with the thin film side facing the outer surface. In this case as well, the reflectance for visible light is zero, the transmittance is approximately 80%, and the contrast is 1.25 times higher.

なお、Cr膜を厚くして透過率を更に低くする
とコントラストは高くなるが、揮度が抵下する。
従つて、実用上透過率は80%前後の値が適当であ
る。
Note that if the transmittance is further lowered by making the Cr film thicker, the contrast will increase, but the volatility will decrease.
Therefore, in practical terms, a value of around 80% is appropriate for the transmittance.

また、上記実施例ではMgF2とZnS薄膜の場合
について示したが、屈折率がほぼこれらの間にあ
るSiO2(n2=2)、CeO2(n2=2.3)、TiO2(n2
2.4)等の非吸収性薄膜は第4図からわかるよう
にe-2xd1が1.0以下で曲線aとbの間の値を取るこ
とができ本発明に用いることができる。
In addition, although the above example shows the case of MgF 2 and ZnS thin films, SiO 2 (n 2 = 2), CeO 2 (n 2 = 2.3), TiO 2 (n 2 =
As can be seen from FIG. 4, non-absorbing thin films such as 2.4) can take values between curves a and b when e -2xd1 is 1.0 or less, and can be used in the present invention.

以上の説明では表示デバイス装値としてカラー
ブラウン管を例に引いたが、本発明は本願の要旨
を変更しない範囲で、世の陰極線管、螢光表示
管、ブラズマデイスプレイパネル、エレクトロク
ロミツクデイスプレイパネル等のすべての表示デ
バイス装値に適用される。
In the above description, a color cathode ray tube was used as an example of a display device, but the present invention also covers cathode ray tubes, fluorescent display tubes, plasma display panels, electrochromic display panels, etc., without departing from the gist of the present application. Applies to all display device specifications.

以上説明した如く、本願発明を表示デバイス装
値の表面に適用することにより、わずか2層より
成る簡単な薄膜によつて表面反射を防止すること
が出来る他、クリヤーパネルをグレーパネルに相
当する透過率にすることによつて著しく画像のコ
ントラストを向上させることが出来るので、本願
発明のメリツトは大きい。
As explained above, by applying the present invention to the surface of a display device packaging, it is possible to prevent surface reflection with a simple thin film consisting of only two layers, and to make the clear panel transparent, which is equivalent to a gray panel. Since the contrast of the image can be significantly improved by increasing the ratio, the present invention has great merits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカラーブラウン管の断面図、第2図は
3色螢光体スクリーンの断面図、第3図は反射防
止膜の断面図、第4図はe-2xd1とγ2との関係を示
すグラフである。 22……ガラスパネル、23……螢光体スクリ
ーン、24……シヤドウマスク、n0……ガラス基
板屈折率、n1−ik……光吸収性薄膜の屈折率、n2
……非吸収性薄膜の屈折率、n3……空気の屈折
率。
Figure 1 is a cross-sectional view of a color cathode ray tube, Figure 2 is a cross-sectional view of a three-color phosphor screen, Figure 3 is a cross-sectional view of an antireflection film, and Figure 4 shows the relationship between e -2xd1 and γ 2 . It is a graph. 22... Glass panel, 23... Fluorescent screen, 24... Shadow mask, n 0 ... Glass substrate refractive index, n 1 -ik... Light absorbing thin film refractive index, n 2
...Refractive index of non-absorbing thin film, n 3 ...Refractive index of air.

Claims (1)

【特許請求の範囲】[Claims] 1 文字、画像等を表示する表示装置の外表面に
光吸収性のCr薄膜と光非吸収性薄膜の二層から
なる反射防止膜を設けたことを特徴とする表示装
置。
1. A display device for displaying characters, images, etc., characterized in that an antireflection film consisting of two layers, a light-absorbing Cr thin film and a non-light-absorbing thin film, is provided on the outer surface of the display device.
JP11008280A 1980-08-11 1980-08-11 Display unit Granted JPS5734641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11008280A JPS5734641A (en) 1980-08-11 1980-08-11 Display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11008280A JPS5734641A (en) 1980-08-11 1980-08-11 Display unit

Publications (2)

Publication Number Publication Date
JPS5734641A JPS5734641A (en) 1982-02-25
JPH0136112B2 true JPH0136112B2 (en) 1989-07-28

Family

ID=14526568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11008280A Granted JPS5734641A (en) 1980-08-11 1980-08-11 Display unit

Country Status (1)

Country Link
JP (1) JPS5734641A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711116B2 (en) * 1985-07-31 1995-02-08 日本製紙株式会社 Droplet size control device for jet black liquor in recovery boiler
JPS6276395U (en) * 1985-10-31 1987-05-15
JPS6358739A (en) * 1986-08-29 1988-03-14 Hitachi Ltd Surface plate for display
JPH06218700A (en) * 1993-01-21 1994-08-09 Matsushita Electric Ind Co Ltd Cut of lead wire and coil part

Also Published As

Publication number Publication date
JPS5734641A (en) 1982-02-25

Similar Documents

Publication Publication Date Title
EP0596531B1 (en) Antireflection film and display apparatus comprising the same
US5521759A (en) Optical filters for suppressing unwanted reflections
JP2529741B2 (en) Optical interference EL element
US6071616A (en) Opaque low reflecting coating aperture on glass
JPH0136226B2 (en)
US5858519A (en) Absorbing anti-reflection coatings for computer displays
JP2000513833A (en) Optical element and display device provided with optical element
EP0519503B1 (en) Antireflection film and display apparatus
JPS616151A (en) Optical filter comprising inorganic base material for blue light
KR900009083B1 (en) Cathode ray tube with light reflection film
JP2702821B2 (en) CRT with low reflection film
US4815821A (en) Face plate for display
JPH0136112B2 (en)
JPH11171596A (en) Reflection preventing film
JPH07134955A (en) Display apparatus and reflectance controlling method of apparatus thereof
JPH07111482B2 (en) Multi-layer antireflection film
JP3484827B2 (en) Lenticular lens sheet and transmission screen
US20210255372A1 (en) Dark mirror thin films
US5144417A (en) Projection type television apparatus
KR940004188B1 (en) Color cathode-ray tube structure
JPH01198701A (en) Colored reflection preventive film
JPH03238740A (en) Reflection preventive film of display device
JP2677281B2 (en) Picture tube and picture tube reflection and antistatic treatment method
US5031033A (en) Projection television apparatus
JPH07312186A (en) Reflection antistatic cathode-ray tube and manufacture thereof