JPH0134987Y2 - - Google Patents

Info

Publication number
JPH0134987Y2
JPH0134987Y2 JP1984160221U JP16022184U JPH0134987Y2 JP H0134987 Y2 JPH0134987 Y2 JP H0134987Y2 JP 1984160221 U JP1984160221 U JP 1984160221U JP 16022184 U JP16022184 U JP 16022184U JP H0134987 Y2 JPH0134987 Y2 JP H0134987Y2
Authority
JP
Japan
Prior art keywords
clutch
output shaft
load
input shaft
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984160221U
Other languages
Japanese (ja)
Other versions
JPS6175529U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984160221U priority Critical patent/JPH0134987Y2/ja
Publication of JPS6175529U publication Critical patent/JPS6175529U/ja
Application granted granted Critical
Publication of JPH0134987Y2 publication Critical patent/JPH0134987Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

【考案の詳細な説明】 イ 産業上の利用分野 この考案は、ポンプ、ブロワー、発電機等の被
動機を一定速度で回転駆動させるためにこの被動
機と原動機との間に設けられる油圧多板式滑りク
ラツチの速度制御装置に関するものである。
[Detailed description of the invention] A. Field of industrial application This invention is a hydraulic multi-plate type that is installed between a driven machine such as a pump, blower, or generator to rotate the driven machine at a constant speed. This invention relates to a speed control device for a slipping clutch.

ロ 従来の技術 滑りクラツチは原動機と被動機との間に設けら
れ、出力軸の回転数を検出してフイードバツク制
御を行い、クラツチの作動油圧を自動的に調整し
てクラツチの出力軸回転数を任意に設定できる。
B. Conventional technology A slip clutch is installed between the prime mover and the driven machine, detects the rotation speed of the output shaft, performs feedback control, and automatically adjusts the hydraulic pressure of the clutch to adjust the output shaft rotation speed of the clutch. Can be set arbitrarily.

滑りクラツチは高負荷時のクラツチ熱負荷容量
を基準に設計されているため、低負荷時には制御
油圧の微小変化が必要以上のトルク変化となるこ
とや、冷却油の影響でつれ回りトルクが生じるこ
とで制御特性が著しく悪かつた。
Sliding clutches are designed based on the clutch thermal load capacity at high loads, so at low loads, small changes in control oil pressure can result in more torque changes than necessary, and drag torque can occur due to the effects of cooling oil. The control characteristics were extremely poor.

ハ 考案が解決しようとする問題点 この考案は軽負荷時の制御特性改善及び省エネ
ルギーを目的とし、軽負荷時、クラツチ出力軸に
入力軸を回す仕事をさせクラツチに一定以上の負
荷を与えるものである。単に、出力軸にブレーキ
負荷をかけても制御特性は改善されるが、第7図
のようにブレーキ負荷は総て損失動力となり省エ
ネの目的を失つてしまう。
C. Problems that the invention aims to solve This invention aims to improve control characteristics and save energy during light loads, and is designed to cause the clutch output shaft to do the work of rotating the input shaft and apply a load above a certain level to the clutch during light loads. be. Simply applying a brake load to the output shaft improves the control characteristics, but as shown in FIG. 7, the brake load results in power loss, defeating the purpose of energy saving.

即ち、負荷率が20%以下になると制御特性が悪
くなるので、負荷率20%以下はブレーキ負荷をか
けるのであるが、この場合は、ブレーキ負荷は全
て損失動力となる。
That is, when the load factor is less than 20%, the control characteristics deteriorate, so a brake load is applied when the load factor is less than 20%, but in this case, all the brake load becomes power loss.

この考案はこの損失動力を少くし、ブレーキ負
荷動力の一部を入力軸に循環させる滑りクラツチ
の速度制御装置を得ようとするものである。
This invention aims to reduce this power loss and provide a speed control device for a slipping clutch that circulates a portion of the brake load power to the input shaft.

ニ 問題点を解決させるための手段 この考案は入力軸2にメインの滑りクラツチ3
2を介して出力軸9が連結され、この滑りクラツ
チ32の作動油圧を制御して、入力軸2の回転数
が変わつても出力軸9の回転数を一定に保つ油圧
多板式滑りクラツチ32において、軽負荷時に前
記出力軸9の動力を入力軸2に負荷として循環す
るように前記出力軸9を連結装置を介して入力軸
2に断続可能に接続した滑りクラツチの速度制御
装置である。
D. Means for solving the problem This idea uses a main slip clutch 3 on the input shaft 2.
In the hydraulic multi-disc sliding clutch 32, the output shaft 9 is connected through the clutch 2, and the hydraulic pressure of the sliding clutch 32 is controlled to keep the rotational speed of the output shaft 9 constant even when the rotational speed of the input shaft 2 changes. This is a slip clutch speed control device in which the output shaft 9 is connectably connected to the input shaft 2 via a coupling device so that the power of the output shaft 9 is circulated as a load to the input shaft 2 during light loads.

前記の連結装置が歯車10,11と動力循環用
油圧クラツチ33とで形成され、前記出力軸9に
設けた負荷信号検出器26が油圧切換弁25に接
続され、作動油圧がこの切換弁25を介して前記
動力循環用油圧クラツチ33の作動ピストン17
に接続させることができる。
The aforementioned coupling device is formed by the gears 10, 11 and a power circulation hydraulic clutch 33, and the load signal detector 26 provided on the output shaft 9 is connected to the hydraulic switching valve 25, so that the working hydraulic pressure switches the switching valve 25. The operating piston 17 of the power circulation hydraulic clutch 33
can be connected to.

ホ 作用 この考案の滑りクラツチの速度制御装置を適用
する油圧多板式滑りクラツチは、入力軸2の回転
が滑りクラツチ即ち油圧多板式のメインの滑りク
ラツチ32(以下メインクラツチと称す)を介し
て発電機の如き被動機28を回転させる場合、出
力軸9に設けたパルス発振器27で出力軸9の回
転数を検出し、これをコントローラー22を介し
てアクチユエーター21で減圧弁20を操作し、
メインクラツチ32の作動ピストン16への油圧
を制御し、このメインクラツチ32の滑り率を制
御して被動機28の回転を制御する。この場合被
動機28の負荷即ち出力軸9の負荷が20%以下に
なると、メインクラツチ32の容量が大きいの
で、出力軸9の回転数制御が困難になる。
E. Function The hydraulic multi-disc slip clutch to which the slip clutch speed control device of this invention is applied is configured such that the rotation of the input shaft 2 generates electricity through the slip clutch, that is, the hydraulic multi-disc main slip clutch 32 (hereinafter referred to as the main clutch). When rotating a driven machine 28 such as a machine, the rotation speed of the output shaft 9 is detected by a pulse oscillator 27 provided on the output shaft 9, and this is used to operate the pressure reducing valve 20 with the actuator 21 via the controller 22.
The oil pressure applied to the operating piston 16 of the main clutch 32 is controlled, and the slip rate of the main clutch 32 is controlled to control the rotation of the driven machine 28. In this case, when the load on the driven machine 28, that is, the load on the output shaft 9, becomes less than 20%, it becomes difficult to control the rotational speed of the output shaft 9 because the capacity of the main clutch 32 is large.

この場合、この考案の速度制御では前記出力軸
9の動力を連結装置を介して入力軸2に負荷とし
て循環させるので、第3図に示す如くブレーキ負
荷による損失動力は少いが、入力軸2にかゝる負
荷は充分に大きいので出力軸9の回転数制御を正
確に行うことが出来る。
In this case, in the speed control of this invention, the power of the output shaft 9 is circulated as a load to the input shaft 2 via the coupling device, so the loss of power due to the brake load is small as shown in FIG. Since such a load is sufficiently large, the rotational speed of the output shaft 9 can be controlled accurately.

ヘ 実施例 第1図において、原動機1から入力軸2、ドラ
イブギヤー3及びドリブンギヤー4を介してクラ
ツチインナーハブ5を駆動し、インナーハブ5に
スプライン嵌合された摩擦板6とアウターハブ8
にスプライン嵌合されたスチール板7を滑らせる
ことで出力軸9の回転数を制御するメインクラツ
チ32と、出力軸9からドライブギヤー10、ド
リブンギヤー11を介してインナーハブ12を駆
動し、摩擦板13、アウターハブ15のスチール
板14を滑らせて動力を出力軸9から入力軸2へ
循環させる動力循環用油圧クラツチ33とで形成
されている。
F. Example In FIG. 1, a clutch inner hub 5 is driven from a prime mover 1 via an input shaft 2, a drive gear 3, and a driven gear 4, and a friction plate 6 and an outer hub 8 are spline-fitted to the inner hub 5.
A main clutch 32 controls the rotation speed of the output shaft 9 by sliding a steel plate 7 spline-fitted to the main clutch 32, which drives the inner hub 12 from the output shaft 9 via a drive gear 10 and a driven gear 11 to reduce friction. It is formed of a power circulation hydraulic clutch 33 that circulates power from the output shaft 9 to the input shaft 2 by sliding the plate 13 and the steel plate 14 of the outer hub 15.

出力軸9の回転数はパルスジエネレーター27
により検出され、コントローラ22で入力信号と
速度設定器23の指令とが比較演算されたのちア
クチユエータ21にフイードバツクされる。
The rotation speed of the output shaft 9 is determined by the pulse generator 27.
The controller 22 compares and calculates the input signal with the command from the speed setter 23, and then feeds it back to the actuator 21.

アクチユエーター21は減圧弁20に連結され
ており、油圧ポンプ18からリリーフ弁19で一
次調圧された圧油を二次調圧し、ピストン16の
押付力を変化させて速度制御を行つている。
The actuator 21 is connected to the pressure reducing valve 20, and secondarily regulates the pressure of the pressure oil from the hydraulic pump 18 whose pressure has been firstly regulated by the relief valve 19, and controls the speed by changing the pressing force of the piston 16. .

ところが、被動機28が軽負荷時になると負荷
信号検出器26からの信号により電磁式油圧切換
弁25が作動し、減圧弁24であらかじめ設定さ
れた圧油がピストン17を押し付け、出力軸9側
から入力軸2へ動力が伝わるため、メインクラツ
チ32の負荷が大きくなり回転制御特性が改善さ
れる。
However, when the driven machine 28 is under a light load, the electromagnetic hydraulic switching valve 25 is actuated by a signal from the load signal detector 26, and the pressure oil set in advance by the pressure reducing valve 24 presses the piston 17, causing the output shaft 9 side to Since the power is transmitted to the input shaft 2, the load on the main clutch 32 increases and rotation control characteristics are improved.

クラツチの冷却は油圧ポンプ29を通りリリー
フ弁30で調圧された油により行われる。
The clutch is cooled by oil that passes through a hydraulic pump 29 and whose pressure is regulated by a relief valve 30.

第2図は、動力循環クラツチとメインクラツチ
を出力軸側で一つのアウターハブ内に収めたもの
で動作は第1図と同様である。
In FIG. 2, the power circulation clutch and the main clutch are housed in one outer hub on the output shaft side, and the operation is the same as that in FIG. 1.

動力循環クラツチの制御には、第1図及び第2
図のようにある一定負荷率以下になつたら負荷信
号により一定油圧が動力循環クラツチ33に加わ
る方式と、第4図のようにメインクラツチ制御油
圧ライン34の油圧により動力循環クラツチ33
の制御油圧ライン35の油圧をコントロールする
減圧弁31を両ライン34,35に介在させるこ
ともできる。
For controlling the power circulation clutch, see Figures 1 and 2.
As shown in the figure, a constant hydraulic pressure is applied to the power circulation clutch 33 by a load signal when the load falls below a certain level, and as shown in FIG.
A pressure reducing valve 31 for controlling the oil pressure of the control oil pressure line 35 may be interposed between both lines 34 and 35.

この場合、負荷検出器26がいらないのと、動
力循環クラツチ油圧はメインクラツチ油圧に反比
例してコントロールされるので第5図が示すよう
に損失動力が少く効率がよい。
In this case, the load detector 26 is not required and the power circulation clutch oil pressure is controlled in inverse proportion to the main clutch oil pressure, so as shown in FIG. 5, power loss is small and efficiency is high.

次にこの考案の速度制御装置の各部の具体的数
値を述べると、 iI=NOUT/e(nax)×NIN(nio) ip=e(nax)×NOUT/NIN(nax) iI:メインクラツチ増速ギヤー比 NOUT:出力軸回転数 e:速比=アウターハブ回転数/インナー回転数 (e<1、普通enax=0.9) NIN=入力軸回転数 NIN(nio)〜NIN(nal) iO:動力循環クラツチ減速比 例 入力軸回転数 NIN=576〜634rpm 出力軸回転数 NOUT=900rpm ギヤ(3)歯数 Z1=142枚 ギヤ(4)歯数 Z2=81枚 ギヤ(10)歯数 Z3=98枚 ギヤ(11)歯数 Z4=125枚 iI=NOUT/enax×NINnio =900/0.9×576=1.736≒Z1/Z2=1.753 ip=enax×NOUT/NINnax=1.278≒Z4/Z3=1.276 入力軸2の回転数NINに対する速比の関係を第
6図に示す。
Next, the specific numerical values of each part of the speed control device of this invention are described as follows: i I = N OUT /e (nax) ×N IN(nio) i p = e (nax) ×N OUT /N IN(nax) i I : Main clutch speed increasing gear ratio N OUT : Output shaft rotation speed e: Speed ratio = outer hub rotation speed/inner rotation speed (e<1, normal e nax = 0.9) N IN = input shaft rotation speed N IN( nio) ~N IN(nal) i O : Power circulation clutch reduction proportional Input shaft rotation speed N IN = 576 to 634 rpm Output shaft rotation speed N OUT = 900 rpm Number of gear (3) teeth Z 1 = 142 teeth Gear (4) teeth Number Z 2 = 81 teeth Number of gear (10) teeth Z 3 = 98 teeth Number of gear (11) teeth Z 4 = 125 teeth i I = N OUT / e nax × N INnio = 900 / 0.9 × 576 = 1.736≒Z 1 /Z 2 = 1.753 i p = e nax ×N OUT /N INnax = 1.278≒Z 4 /Z 3 = 1.276 The relationship between the speed ratio and the rotation speed N IN of the input shaft 2 is shown in FIG.

本装置に設けない滑りクラツチ損失動力Ws1は Ws1=W0(1−e)+Wd/e W0:出力軸負荷(kW) Wd=ブレーキ負荷(kW) e:速比 例 負荷率20%時 W0=50kW Wd=50kW e=0.9とすると、 Ws1=50(1−0.9)+50/0.9 =61.1kWになる。 The slip clutch power loss W s1 not provided in this device is Ws 1 = W 0 (1-e) + Wd/e W 0 : Output shaft load (kW) Wd = Brake load (kW) e: Speed proportional When load rate is 20% If W 0 = 50kW Wd = 50kW e = 0.9, Ws 1 = 50 (1-0.9) + 50/0.9 = 61.1kW.

本装置を設けた滑りクラツチ損失動力Ws2は Ws2=W0(1−e)/e+Wd(1/e−e′) =50(1−0.9)/0.9+50(1/0.9−0.81) =20.6kWである。 The slip clutch power loss Ws 2 with this device is Ws 2 = W 0 (1-e)/e+Wd (1/ee-e') = 50 (1-0.9)/0.9+50 (1/0.9-0.81) = It is 20.6kW.

e′:動力循環クラツチの速比とすると、 e=0.9のとき e′=0.81 (第6図より)となる。 If e′ is the speed ratio of the power circulation clutch, then When e=0.9 e′=0.81 (From Figure 6).

以上のように省エネ効果が大きく又制御特性も
改善される。
As described above, the energy saving effect is large and the control characteristics are also improved.

ト 考案の効果 この考案による速度制御装置は、第7図に示す
如く、従来ブレーキ負荷により損失動力となつた
エネルギーに対し、第3図に示す如く、出力軸9
の動力の一部を入力軸2に負荷動力としてフイー
ドバツクすることにより省エネルギー効果を得る
と共に第8図及び第9図に示す如く、制御特性を
良好にすることが出来る。
G. Effects of the invention As shown in Fig. 7, the speed control device according to the invention is able to reduce the energy lost from the output shaft 9 as shown in Fig.
By feeding back a part of the power to the input shaft 2 as load power, an energy saving effect can be obtained and control characteristics can be improved as shown in FIGS. 8 and 9.

即ち、第8図において、負荷が20%に低下した
場合の制御特性は、点線で示す従来のものに比
べ、この考案の制御装置では実線で示す如く、出
力軸回転数の変動は極めて小さい。
That is, in FIG. 8, when the load decreases to 20%, the control characteristics of the control device of this invention are extremely small, as shown by the solid line, as compared to the conventional control characteristics shown by the dotted line.

また、第9図に示す如く、負荷投入時及び負荷
を外した場合の出力軸回転数の変動率δ+、或いは
δ-は点線で示す従来のものの15%に比較して、こ
の考案の制御装置を用いたものでは実線で示す如
く変動率δ+或はδ-は7%以下と小さく、且つ早く
正常な負荷回転数NR或は小負荷回転数N〓に落ち
着く。前記の変動率は下記により算出した。
In addition, as shown in Fig. 9, the fluctuation rate δ + or δ - of the output shaft rotation speed when the load is applied and when the load is removed is 15% in the conventional control shown by the dotted line. In the case where the device is used, as shown by the solid line, the fluctuation rate δ + or δ - is as small as 7% or less, and quickly settles to the normal load rotation speed N R or the small load rotation speed N〓. The above variation rate was calculated as follows.

δ+=Nnax−NR/NR×100% δ-=N〓−Nnio/NR×100% δ + =N nax −N R /N R ×100% δ - =N〓−N nio /N R ×100%

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第4図はこの考案による滑
りクラツチの速度制御装置の略図的説明図、第3
図、第5図乃至第9図は線図である。 図面中、符号1は原動機、2は入力軸、3はド
ライブギヤー、4はドリブンギヤー、5はインナ
ーハブ、6は摩擦板、7はスチール板、8はアウ
ターハブ、9は出力軸、10はドライブギヤー、
11はドリブンギヤー、12はインナーハブ、1
3は摩擦板、14はスチール板、15はアウター
ハブ、16,17はピストン、18は油圧ポン
プ、19はリリーフ弁、20は減圧弁、21はア
クチユエータ、22はコントローラー、23は速
度設定器、24は減圧弁、25は切替電磁弁、2
6は負荷信号検出器、27はパルスジエネレータ
ー、28は被動機、29は油圧ポンプ、30はリ
リーフ弁、31は減圧弁、32はクラツチ、33
は油圧クラツチ、34はメインクラツチ制御油圧
ライン、35は循環クラツチ制御油圧ラインであ
る。
1, 2 and 4 are schematic illustrations of the speed control device for a sliding clutch according to this invention;
The figures 5 to 9 are diagrams. In the drawings, 1 is a prime mover, 2 is an input shaft, 3 is a drive gear, 4 is a driven gear, 5 is an inner hub, 6 is a friction plate, 7 is a steel plate, 8 is an outer hub, 9 is an output shaft, and 10 is a drive gear,
11 is the driven gear, 12 is the inner hub, 1
3 is a friction plate, 14 is a steel plate, 15 is an outer hub, 16, 17 are pistons, 18 is a hydraulic pump, 19 is a relief valve, 20 is a pressure reducing valve, 21 is an actuator, 22 is a controller, 23 is a speed setting device, 24 is a pressure reducing valve, 25 is a switching solenoid valve, 2
6 is a load signal detector, 27 is a pulse generator, 28 is a driven machine, 29 is a hydraulic pump, 30 is a relief valve, 31 is a pressure reducing valve, 32 is a clutch, 33
3 is a hydraulic clutch, 34 is a main clutch control hydraulic line, and 35 is a circulation clutch control hydraulic line.

Claims (1)

【実用新案登録請求の範囲】 1 入力軸にメインの滑りクラツチを介して出力
軸が連結され、この滑りクラツチの作動油圧を
制御して、入力軸回転数が変わつても出力軸回
転数を一定に保つ油圧多板式滑りクラツチにお
いて、軽負荷時に前記出力軸の動力を入力軸に
負荷として循環するように前記出力軸を連結装
置を介して入力軸に断続可能に接続した滑りク
ラツチの速度制御装置。 2 前記の連結装置が歯車と動力循環用油圧クラ
ツチとで形成され、前記出力軸に設けた負荷信
号検出器が油圧切換弁に接続され、作動油圧が
この切換弁を介して前記動力循環用油圧クラツ
チの作動ピストンに接続された前記実用新案登
録請求の範囲第1項記載の滑りクラツチの速度
制御装置。
[Claims for Utility Model Registration] 1. The output shaft is connected to the input shaft via a main slip clutch, and the operating pressure of this slip clutch is controlled to keep the output shaft rotation speed constant even if the input shaft rotation speed changes. A speed control device for a slip clutch in which the output shaft is connected intermittently to the input shaft via a coupling device so that the power of the output shaft is circulated as a load to the input shaft during light loads in a hydraulic multi-disc slip clutch. . 2. The coupling device is formed of a gear and a power circulation hydraulic clutch, the load signal detector provided on the output shaft is connected to a hydraulic pressure switching valve, and the working hydraulic pressure is transmitted to the power circulation hydraulic pressure via this switching valve. A speed control device for a sliding clutch according to claim 1, which is connected to an actuating piston of the clutch.
JP1984160221U 1984-10-23 1984-10-23 Expired JPH0134987Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984160221U JPH0134987Y2 (en) 1984-10-23 1984-10-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984160221U JPH0134987Y2 (en) 1984-10-23 1984-10-23

Publications (2)

Publication Number Publication Date
JPS6175529U JPS6175529U (en) 1986-05-21
JPH0134987Y2 true JPH0134987Y2 (en) 1989-10-25

Family

ID=30718146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984160221U Expired JPH0134987Y2 (en) 1984-10-23 1984-10-23

Country Status (1)

Country Link
JP (1) JPH0134987Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1651513A4 (en) * 2003-07-21 2008-09-03 Nautitech Pty Ltd Dual speed transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128107Y2 (en) * 1980-10-31 1986-08-21

Also Published As

Publication number Publication date
JPS6175529U (en) 1986-05-21

Similar Documents

Publication Publication Date Title
DE60029694T2 (en) Transmission and control system for an internal combustion engine in a hybrid vehicle
US8261544B2 (en) Control system and method for braking a hydrostatic drive machine
JP2002058109A (en) Variable current limiting controller for electric drive system for vehicle
US5996343A (en) Overspeed control system for a hydro-mechanical drive system
DE112012002062T5 (en) control device
JPH0134987Y2 (en)
US5947242A (en) Electrohydraulic control device for a drive train of a machine
DE10054368A1 (en) Electronically-controlled electric drives in wheel hubs of electric vehicle for drive and braking, provides high torque during braking via planetary gear reducing revs of drive-motor for wheel hub
JPS642988Y2 (en)
EP0573655A4 (en) Robot control method and apparatus
US4520910A (en) Grinding mill control using controlled pulsing of air clutches
WO2022082410A1 (en) Hybrid power system for engineering and agricultural machinery
RU2013124043A (en) METHOD FOR INSTALLING OPERATING PRESSURE IN THE GEARBOX
EP0656491B1 (en) Double acting dynamic backlash compensation driving system
US20190275531A1 (en) Method for Optimizing a Motor Load During a Shredding Process in a Shredder for Metal Materials
JP4091734B2 (en) Power transmission device for rotating drum drive
JP3944969B2 (en) Hydraulic winch control device
CN212717448U (en) Open type soft start valve set of hydraulic clutch
US7168540B2 (en) Coupling for a mechanical press, shear, or stamper
JPS62201085A (en) High efficiency operation of varying-speed device for fluid
EP4043260A1 (en) Hydraulic auxiliary generator drive
CN220845260U (en) Mining winch gearbox with brake
EP4001697A1 (en) Hydrostatic transmission
CN112519594B (en) Control system and method of transmission system and electric washing and sweeping vehicle
US11493126B2 (en) Method and control unit for operating a drive train