JPH0132730B2 - - Google Patents

Info

Publication number
JPH0132730B2
JPH0132730B2 JP57036636A JP3663682A JPH0132730B2 JP H0132730 B2 JPH0132730 B2 JP H0132730B2 JP 57036636 A JP57036636 A JP 57036636A JP 3663682 A JP3663682 A JP 3663682A JP H0132730 B2 JPH0132730 B2 JP H0132730B2
Authority
JP
Japan
Prior art keywords
layer
rubber
connection part
insulated
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57036636A
Other languages
Japanese (ja)
Other versions
JPS58157318A (en
Inventor
Shinichi Irie
Yasuhiro Yamashita
Takao Nakano
Teruyoshi Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57036636A priority Critical patent/JPS58157318A/en
Priority to US06/472,940 priority patent/US4458103A/en
Priority to EP83102363A priority patent/EP0088450B1/en
Priority to DE8383102363T priority patent/DE3361147D1/en
Publication of JPS58157318A publication Critical patent/JPS58157318A/en
Publication of JPH0132730B2 publication Critical patent/JPH0132730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • H02G15/103Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes with devices for relieving electrical stress
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/14Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables
    • H02G1/145Moulds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/003Filling materials, e.g. solid or fluid insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • H02G15/115Boxes split perpendicularly to main cable direction

Landscapes

  • Cable Accessories (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に新規な縁切り構造をもつたゴ
ム・プラスチツク絶縁ケーブルの絶縁接続部に関
するものである。 従来、この種のゴム・プラスチツク絶縁ケーブ
ルの絶縁接続部の縁切り構造は、その一例を第1
図に示すように、接続した2個の導体1,1′を
中心とし、接続部絶縁遮蔽層すなわち内部及び外
部の2個の半導電層2及び5を同軸的に設けてス
リツト8を形成し、前記の内部半導電層2と外部
半導電層5との間には接続部補強絶縁体層を充填
形成せしめる。 しかして、CVケーブルの接続部の従来の構成
は、次の如く製作され形成される。すなわち、先
ず接続すべき2本のケーブルの端部をそれぞれ図
にもみられるように鉛筆状り削り、圧縮スリーブ
等で導体1,1′を接続した後、その上に半導電
性テープあるいは半導電性熱収縮チユーブにより
内部半導電層2を形成する。次いでこの内部半導
電層2の周囲に自己融着性絶縁テープなどのゴム
またプラスチツク絶縁テープを巻回した後、これ
を加圧加熱し一体に融着する。あるいは内部半導
電層2の周囲に所望の金型(図示せず)を設け、
そこに溶融樹脂を射出し成形した後、適当な手段
により加熱融着させることにより接続部補強絶縁
体層4を形成する。さらにこの接続部補強絶縁体
層4の外周を同軸的に縁切り部を設けた外部半導
電層5を設けて接続部が完成する。 しかしながら、このような従来のゴム・プラス
チツク絶縁ケーブルの絶縁接続部には多くの欠点
が存在した。すなわち、 (イ) テープ巻回層などを加熱し、一体に融着する
際にスリツト8を形成する半導電層5の先端が
変形してしまい、先端の電界が大きくなるた
め、形成された接続部はその先端から破壊し易
くなる。 (ロ) 半導電層5でスリツトを作成する際、同軸的
に同心円上にすることが困難であり、そのため
電界の乱れが生じ易い。 本発明は、従来の絶縁接続部における上述の如
き欠点を除去し、半導電層のスリツトを必要とし
ない安定にして簡易な絶縁接続部を提供しようと
するにある。 本発明のゴム・プラスチツク絶縁ケーブルの絶
縁接続部は、第2図にもみられるように、ゴム・
プラスチツク絶縁ケーブルのケーブル導体接続部
を覆う絶縁補強層4の外周上に、基体ゴム100重
量部に対して炭化珪素50〜700重量部及びカーボ
ン2〜60重量部を混和せしめた混和物からなる電
界緩和層7を介して同軸状に左右対向した状態に
絶縁遮蔽層6,6′を設けたことを特徴とする。 すなわち、ゴム・プラスチツク絶縁ケーブルの
接続部補強絶縁体層4上に基体ゴム100重量部に
対し炭化珪素50〜700重量部及びカーボン2〜60
重量部を混和配合した体積固有抵抗107〜1012
Ω・cm、誘電率6〜100である電界緩和層7を介
して同軸状に外部半導電層6,6′を設けること
により、絶縁接続部を形成したものである。 かかる本発明の構造による効果、特徴は次の如
くである。 (い) 従来のスリツト形状の絶縁接続部に比較し
た特徴: スリツトを形成する半導電層5が変形する
ことによる破壊値の低下がなくなり、絶縁接
続部の特性が向上する。 形状が普通直線接続部と差がないため、従
つて非常に製造が簡単である。 従来の導電スリツトの絶縁接続部に比べて
本発明では短時間でできる。 (ろ) カーボン含有高抵抗層構造に比べての特
徴: 従来このような高抵抗型縁切り部としてはカ
ーボン含有量を適当に調整することにより、上
記インピーダンス範囲(ここでインピーダンス
範囲とは前記抵抗、誘導率からなる混和物を交
流に対する抵抗をいう)の高抵抗層を絶縁体円
周上に設ける方法があるが、この方法では、カ
ーボンのみ含有した高抵抗層がヒートサイクル
等の熱履歴により抵抗値が変動し易いという問
題がある。一方、ベースポリマーに炭化珪素の
みを配合した場合は必要なインピーダンス範囲
に調整することが難しいという問題点がある。
これに対して本発明ではカーボンと共に炭化珪
素を配合した組成物からなる電界緩和層を設け
たことにより、必要なインピーダンス範囲に調
整が容易で熱的に安定しているという特徴を有
する。 絶縁縁切り部の形成法は次の如くにする。すな
わち、 (1) 前記配合組成テープを接続部補強絶縁体層4
上に巻回する。場合によつては本テープを巻回
した後、接続部補強絶縁体層4にこれを加熱融
着させる。 (2) 予め前記配合組成物からなる円筒を、設計し
た接続部補強絶縁体層4の外径に合わせて作成
し、補強絶縁体層4を成形後、この補強絶縁体
層4上に該円筒を挿入被覆し、加熱融着する。 (3) 補強層絶縁成形後、この絶縁層上に金型を置
き、絶縁縁切り部の設計に合わせて、前記の配
合組成物を射出あるいは押出成形する。さらに
絶縁層に加熱融着させる。 本発明においては、前記の接続部補強絶縁体層
4と前記の配合テープとの接着性が良好でなけれ
ばならない。そのため前記基体ゴムとしては、エ
チレンプロピレンゴム、エチレン―プロピレン―
ポリマー、エチレン―酢酸ビニルゴム、アクリル
ゴム、フツ素ゴム、エチレン―エチレンアクリレ
ートゴム、スチレン―ブタジエンゴム、ブタジエ
ンゴムの使用が好ましい。 次に本発明における数量限定の理由を簡単に述
べると、炭化珪素が50重量未満では、熱履歴によ
つて電気抵抗が変化するので、不可である。又
700重量部を越えると、組成物が非常に硬くなり、
加工しにくいので不可である。又、カーボンが2
重量部未満では、所望の誘電率抵抗が得られない
ので、不可であり、逆に60重量部を越えると、組
成物が硬くなり、加工しにくいので不可である。 万特にモールド型接続部に用いる場合は、テー
プ巻き目によるボイド生成を避けるために混和物
が薄いテープに加工できる必要があり炭化珪素の
配合量は50〜200重量部であることが好ましい。 以下本発明をさらに実施例について説明する。 実施例1〜4、比較例1 600mm2154KV CVケーブルを鉛筆削り後、圧縮
スリーブ(図示せず)で導体1,1′を接続後、
半導電性テープ(日本ユニカー株式会社製商品名
DFDJ 0580をテープ化したもの)を、導体接続
部上に巻回した後、温度150℃で4時間加熱成形
した。その後、形成した導電層周囲に金型(図示
せず)を取付け、300mm押出機から架橋剤入りポ
リエチレン組成物〔HFDJ 4201(日本ユニカー株
式会社製商品名)〕を金型内に押出し成形した。
この押出機(図示せず)の設定温度は120℃であ
つた。次に冷却後前記金型を取外し、形成した接
続部補強絶縁体層4の第2図に示す絶縁縁切り部
には次の第1表に示す組成物のテープをその他の
個所には上記の半導電性テープをそれぞれ巻い
た。又、比較例1としては、従来法に基づき接続
部補強絶縁体層4中に外部半導電層6によりスリ
ツト間2mmの間隔で縁切り部を作成したものを作
つた。次いでそれぞれの接続部を加硫管(図示せ
ず)中に入れ、窒素ガス8Kg/cm2雰囲気で温度
210℃にて6時間加熱した後、ガス加圧下にて冷
却した。尚、ジヨイント補強絶縁体層の厚さは25
mm、絶縁縁切り部の長さは100mmであつた。 実施例1〜4のうち、実施例3、4はテープ組
成に架橋剤(ジクミルパーオキサイド)及び酸化
防止剤を配合し架橋組成としたものであり、未架
橋テープとして巻回後、加硫管内でのガス加圧加
硫により補強絶縁体と一体加硫ができる。このよ
うに、電界緩和層として架橋組成を用いればより
耐熱性にすぐれた絶縁接続部を提供できる。
The present invention particularly relates to an insulated connection for a rubber-plastic insulated cable with a novel edge-cutting structure. Conventionally, the edge cutting structure of the insulated connection part of this type of rubber/plastic insulated cable is as follows.
As shown in the figure, a slit 8 is formed by coaxially providing two connected conductors 1 and 1' with an insulating shielding layer for the connection part, that is, two semiconducting layers 2 and 5 on the inside and outside. A connecting portion reinforcing insulating layer is filled between the inner semiconducting layer 2 and the outer semiconducting layer 5. Thus, the conventional configuration of the CV cable connection is manufactured and formed as follows. That is, first, as shown in the figure, the ends of the two cables to be connected are each shaved into a pencil shape, the conductors 1 and 1' are connected with a compression sleeve, etc., and then a semiconductive tape or a semiconductive The inner semiconducting layer 2 is formed by a heat-shrinkable tube. Next, a rubber or plastic insulating tape such as a self-adhesive insulating tape is wound around the inner semiconducting layer 2, and then the tape is heated under pressure to be fused together. Alternatively, a desired mold (not shown) is provided around the internal semiconducting layer 2,
After injection molding a molten resin thereon, the connecting portion reinforcing insulator layer 4 is formed by heat-sealing by appropriate means. Further, an external semiconducting layer 5 is provided coaxially on the outer periphery of the connecting portion reinforcing insulating layer 4, and an edge cut portion is provided thereon to complete the connecting portion. However, the insulated connections of such conventional rubber-plastic insulated cables have a number of drawbacks. In other words, (a) When the tape-wound layer is heated and fused together, the tip of the semiconductive layer 5 that forms the slit 8 is deformed, and the electric field at the tip increases, causing the formed connection to deteriorate. The part becomes easier to break from the tip. (b) When creating slits in the semiconducting layer 5, it is difficult to make them coaxially on a concentric circle, which tends to cause disturbances in the electric field. The present invention aims to eliminate the above-mentioned drawbacks of conventional insulating connections and to provide a stable and simple insulating connection that does not require slits in the semiconducting layer. The insulated connection part of the rubber/plastic insulated cable of the present invention is made of rubber/plastic as shown in
An electric field made of a mixture of 50 to 700 parts by weight of silicon carbide and 2 to 60 parts by weight of carbon to 100 parts by weight of base rubber is applied on the outer periphery of the insulation reinforcing layer 4 covering the cable conductor connection part of the plastic insulated cable. The present invention is characterized in that insulating shielding layers 6 and 6' are provided coaxially and laterally opposed to each other with a relaxation layer 7 interposed therebetween. That is, 50 to 700 parts by weight of silicon carbide and 2 to 60 parts by weight of carbon are added to 100 parts by weight of the base rubber on the reinforcing insulator layer 4 of the connection part of the rubber/plastic insulated cable.
Volume resistivity mixed with parts by weight 10 7 to 10 12
An insulated connection portion is formed by providing external semiconducting layers 6, 6' coaxially through an electric field relaxation layer 7 having a dielectric constant of 6 to 100 Ω·cm. The effects and features of the structure of the present invention are as follows. (b) Features compared to conventional slit-shaped insulated connections: There is no reduction in breakdown value due to deformation of the semiconducting layer 5 forming the slits, and the characteristics of the insulated connections are improved. Since the shape does not differ from a normal straight connection, it is therefore very simple to manufacture. Compared to conventional conductive slit insulating connections, the present invention can be made in a shorter time. (b) Features compared to carbon-containing high-resistance layer structure: Conventionally, such a high-resistance type edge cutting part has been developed by appropriately adjusting the carbon content. There is a method of forming a high-resistance layer containing a mixture of conductivity (resistance to alternating current) on the circumference of the insulator, but in this method, the high-resistance layer containing only carbon loses its resistance due to thermal history such as heat cycles. There is a problem that the value tends to fluctuate. On the other hand, when only silicon carbide is blended into the base polymer, there is a problem that it is difficult to adjust the impedance to a required range.
In contrast, in the present invention, by providing an electric field relaxation layer made of a composition containing carbon and silicon carbide, the present invention is characterized in that it is easy to adjust the impedance to a required range and is thermally stable. The method for forming the insulating edge cut portion is as follows. That is, (1) the above-mentioned composition tape is attached to the connecting portion reinforcing insulating layer 4;
Roll it up. In some cases, after winding the tape, it is heat-fused to the connecting portion reinforcing insulating layer 4. (2) A cylinder made of the blended composition is prepared in advance according to the outer diameter of the designed connecting portion reinforcing insulating layer 4, and after molding the reinforcing insulating layer 4, the cylinder is placed on this reinforcing insulating layer 4. Insert, cover, and heat-seal. (3) After insulating the reinforcing layer, a mold is placed on the insulating layer, and the above compounded composition is injected or extruded according to the design of the insulating edges. Furthermore, it is heated and fused to the insulating layer. In the present invention, the adhesion between the connection portion reinforcing insulator layer 4 and the compound tape must be good. Therefore, as the base rubber, ethylene-propylene rubber, ethylene-propylene-
Preferably, polymers, ethylene-vinyl acetate rubber, acrylic rubber, fluororubber, ethylene-ethylene acrylate rubber, styrene-butadiene rubber, and butadiene rubber are used. Next, to briefly describe the reason for the limitation in quantity in the present invention, it is impossible to use less than 50 weight silicon carbide because the electrical resistance changes depending on the thermal history. or
If it exceeds 700 parts by weight, the composition becomes very hard;
This is not possible because it is difficult to process. Also, carbon is 2
If it is less than 60 parts by weight, it is not acceptable because the desired dielectric constant resistance cannot be obtained.On the other hand, if it exceeds 60 parts by weight, it is not acceptable because the composition becomes hard and difficult to process. In particular, when used in a molded joint, the mixture must be able to be processed into a thin tape in order to avoid void formation due to tape winding, and the amount of silicon carbide blended is preferably 50 to 200 parts by weight. The present invention will be further described below with reference to Examples. Examples 1 to 4, Comparative Example 1 After sharpening the pencil of the 600mm 2 154KV CV cable and connecting conductors 1 and 1' with a compression sleeve (not shown),
Semi-conductive tape (product name manufactured by Nippon Unicar Co., Ltd.)
A tape made of DFDJ 0580) was wound onto the conductor connection portion and then heat-molded at a temperature of 150° C. for 4 hours. Thereafter, a mold (not shown) was attached around the formed conductive layer, and a crosslinking agent-containing polyethylene composition [HFDJ 4201 (trade name, manufactured by Nippon Unicar Co., Ltd.)] was extruded into the mold using a 300 mm extruder.
The set temperature of this extruder (not shown) was 120°C. Next, after cooling, the mold was removed, and a tape of the composition shown in Table 1 below was applied to the insulating edge cut part shown in FIG. Each was wrapped with conductive tape. In addition, as Comparative Example 1, edge cut portions were made in the connecting portion reinforcing insulating layer 4 using the outer semiconducting layer 6 at intervals of 2 mm between the slits based on a conventional method. Next, each connection part was placed in a vulcanization tube (not shown) and heated to a temperature of 8 kg/cm 2 of nitrogen gas.
After heating at 210°C for 6 hours, it was cooled under gas pressure. In addition, the thickness of the joint reinforcement insulator layer is 25
mm, and the length of the insulation edge cut portion was 100 mm. Among Examples 1 to 4, Examples 3 and 4 were made by blending a crosslinking agent (dicumyl peroxide) and an antioxidant into the tape composition to form a crosslinked composition, and after winding as an uncrosslinked tape, vulcanization was performed. It can be vulcanized integrally with the reinforcing insulator by gas pressure vulcanization inside the pipe. In this way, by using a crosslinked composition as the electric field relaxation layer, an insulated connection portion with better heat resistance can be provided.

【表】 第1表に示すように、本実施例1〜4による絶
縁接続部は、何れも第1図に示す従来構造の比較
例1に比し交流破壊値が高く安定であり、接続部
の特性が非常に優れているほか、半導電層のスリ
ーブを必要としない簡易にして製作の作業性もよ
い絶縁接続部が得られる。 実施例5、比較例2 600mm2154KV CVケーブルを鉛筆削り後、圧縮
スリーブで導体1,1′を接続後、この導体接続
部上に半導電性テープ(古河電工社製商品名導電
性Cテープ)を巻回し、更にこの半導電層6上に
エチレンプロピレンゴムを基体にした絶縁テープ
(古河電工社製商品名エフコ31号)を絶縁厚50mm
となるまで巻回し、接続部補強絶縁体層4を形成
した。この補強接続層4上の第2図に示した絶縁
縁切り部には、前記第1表の実施例1と同一組成
物のテープを他の個所には上記半導電層テープを
それぞれ巻いた加熱融着一体化して絶縁接続部を
作つた。しかして得た本絶縁接続部の交流破壊試
験を実施したところ、520KV破壊であつた。 本実施例の構成で縁切り部を有さない普通接続
部の破壊値はモールド型よりも低く、通常
500KV程度であるので、520KVという値は絶縁
接続部として充分満足できる数値を示していると
いえる。 一方、比較のため実施例5と、同様に半導電層
上にエチレンプロピレンゴムテープで補強絶縁層
4を形成し、その上に半導電性テープによりスリ
ツト間隔2mmで第1図のような従来構造の縁切り
部を構成した絶縁接続部(比較例2)は、交流破
壊値420KVで、スリツト部先端から破壊した。 本実施例5においても、前記実施例1〜4にお
けると略々同様な本発明の効果が認められた。
[Table] As shown in Table 1, the insulated connections according to Examples 1 to 4 all have higher AC breakdown values and are more stable than Comparative Example 1 of the conventional structure shown in FIG. In addition to having very excellent properties, it is possible to obtain an insulated connection part that does not require a semiconductive layer sleeve and is simple and easy to manufacture. Example 5, Comparative Example 2 600mm 2 154KV After sharpening the pencil of the CV cable and connecting conductors 1 and 1' with a compression sleeve, apply semiconductive tape (product name: Conductive C Tape manufactured by Furukawa Electric Co., Ltd.) on the conductor connection part. ) is wound, and an insulating tape (manufactured by Furukawa Electric Co., Ltd., product name: E-co No. 31) based on ethylene propylene rubber is further applied to the semiconductive layer 6 with an insulation thickness of 50 mm.
The connecting portion reinforcing insulator layer 4 was formed by winding the wire until it became . The insulating edge cut portion shown in FIG. 2 on the reinforcing connection layer 4 was covered with a tape of the same composition as in Example 1 of Table 1, and the other portions were heated and fused with the above semiconductive layer tape. I made an insulated connection part by integrating the parts. When we conducted an AC breakdown test on this insulated connection, we found a breakdown of 520KV. In the structure of this example, the failure value of the ordinary connection part without edge cutting part is lower than that of the molded type, and
Since the voltage is about 500KV, it can be said that the value of 520KV is sufficiently satisfactory as an insulated connection part. On the other hand, for comparison, a reinforcing insulating layer 4 was formed on the semiconductive layer using ethylene propylene rubber tape in the same manner as in Example 5, and a conventional structure as shown in FIG. The insulated connection part (Comparative Example 2) that constituted the edge cutting part broke from the tip of the slit part with an AC breakdown value of 420 KV. In Example 5, substantially the same effects of the present invention as in Examples 1 to 4 were observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゴム・プラスチツク絶縁ケーブルの従
来の絶縁接続部の一例を示す部分縦断面略図、第
2図は本発明の絶縁接続部の一実施例を示す部分
縦断面略図である。 1,1′……導体、2……内部半導電層、3…
…ケーブル絶縁体層、4……接続部補強絶縁体
層、5……接続部外部半導電層、6……接続部外
部半導電層、7……電界緩和層、8……スリツト
部。
FIG. 1 is a schematic partial vertical cross-sectional view showing an example of a conventional insulated connection part of a rubber-plastic insulated cable, and FIG. 2 is a schematic partial vertical cross-sectional view showing an embodiment of the insulated connection part of the present invention. 1, 1'...Conductor, 2...Inner semiconducting layer, 3...
... Cable insulator layer, 4 ... Connection part reinforcing insulator layer, 5 ... Connection part external semiconducting layer, 6 ... Connection part external semiconducting layer, 7 ... Electric field relaxation layer, 8 ... Slit part.

Claims (1)

【特許請求の範囲】[Claims] 1 ゴム・プラスチツク絶縁ケーブルのケーブル
導体接続部を覆う絶縁補強層の外周に絶縁遮蔽層
を設けてなるゴム・プラスチツク絶縁ケーブルの
絶縁接続部において、前記絶縁遮蔽層が同軸的に
設けられた基体ゴム100重量部に対し炭化珪素50
〜700重量部及びカーボン2〜60重量部を混和せ
しめた混和物から成る電界緩和層を介して左右対
向した状態に設けられていることを特徴とするゴ
ム・プラスチツク絶縁ケーブルの絶縁接続部。
1. In the insulated connection part of a rubber/plastic insulated cable, in which an insulating shielding layer is provided on the outer periphery of an insulating reinforcing layer that covers the cable conductor connection part of the rubber/plastic insulated cable, a base rubber on which the insulating shielding layer is coaxially provided. 50% silicon carbide per 100 parts by weight
An insulated connection part of a rubber/plastic insulated cable, characterized in that the insulated connection part of a rubber/plastic insulated cable is provided in a state where the left and right sides face each other with an electric field relaxation layer made of a mixture of 700 parts by weight and 2 to 60 parts by weight of carbon interposed therebetween.
JP57036636A 1982-03-10 1982-03-10 Insulated connecting unit for rubber or plastic insulated cable Granted JPS58157318A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57036636A JPS58157318A (en) 1982-03-10 1982-03-10 Insulated connecting unit for rubber or plastic insulated cable
US06/472,940 US4458103A (en) 1982-03-10 1983-03-07 Insulating joint for rubber or plastic insulated power cable
EP83102363A EP0088450B1 (en) 1982-03-10 1983-03-10 Insulating joint for rubber or plastic insulated power cable
DE8383102363T DE3361147D1 (en) 1982-03-10 1983-03-10 Insulating joint for rubber or plastic insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57036636A JPS58157318A (en) 1982-03-10 1982-03-10 Insulated connecting unit for rubber or plastic insulated cable

Publications (2)

Publication Number Publication Date
JPS58157318A JPS58157318A (en) 1983-09-19
JPH0132730B2 true JPH0132730B2 (en) 1989-07-10

Family

ID=12475321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57036636A Granted JPS58157318A (en) 1982-03-10 1982-03-10 Insulated connecting unit for rubber or plastic insulated cable

Country Status (4)

Country Link
US (1) US4458103A (en)
EP (1) EP0088450B1 (en)
JP (1) JPS58157318A (en)
DE (1) DE3361147D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK156351C (en) * 1986-05-07 1990-01-02 Nordiske Kabel Traad PROCEDURE FOR RESTORING SEMI-CONDUCTIVE LAYERS ABOUT A CABLE SPLIT AND CABLE FOR USE IN EXERCISING THE PROCEDURE
JPH01159907A (en) * 1987-12-16 1989-06-22 Canon Inc Conductive material
ES2072351T3 (en) * 1990-01-09 1995-07-16 Rxs Schrumpftech Garnituren PROCEDURE FOR THE MANUFACTURE OF A FIELD CONTROL LINING FOR MEDIUM VOLTAGE CABLE FITTINGS.
US5408047A (en) * 1990-10-25 1995-04-18 Minnesota Mining And Manufacturing Company Transition joint for oil-filled cables
JP3260749B2 (en) * 1990-10-25 2002-02-25 ミネソタ マイニング アンド マニュファクチャリング カンパニー Transition joint for oil-filled cable
GB9600819D0 (en) * 1996-01-16 1996-03-20 Raychem Gmbh Electrical stress control
EP1128514A1 (en) * 2000-02-23 2001-08-29 NKT Power Cables A/S An insulating cable connection
JP2005106185A (en) * 2003-09-30 2005-04-21 Tokai Rubber Ind Ltd Rubber hose material and rubber hose using the same
SE530587C2 (en) * 2006-10-31 2008-07-15 Abb Research Ltd Electric field control material
SE531409C2 (en) * 2006-12-20 2009-03-24 Abb Research Ltd Field-controlling material
EP2197080A1 (en) * 2008-12-09 2010-06-16 ABB Research Ltd. Flexible joint with resistive field grading material for HVDC cables and method for connecting same to HVDC cables
CN104530611B (en) * 2014-12-31 2016-09-07 宁波佳乐特橡塑机电有限公司 A kind of grinding roller sealing ring material and preparation method thereof
KR20170107326A (en) * 2016-03-15 2017-09-25 엘에스전선 주식회사 An insulating composition having low dielectric constant and cable comprising an insulating layer formed from the same
CN107868305A (en) * 2017-12-12 2018-04-03 马鞍山市东方仪表有限公司 A kind of method for improving instrument cable insulation layer ageing-resistant performance
CN108359204B (en) * 2018-01-26 2020-07-14 上海蓝昊电气有限公司 Strippable insulation shielding material for medium-voltage rubber cable and preparation process thereof
CN110922687B (en) * 2019-12-09 2022-07-05 哈尔滨理工大学 Modified nano zinc oxide/ethylene propylene diene monomer rubber-based cable accessory material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121056A (en) * 1975-04-11 1976-10-22 Sola Basic Ind Inc Elastomer materials for reducing stress and apparatus made by elastomer materials
JPS55117808A (en) * 1979-03-01 1980-09-10 Furukawa Electric Co Ltd Flame resisting semiconductor composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1433129A (en) * 1972-09-01 1976-04-22 Raychem Ltd Materials having non-linear resistance characteristics
FR2294568A1 (en) * 1974-12-11 1976-07-09 Siemens Ag Electric cable fittings prodn. - by expanding and solidifying resin mass in mould placed around cable ends
GB2030014B (en) * 1978-07-17 1983-01-06 Sumitomo Electric Industries Method of connecting cables
JPS5832448Y2 (en) * 1979-01-31 1983-07-19 昭和電線電纜株式会社 Shielding edges of insulated connections
JPS55117820A (en) * 1979-03-05 1980-09-10 Showa Electric Wire & Cable Co Electric field alleviating selffadhesive tape and end of high voltage power cable used with same tape
FI69943C (en) * 1979-07-10 1986-05-26 Sumitomo Electric Industries FOERFARANDE FOER BILDANDE AV EN FOERBINDNING FOER EN POLYOLEFINISOLERAD ELEKTRISK LEDNING ELLER KABEL OCH VAERMEKRYMPANDE SLANG FOER GENOMFOERANDE AV FOERFARANDET
DE2939932A1 (en) * 1979-09-28 1981-04-02 Siemens AG, 1000 Berlin und 8000 München PRE-PREPARED ELASTIC SLEEVE BODY FOR PLASTIC-INSULATED SHIELDED POWER CABLES
GB2038111B (en) * 1979-12-18 1983-05-05 Amerace Corp Cable repair kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121056A (en) * 1975-04-11 1976-10-22 Sola Basic Ind Inc Elastomer materials for reducing stress and apparatus made by elastomer materials
JPS55117808A (en) * 1979-03-01 1980-09-10 Furukawa Electric Co Ltd Flame resisting semiconductor composition

Also Published As

Publication number Publication date
JPS58157318A (en) 1983-09-19
US4458103A (en) 1984-07-03
DE3361147D1 (en) 1985-12-12
EP0088450A1 (en) 1983-09-14
EP0088450B1 (en) 1985-11-06

Similar Documents

Publication Publication Date Title
JPH0132730B2 (en)
JPH04212208A (en) Rubber-plastics insulated power cable, its connecting part, and manufacture thereof
JPH0664937B2 (en) Ignition cable and manufacturing method thereof
GB334840A (en) Improvements in the manufacture of electric cables
JPH0368613B2 (en)
JP2618425B2 (en) Electrically insulating crosslinked polyolefin-based resin composition, and electrical cable and electrical cable connection using the resin composition as an insulator
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JPH0132731B2 (en)
JPH0127398Y2 (en)
JPS6331302Y2 (en)
JPS58192424A (en) Plastic insulated cable connector
JPH0214275Y2 (en)
JPS59198817A (en) Crosslinked rubber and plastic insulated cable connector
JP3067352B2 (en) Rubber insulated wire and method of manufacturing the same
JPH0199428A (en) Dc cable connector
JPH0541464Y2 (en)
JP2789583B2 (en) Forming method of cable connection
JPH0965563A (en) Cable insulating connection part
JPH0640426Y2 (en) Insulation connection part of rubber / plastic insulation cable
JPH0142582B2 (en)
JPS58192415A (en) Method of forming rubber/plastic insulated power cable connector
JPH02237418A (en) Mold joint technique of cable
JPH0115990B2 (en)
JPH07236216A (en) Mold joint for crosslinked polyethylene cable with sheath separation and jointing method
JPS58192423A (en) Plastic insulated power cable connector