JPH0132246B2 - - Google Patents

Info

Publication number
JPH0132246B2
JPH0132246B2 JP4003281A JP4003281A JPH0132246B2 JP H0132246 B2 JPH0132246 B2 JP H0132246B2 JP 4003281 A JP4003281 A JP 4003281A JP 4003281 A JP4003281 A JP 4003281A JP H0132246 B2 JPH0132246 B2 JP H0132246B2
Authority
JP
Japan
Prior art keywords
compound
magnesium
ethylene
general formula
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4003281A
Other languages
Japanese (ja)
Other versions
JPS57153007A (en
Inventor
Tooru Tanaka
Eiji Tanaka
Hiroshi Urabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4003281A priority Critical patent/JPS57153007A/en
Publication of JPS57153007A publication Critical patent/JPS57153007A/en
Publication of JPH0132246B2 publication Critical patent/JPH0132246B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳现な説明】 本発明ぱチレン単独重合䜓又ぱチレンず他
のα―オレフむンずの共重合䜓の補造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ethylene homopolymers or copolymers of ethylene and other α-olefins.

曎に詳しくは、マグネシりム化合物及びチタン
化合物よりなる新芏な固䜓觊媒を甚いお、炭化氎
玠溶媒䞭生成する重合䜓が該炭化氎玠溶媒䞭に溶
解しおいる状態で゚チレン単独重合䜓或いぱチ
レンず他のα―オレフむンの共重合䜓を補造する
方法に関する。
More specifically, using a novel solid catalyst consisting of a magnesium compound and a titanium compound, the polymer produced in a hydrocarbon solvent is dissolved in an ethylene homopolymer or ethylene and other α -Relating to a method for producing an olefin copolymer.

䞀般に重合䜓が溶媒に溶解しおいる状態で重合
を行う、いわむる溶液重合においおは、溶液粘床
䜎䞋、熱回収効率向䞊等のプロセス的な芳点か
ら、重合枩床はより高い方が奜たしい。
Generally speaking, in so-called solution polymerization, in which polymerization is carried out while the polymer is dissolved in a solvent, the polymerization temperature is preferably higher from the viewpoint of the process, such as reducing solution viscosity and improving heat recovery efficiency.

たた䞀方では、生成重合䜓からの觊媒残枣陀去
工皋を省略するため、觊媒掻性は高ければ高い
皋、奜たしい。埓来から高掻性觊媒ずしおは数倚
くの提案がなされおきおおり、䟋えば、担䜓ずし
おの、マグネシりムオキサむド、マグネシりムヒ
ドロキシクロラむド、氎酞化マグネシりム、マグ
ネシりムアルコキサむド、マグネシりムゞハラむ
ドのようなマグネシりム化合物或いは曎にこれら
のマグネシりムを含む化合物をあらかじめ氎、ア
ルコヌル類、アルデヒド類、ケトン類、゚ステル
類、゚ヌテル類及びカルボン酞類のごずき化合物
で予備凊理されたものずチタン化合物ずの組合せ
からなる觊媒系が提案されおいる。
On the other hand, since the step of removing catalyst residue from the produced polymer is omitted, the higher the catalytic activity is, the more preferable it is. Many proposals have been made as highly active catalysts in the past, including magnesium compounds such as magnesium oxide, magnesium hydroxychloride, magnesium hydroxide, magnesium alkoxide, and magnesium dihalide as carriers; A catalyst system has been proposed that consists of a combination of a magnesium-containing compound pretreated with compounds such as water, alcohols, aldehydes, ketones, esters, ethers, and carboxylic acids, and a titanium compound.

しかし、これらの觊媒系は、スラリヌ重合の枩
床域においおは、高掻性であ぀おも溶液重合の枩
床域䞭でも150℃以䞊の高枩では極めお䜎い重合
掻性を瀺すのみで、プロセス面からの高重合枩床
ず高掻性な觊媒ずいう二぀の芁求を同時に満足す
るこずが困難であ぀た。
However, although these catalyst systems have high activity in the temperature range of slurry polymerization, they only show extremely low polymerization activity at high temperatures of 150°C or higher even in the temperature range of solution polymerization. It has been difficult to simultaneously satisfy the two requirements of a highly active catalyst and a highly active catalyst.

たた曎に、これらの觊媒系に぀いおは、埗られ
る重合䜓或いは共重合䜓の分子量分垃が十分に狭
くなく、特に゚チレン―α―オレフむン共重合䜓
を補造する堎合には䜎分子量成分が倚くなる為埗
られる共重合䜓の機械的性質その他の物性が䜎䞋
するずいう欠点があ぀た。
Furthermore, with these catalyst systems, the molecular weight distribution of the resulting polymer or copolymer is not narrow enough, and especially when producing ethylene-α-olefin copolymers, the amount of low molecular weight components increases, resulting in poor yield. The disadvantage was that the mechanical properties and other physical properties of the resulting copolymer deteriorated.

そこで、本発明者等は、䞊蚘のような珟状に鑑
み、分子量分垃の狭い゚チレン重合䜓或いぱチ
レンα―オレフむン共重合䜓を高重合枩床で効率
よく補造する方法に぀いお怜蚎を重ねた結果、マ
グネシりムゞハロゲン化物の存圚䞋、マグネシり
ムアルコラヌトずチタン化合物ずを含む均䞀な炭
化氎玠溶液を有機ハロゲン化アルミニりム化合物
で凊理する際に、各成分の量を特定の比率にする
こずにより埗られる炭化氎玠䞍溶性固䜓ず有機ア
ルミニりム化合物を組み合わせおなる觊媒系が高
重合枩床で充分な高掻性を有し、か぀分子量分垃
の狭い重合䜓或いは共重合䜓が埗られるこずを芋
出し本発明を達成した。
Therefore, in view of the above-mentioned current situation, the present inventors have repeatedly studied methods for efficiently producing ethylene polymers or ethylene α-olefin copolymers with narrow molecular weight distributions at high polymerization temperatures, and have found that magnesium dihalogen A hydrocarbon-insoluble solid and an organic compound are obtained by treating a homogeneous hydrocarbon solution containing a magnesium alcoholate and a titanium compound with an organic aluminum halide compound in the presence of a compound, and adjusting the amounts of each component to a specific ratio. The present invention was achieved by discovering that a catalyst system comprising an aluminum compound in combination has sufficiently high activity at high polymerization temperatures and can yield a polymer or copolymer with a narrow molecular weight distribution.

即ち本発明の芁旚は、䞀般匏MgX4 2匏䞭、X4
はハロゲン原子を衚わす。で衚わされるマグネ
シりムゞハロゲン化物の存圚䞋、䞀般匏Mg
OR2mX2 2-n匏䞭、R2はアルキル、アリヌル
又はシクロアルキル基を瀺し、X2はハロゲン原
子を瀺し、は又はであるで衚わされるマ
グネシりムアルコラヌト、䞀般匏TiOR3
nX3 4-o匏䞭、R3はアルキル、アリヌル又はシク
ロアルキル基を瀺し、X3はハロゲン原子を瀺し、
は又はであるで衚わされるチタ
ン化合物及び堎合によ぀おは、䞀般匏R5OH匏
䞭、R5はアルキル、アリヌル又はシクロアルキ
ル基を瀺すで衚わされるヒドロキシ化合物を含
む均䞀な炭化氎玠溶液を、䞀般匏AlR1 lX1 3-l匏
䞭、R1はアルキル、アリヌル又はシクロアルキ
ル基を瀺し、X1はハロゲン原子を瀺し、は
≊≊の数を瀺す。で衚わされる有機ハロゲ
ン化アルミニりム化合物で凊理する際に各化合物
の量比に぀いお、マグネシりムアルコラヌト、チ
タン化合物、ヒドロキシ化合物および有機ハロゲ
ン化アルミニりム化合物のモル数をそれぞれ、
、及びずした堎合、前蚘䞀般匏䞭の、
、ずの間に 0.75≩
×−×−×−
×× が満足されるような比率にし、たた、マグネシり
ムゞハロゲン化物ずマグネシりムアルコラヌトの
モル数の間に、マグネシりムゞハロゲン化物のモ
ル数をずした堎合、 ≊≊100 が満足される様な比率にしお埗られる炭化氎玠䞍
溶性固䜓ず有機アルミニりム化合物を組み合わせ
おなる觊媒系を甚いお炭化氎玠溶媒䞭生成する重
合䜓が該炭化氎玠溶媒䞭に溶解しおいる状態で、
゚チレン単独又ぱチレンず他のα―オレフむン
の混合物を重合するこずを特城ずする゚チレン重
合䜓或いぱチレン―α―オレフむン共重合䜓の
補造法に存する。
That is, the gist of the present invention is that the general formula MgX 4 2 (wherein X 4
represents a halogen atom. ) in the presence of a magnesium dihalide represented by the general formula Mg
Magnesium alcoholate represented by (OR 2 ) mX 2 2-n (wherein R 2 represents an alkyl, aryl or cycloalkyl group, X 2 represents a halogen atom, and m is 1 or 2), general formula Ti ( OR3 )
nX 3 4-o (wherein R 3 represents an alkyl, aryl or cycloalkyl group, X 3 represents a halogen atom,
n is 1, 2, 3 or 4) and optionally hydroxy compounds of the general formula R 5 OH, in which R 5 represents an alkyl, aryl or cycloalkyl group. A homogeneous hydrocarbon solution containing the compound is prepared using the general formula AlR 1 l X 1 3-l (wherein R 1 represents an alkyl, aryl or cycloalkyl group,
Indicates the number of ≩l≩2. ), the number of moles of magnesium alcoholate, titanium compound, hydroxyl compound, and organic aluminum halide compound is b,
When c, e and a are m in the general formula,
Between n and l 0.75≩
a×(3-l)+b×(2-m)+c×(4-n)/m
If the ratio is set so that ×b + n × c + e is satisfied, and the number of moles of magnesium dihalide is d between the number of moles of magnesium dihalide and magnesium alcoholate, then 2≩d/b≩100 is satisfied. A polymer produced in a hydrocarbon solvent using a catalyst system consisting of a combination of a hydrocarbon-insoluble solid and an organoaluminum compound obtained in a ratio such that the polymer is dissolved in the hydrocarbon solvent,
The present invention relates to a method for producing an ethylene polymer or an ethylene-α-olefin copolymer, which comprises polymerizing ethylene alone or a mixture of ethylene and another α-olefin.

曎に本発明を詳现に説明するに、本発明で甚い
られるマグネシりムゞハロゲン化物ずしおは䞀般
匏MgX4 2匏䞭、X4はハロゲン原子を衚わす。で
衚わされるものが甚いられる。これらの䟋ずしお
は、塩化マグネシりム、臭化マグネシりム及びペ
り化マグネシりム等が挙げられる。䞭でも塩化マ
グネシりムが最も奜たしい。
To further explain the present invention in detail, the magnesium dihalide used in the present invention is represented by the general formula MgX 4 2 (wherein, X 4 represents a halogen atom). Examples of these include magnesium chloride, magnesium bromide, magnesium iodide, and the like. Among them, magnesium chloride is most preferred.

本発明で甚いられるマグネシりムゞハロゲン化
物ずしおは必らずしも、厳密な意味で玔粋のマグ
ネシりムゞハロゲン化物である必芁はないが、䟋
えば倚量に結晶氎を含むようなものは奜たしくな
い。
Although the magnesium dihalide used in the present invention does not necessarily have to be a pure magnesium dihalide in the strict sense, it is not preferable to use one containing a large amount of water of crystallization, for example.

たた、マグネシりムゞハロゲン化物の粒埄に関
しおは、200Ό以䞋のものを甚いるこずが奜たし
い。䟋えば、垂販の無氎マグネシりムゞハロゲン
化物に察しボヌルミル等の粉砕凊理を斜したもの
あるいはより奜たしい方法ずしお、有機マグネシ
りム化合物ず、䞀般匏X6 oMeR6 n匏䞭、Meはアル
ミニりム、硌玠、ケむ玠、スズから遞ばれる元
玠、X6はハロゲン原子、R6はアルキル、アリヌ
ル、又はシクロアルキル基を瀺し、≧、≧
ではMeの原子䟡に䞀臎する数である。
で衚わされるハロゲン化合物ずの反応により補造
する方法が挙げられる。
Furthermore, regarding the particle size of the magnesium dihalide, it is preferable to use particles of 200 ÎŒm or less. For example, commercially available anhydrous magnesium dihalide may be pulverized using a ball mill or the like, or as a more preferable method, an organomagnesium compound with the general formula X 6 o M e R 6 n (where Me is aluminum, boron, Element selected from silicon and tin, X 6 is a halogen atom, R 6 is an alkyl, aryl, or cycloalkyl group, n≧1, m≧
0 and n+m is a number that matches the valence of Me. )
A method for producing by reaction with a halogen compound represented by:

ここで甚いられる有機マグネシりム化合物ずし
おは、䞀般匏R7X7匏䞭、R7はアルキル、アリヌ
ル又はシクロアルキル基を瀺し、X7はハロゲン
原子を瀺す。R7ずしおは、メチル、゚チル、プ
ロピル、ブチル、ペンチル、ヘキシル、オクチ
ル、プニル、トリル、キシリル、シクロヘキシ
ル等の炭玠数15皋床たでのアルキル、アリヌル、
シクロアルキル基が挙げられる。X7ずしおは、
塩玠、臭玠等が挙げられる。で衚わされるハロ
ゲン化炭化氎玠ず金属マグネシりムの反応により
埗られる、ハロゲンを含たない有機マグネシりム
及びハロゲン化有機マグネシりムが挙げられる。
The organic magnesium compound used here has the general formula R 7 X 7 (wherein R 7 represents an alkyl, aryl or cycloalkyl group, and X 7 represents a halogen atom. Alkyl, aryl, up to about 15 carbon atoms such as propyl, butyl, pentyl, hexyl, octyl, phenyl, tolyl, xylyl, cyclohexyl,
Examples include cycloalkyl groups. As X7 ,
Examples include chlorine and bromine. Examples include halogen-free organomagnesium and halogenated organomagnesium obtained by the reaction of a halogenated hydrocarbon represented by the following formula with magnesium metal.

これらの有機マグネシりム化合物は、ヘキサ
ン、ヘプタン、オクタン、ベンれン、トル゚ン等
の䞍掻性炭化氎玠、或いはゞノルマルブチル゚ヌ
テル、む゜アミル゚ヌテル等の゚ヌテル化合物媒
䜓䞭通垞の方法により容易に合成される。䞭でも
本発明に甚いられる有機マグネシりム化合物ずし
おは、䞍掻性炭化氎玠媒䜓䞭で合成された電子䟛
䞎性化合物により錯化されおいない、有機マグネ
シりム化合物が奜たしい。たた、ハロゲン原子ず
しおは塩玠が最も奜たしい。
These organomagnesium compounds are easily synthesized by conventional methods in an inert hydrocarbon medium such as hexane, heptane, octane, benzene, toluene, etc., or an ether compound medium such as di-n-butyl ether or isoamyl ether. Among these, the organomagnesium compound used in the present invention is preferably an organomagnesium compound that is synthesized in an inert hydrocarbon medium and is not complexed with an electron-donating compound. Further, as the halogen atom, chlorine is most preferable.

これらの有機マグネシりム化合物ずしおは、ノ
ルマルブチルマグネシりムクロラむド、ベンゞル
マグネシりムクロラむド、プニルマグネシりム
クロラむド、゚チルマグネシりムクロラむド、む
゜プロピルマグネシりムクロラむド等を挙げるこ
ずができる。たた、ゞノルマルブチルマグネシり
ム、ゞむ゜プロピルマグネシりム等のゞヒドロカ
ルビルマグネシりムも甚いられる。これらの有機
マグネシりム化合物は、䞍掻性炭化氎玠媒䜓䞭サ
スペンゞペン或いは溶液の状態で甚いられる。
Examples of these organomagnesium compounds include n-butylmagnesium chloride, benzylmagnesium chloride, phenylmagnesium chloride, ethylmagnesium chloride, isopropylmagnesium chloride, and the like. Further, dihydrocarbyl magnesium such as di-n-butylmagnesium and diisopropylmagnesium is also used. These organomagnesium compounds are used in suspension or solution in an inert hydrocarbon medium.

次にハロゲン化合物ずしおは、䞀般匏X6 oMeR6 n
匏䞭、Meはアルミニりム、硌玠、ケむ玠、スズ
から遞ばれる元玠、X6はハロゲン原子、R6はア
ルキル、アリヌル又はシクロアルキル基を瀺し、
≧、≧ではMeの原子䟡に䞀臎す
る数である。で衚わされる化合物が甚いられる。
Next, as a halogen compound, the general formula X 6 o MeR 6 n
(In the formula, Me is an element selected from aluminum, boron, silicon, and tin, X 6 is a halogen atom, R 6 is an alkyl, aryl, or cycloalkyl group,
n≧1, m≧0, and n+m is a number that matches the valence of Me. ) is used.

䞭でも本発明に甚いられる䞊蚘のハロゲン化合
物ずしおは、液状の化合物が奜たしく、気䜓状或
いは固䜓状の化合物は反応の効率、或いは取り扱
いの容易さ等の芳点から奜たしくない。たた、ハ
ロゲン原子ずしおは塩玠が最も奜たしい。
Among these, the above-mentioned halogen compound used in the present invention is preferably a liquid compound, and a gaseous or solid compound is not preferable from the viewpoint of reaction efficiency or ease of handling. Further, as the halogen atom, chlorine is most preferable.

これらのハロゲン化合物ずしおは、゚チルアル
ミニりムゞクロラむド、゚チルアルミニりムモノ
クロラむド、゚チルアルミニりムセスキクロラむ
ド等の塩玠化有機アルミニりム化合物、゚チルボ
ロンゞクロラむド等の塩玠化有機硌玠化合物、ゞ
゚チルゞクロルシラン、四塩化ケむ玠等のケむ玠
化合物、四塩化スズ等のスズ化合物が甚いられ
る。
These halogen compounds include chlorinated organoaluminum compounds such as ethylaluminum dichloride, ethylaluminum monochloride, and ethylaluminum sesquichloride, chlorinated organoboron compounds such as ethylboron dichloride, and silicon such as diethyldichlorosilane and silicon tetrachloride. compound, a tin compound such as tin tetrachloride.

有機マグネシりム化合物ずハロゲン化合物の反
応は通垞、ヘキサン、ヘプタン、オクタン、ベン
れン、トル゚ン等の䞍掻性炭化氎玠溶媒の存圚
䞋、䞡者を混合するこずにより行う。䞡者の添加
順序に特に制限はないが、通垞は有機マグネシり
ムの䞍掻性炭化氎玠溶媒サスペンゞペン、或いは
溶液にハロゲン化合物を加えれば良い。ハロゲン
化合物を添加埌奜たしくは宀枩〜60℃の枩床で反
応させれば良く、生成した炭化氎玠䞍溶性固䜓を
分離し、䞊蚘の䞍掻性炭化氎玠溶媒で掗浄するこ
ずにより、マグネシりムゞハロゲン化物を含む固
䜓が埗られる。
The reaction between an organomagnesium compound and a halogen compound is usually carried out by mixing the two in the presence of an inert hydrocarbon solvent such as hexane, heptane, octane, benzene, or toluene. There is no particular restriction on the order in which they are added, but usually the halogen compound may be added to an inert hydrocarbon solvent suspension or solution of organomagnesium. After adding the halogen compound, the reaction should preferably be carried out at a temperature between room temperature and 60°C. By separating the generated hydrocarbon-insoluble solid and washing it with the above-mentioned inert hydrocarbon solvent, the solid containing magnesium dihalide can be removed. can get.

有機マグネシりム化合物ずハロゲン化合物の䜿
甚量比に぀いおは、有機マグネシりム化合物䞭の
マグネシりム原子ず、ハロゲン化合物䞭のMeの
原子比で、各々の量をMg、Meずした堎合、
MeMgが0.25MeMg奜たしくは0.5Me
Mgの範囲から遞ばれる。
Regarding the usage ratio of the organomagnesium compound and the halogen compound, the atomic ratio of the magnesium atom in the organomagnesium compound to the Me in the halogen compound, and when the respective amounts are Mg and Me,
Me/Mg is 0.25<Me/Mg preferably 0.5<Me/
Selected from a range of Mg.

䞊蚘の倀の䞊限に぀いおは特に制限はないが、
あたり倧きくするこずは実際䞊意味がない。
There are no particular restrictions on the upper limit of the above values, but
There is no practical point in making it too large.

たた、マグネシりムアルコラヌトずしおは、䞀
般匏MgOR2nX2 2-n匏䞭、R2はアルキル、アリ
ヌル又はシクロアルキル基を瀺し、X2はハロゲ
ン原子を瀺し、は又はである。で衚わさ
れる化合物が䜿甚される。具䜓的にはR2がメチ
ル、゚チル、プロピル、ブチル、ペンチル、ヘキ
シル、オクチル、プニル、トリル、キシリル、
シクロヘキシル等の炭玠数15皋床たでのアルキ
ル、アリヌル、シクロアルキル基であり、X2が
塩玠、臭玠又はペり玠であるような化合物、䟋え
ばゞメトキシマグネシりム、ゞ゚トキシマグネシ
りム、゚トキシマグネシりムクロラむド、ゞプ
ノキシマグネシりム等が挙げられる。このうち䞀
般匏䞭のがであるような化合物が奜たしい。
䞭でもゞ゚トキシマグネシりムが最適である。
In addition, magnesium alcoholate has the general formula Mg(OR 2 ) n X 2 2-n (wherein R 2 represents an alkyl, aryl or cycloalkyl group, ) is used. Specifically, R 2 is methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, phenyl, tolyl, xylyl,
Compounds that are alkyl, aryl, or cycloalkyl groups having up to about 15 carbon atoms such as cyclohexyl, and where X 2 is chlorine, bromine, or iodine, such as dimethoxymagnesium, diethoxymagnesium, ethoxymagnesium chloride, diphenoxymagnesium, etc. can be mentioned. Among these, compounds in which m in the general formula is 2 are preferred.
Among them, diethoxymagnesium is most suitable.

䞀方チタン化合物ずしおは䞀般匏TiOR3o
X3 4-o匏䞭、R3はアルキル、アリヌル又はシクロ
アルキル基を瀺し、X3はハロゲン原子を瀺し、
は又はである。で衚わされる化
合物が䜿甚される。R3、X3ずしおは䞊蚘R2、X2
で䟋瀺したものが同様に挙げられ、具䜓的には
がの化合物ずしおはゞ゚トキシゞクロルチタ
ン、ゞ―プロポキシゞクロルチタン、ゞ―ブ
トキシゞクロルチタン等がであるような化
合物ずしおはトリ゚トキシモノクルチタン、トリ
―プロポキシモノクロルチタン、トリ―ブト
キシモノクロルチタン等がであるような化
合物ずしおはテトラ゚トキシチタン、テトラ―
プロポキシチタン、テトラ―ブトキシチタン
等がであるような化合物ずしおぱトキシ
トリクロルチタン、―プロポキシトリクロルチ
タン、―ブトキシトリクロルチタンが挙げられ
る。このうちが又はのもの、ずくにが
のものが奜たしい。䞭でもトリ―ブトキシモノ
クロルチタンが最適である。
On the other hand, titanium compounds have the general formula Ti(OR 3 ) o
X 3 4-o (wherein R 3 represents an alkyl, aryl or cycloalkyl group, X 3 represents a halogen atom,
n is 1, 2, 3 or 4. ) is used. R 3 and X 3 are the above R 2 and X 2
Examples of n
Compounds where n is 2 include diethoxydichlorotitanium, di-n-propoxydichlorotitanium, di-n-butoxydichlorotitanium, etc. Compounds where n is 3 include triethoxymonochlortitanium, tri-n-propoxymonochlortitanium , tri-n-butoxymonochlorotitanium, etc.; compounds where n is 4 include tetraethoxytitanium, tetra-n-
Propoxytitanium, tetra-n-butoxytitanium, etc.; examples of compounds where n is 1 include ethoxytrichlortitanium, n-propoxytrichlortitanium, n-butoxytrichlortitanium. Of these, n is 3 or 2, especially n is 3
Preferably. Among them, tri-n-butoxymonochlorotitanium is most suitable.

ヒドロキシ化合物ずしおは、䞀般匏R5OH匏
䞭、R5はアルキル基、アリヌル基又はシクロア
ルキル基を瀺すで衚わされる化合物が䜿甚され
る。䞊蚘R5ずしおは前蚘R2で䟋瀺したものが同
様に挙げられる。具䜓的には、゚チルアルコヌ
ル、―プロピルアルコヌル、―ブチルアルコ
ヌル、―ペンチルアルコヌル、―オクチルア
ルコヌル等が挙げられる。なかでも―ブチルア
ルコヌルが最も奜たしい。
As the hydroxy compound, a compound represented by the general formula R 5 OH (wherein R 5 represents an alkyl group, an aryl group, or a cycloalkyl group) is used. Examples of R 5 above include those exemplified for R 2 above. Specific examples include ethyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol, and n-octyl alcohol. Among them, n-butyl alcohol is most preferred.

本発明方法においおは先ず、䞊述のようなマグ
ネシりムアルコラヌト、チタン化合物及び堎合に
よ぀おはヒドロキシ化合物を含む均䞀な炭化氎玠
溶液を調補する。炭化氎玠溶液を調補するには、
マグネシりムアルコラヌト、チタン化合物及び堎
合によ぀おはヒドロキシ化合物を予め混合し、均
䞀な液状物を調補しおおくこずが奜たしい。混合
順序には特に制限はなく任意でよい。そしお混合
埌、奜たしくは100℃〜170℃に加枩すれば均䞀な
液状物、もしくは均䞀なヒドロキシ化合物の溶液
が埗られる。
In the method of the present invention, first, a homogeneous hydrocarbon solution containing a magnesium alcoholate, a titanium compound, and optionally a hydroxy compound as described above is prepared. To prepare a hydrocarbon solution,
It is preferable to mix the magnesium alcoholate, the titanium compound, and optionally the hydroxy compound in advance to prepare a uniform liquid. The order of mixing is not particularly limited and may be arbitrary. After mixing, the mixture is preferably heated to 100°C to 170°C to obtain a uniform liquid or a uniform solution of the hydroxy compound.

次いで炭化氎玠溶媒を加えお炭化氎玠溶液ず
し、埗られた炭化氎玠溶液は、ヒドロキシ化合物
を加えた堎合にはその化合物を陀去しおもよい
が、通垞は実質的に陀去するこずなく以䞋の反応
凊理に䟛される。
A hydrocarbon solvent is then added to form a hydrocarbon solution, and the resulting hydrocarbon solution can be subjected to the following reaction without substantially removing it, although if a hydroxy compound has been added, the compound may be removed. Subjected to processing.

即ち、この炭化氎玠溶液ず前述のマグネシりム
ゞハロゲン化物を混合し、マグネシりムゞハロゲ
ン化物の炭化氎玠溶液ぞの懞濁液ずし、匕き続き
有機ハロゲン化アルミニりム化合物を加え、凊理
を行い炭化氎玠䞍溶の固䜓を埗る。
That is, this hydrocarbon solution and the above-mentioned magnesium dihalide are mixed to form a suspension of magnesium dihalide in the hydrocarbon solution, and then an organic aluminum halide compound is added and treated to obtain a hydrocarbon-insoluble solid.

有機ハロゲン化アルミニりム化合物ずしおは䞀
般匏AlR1 lX1 3-l匏䞭、R1はアルキル、アリヌルた
たはシクロアルキル基を瀺しX1はハロゲン原子
を瀺し、は≊≊の数を瀺す。で衚わさ
れる化合物が䜿甚される。䞀般匏䞭のR1、X1ず
しおは先にR2、X2で䟋瀺したものが同様に挙げ
られる。具䜓䟋ずしおはメチルアルミニりムゞク
ロラむド、メチルアルミニりムセスキクロラむ
ド、ゞメチルアルミニりムモノクロラむド、゚チ
ルアルミニりムゞクロラむド、゚チルアルミニり
ムセスキクロラむド、ゞ゚チルアルミニりムモノ
クロラむド、む゜ブチルアルミニりムゞクロラむ
ド、む゜ブチルアルミニりムセスキクロラむド、
ゞむ゜ブチルアルミニりムモノクロラむド等が挙
げられる。特に゚チルアルミニりムゞクロラむ
ド、゚チルアルミニりムセスキクロラむド、ゞ゚
チルアルミニりムモノクロラむドが奜たしく、䞭
でも゚チルアルミニりムセスキクロラむド及び゚
チルアルミニりムゞクロラむドが最も奜たしい結
果を䞎える。有機ハロゲン化アルミニりム化合物
凊理は前述の懞濁液に有機ハロゲン化アルミニり
ム化合物を添加し、奜たしくは20〜100℃の枩床
で反応させればよく、炭化氎玠䞍溶性固䜓が埗ら
れるので、固䜓を分離し、炭化氎玠溶媒で掗浄す
ればよい。
The organic aluminum halide compound has the general formula AlR 1 l ) is used. Examples of R 1 and X 1 in the general formula include those exemplified above for R 2 and X 2 . Specific examples include methylaluminum dichloride, methylaluminum sesquichloride, dimethylaluminum monochloride, ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum monochloride, isobutylaluminum dichloride, isobutylaluminum sesquichloride,
Examples include diisobutylaluminum monochloride. Particularly preferred are ethylaluminum dichloride, ethylaluminum sesquichloride, and diethylaluminum monochloride, and among them, ethylaluminum sesquichloride and ethylaluminum dichloride give the most preferable results. The organic aluminum halide compound treatment can be carried out by adding the organic aluminum halide compound to the above-mentioned suspension and allowing the reaction to occur preferably at a temperature of 20 to 100°C. Since a hydrocarbon-insoluble solid is obtained, the solid can be separated. , and may be washed with a hydrocarbon solvent.

しかしお、各成分の量に぀いおは、マグネシり
ムアルコラヌト、チタン化合物、ヒドロキシ化合
物および有機ハロゲン化化合物のモル数をそれぞ
れ、、及びずした堎合、前蚘䞀般匏䞭の
、、ずの間に、 0.75≩
×−×−×−
×× 

(1) が満足されるような比率にし、たた、マグネシり
ムゞハロゲン化物ず、マグネシりムアルコラヌト
のモル数ずの間に、マグネシりムゞハロゲン化物
の䜿甚モル数をずした堎合、 ≊≊100 

(2) が満足されるような比率で遞ばれる。
Therefore, regarding the amount of each component, when the number of moles of magnesium alcoholate, titanium compound, hydroxy compound, and organic halogenated compound are respectively b, c, e, and a, m, n, l in the general formula Between 0.75≩
a×(3-l)+b×(2-m)+c×(4-n)/m
×b+n×c+e......(1) When the ratio is set such that the following is satisfied, and the number of moles of magnesium dihalide used is d between the number of moles of magnesium dihalide and magnesium alcoholate, 2≩ d/b≩100...The ratio is selected such that (2) is satisfied.

そしおこの範囲内で高重合掻性を䞎える觊媒が
埗られる。
Within this range, a catalyst that provides high polymerization activity can be obtained.

即ち、䞊蚘(1)匏の倀が0.75未満では重合掻性が
著しく䜎䞋する。(1)匏の倀の䞊限に぀いおは特に
制限はないが、あたり倧きくするこずは、䜿甚さ
れる有機ハロゲン化アルミニりム化合物の量がい
たずらに倚くなるのみで実質的に無意味である。
That is, when the value of the above formula (1) is less than 0.75, the polymerization activity is significantly reduced. There is no particular restriction on the upper limit of the value of formula (1), but increasing it too much will only unnecessarily increase the amount of the organic aluminum halide compound used and is essentially meaningless.

たた(2)匏に぀いおは、では、埗られ
る固䜓觊媒成分䞭のチタン圓りの重合掻性は巊皋
倧きいものにならず100では固䜓觊媒成
分圓たりの重合掻性が䜎䞋する。
Regarding formula (2), when d/b<2, the polymerization activity per titanium in the obtained solid catalyst component is not as large as on the left, and when d/b>100, the polymerization activity per solid catalyst component decreases. do.

たた䞊蚘範囲内においお、0.5≊≊で
あればずくに重合掻性の高い觊媒が埗られる。
Further, within the above range, if 0.5≩b/c≩4, a catalyst with particularly high polymerization activity can be obtained.

次に共觊媒ずしお甚いられる有機アルミニりム
化合物ずしおは䟋えば䞀般匏AlR6 oX8 3-o匏䞭、R8
はアルキル、アリヌル又はシクロアルキル基を瀺
し、X8はハロゲン原子を瀺し、は〜の数
を瀺す。で衚わされる化合物が挙げられる。
R8、R8ずしおはR2、X2ずしお䟋瀺したようなも
のが挙げられる。具䜓的にはトリ゚チルアルミニ
りム、トリ―プロピルアルミニりム、トリむ゜
ブチルアルミニりムなどのトリアルキルアルミニ
りム、ゞ゚チルアルミニりムクロラむド、ゞ―
―プロピルアルミニりムクロラむド、ゞむ゜ブチ
ルアルミニりムクロラむドなどのゞアルキルアル
ミニりムクロラむド、゚チルアルミニりムセスキ
クロラむド、―プロピルアルミニりムセスキク
ロラむド、む゜ブチルアルミニりムセスキクロラ
むドなどのアルキルアルミニりムセスキクロラむ
ドおよびこれらの混合物等が挙げられる。
Next, as an organoaluminum compound used as a cocatalyst, for example, the general formula AlR 6 o X 8 3-o (where R 8
represents an alkyl, aryl or cycloalkyl group, X 8 represents a halogen atom, and n represents a number from 1 to 3. ) can be mentioned.
Examples of R 8 and R 8 include those exemplified as R 2 and X 2 . Specifically, trialkylaluminum such as triethylaluminum, tri-n-propylaluminum, triisobutylaluminum, diethylaluminum chloride, di-n
- Dialkyl aluminum chlorides such as propyl aluminum chloride and diisobutyl aluminum chloride; alkyl aluminum sesquichlorides such as ethyl aluminum sesquichloride, n-propylaluminum sesquichloride and isobutyl aluminum sesquichloride; and mixtures thereof.

このうち前瀺䞀般匏䞭がたたはのものが
特に高掻性な觊媒系を䞎える点で奜たしい。固䜓
觊媒成分ず共觊媒の有機アルミニりム化合物の䜿
甚割合は、アルミニりムに察するチタンの原子比
即ち、AlTiで0.1〜100奜たしくは〜20の範
囲内で䜿甚される。
Among these, those in which n is 3 or 2 in the above general formula are preferred because they provide a particularly highly active catalyst system. The proportion of the solid catalyst component and the organic aluminum compound used as a cocatalyst is within the range of 0.1 to 100, preferably 1 to 20, in terms of the atomic ratio of titanium to aluminum, that is, Al/Ti.

本発明においおは䞊蚘觊媒系を䜿甚しお、゚チ
レンの単独重合或いぱチレンず他のα―オレフ
むンの共重合を行う。゚チレン―α―オレフむン
共重合䜓ずおは、゚チレン以倖のα―オレフむン
を35重量奜たしくは20重量たで含む゚チレン
―α―オレフむン共重合䜓が補造される。この堎
合α―オレフむンの皮類により異なるが、共重合
䜓の密床は0.88c.c.皋床ずなる。
In the present invention, the above catalyst system is used to carry out homopolymerization of ethylene or copolymerization of ethylene and other α-olefins. As the ethylene-α-olefin copolymer, an ethylene-α-olefin copolymer containing up to 35% by weight, preferably 20% by weight of α-olefin other than ethylene is produced. In this case, the density of the copolymer will be approximately 0.88 g/cc, although it will vary depending on the type of α-olefin.

本発明方法においお䜿甚される他のα―オレフ
むンずしおは、プロピレン、ブテン―、ペンテ
ン―、ヘキセン―、オクテン―等の炭玠数
〜15皋床のα―オレフむンが挙げられる。
Other α-olefins used in the method of the present invention include α-olefins having about 3 to 15 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, and 1-octene.

重合反応は、炭化氎玠溶媒䞭で行なう溶液重合
方法をずり炭化氎玠溶媒の存圚䞋、゚チレンず他
のオレフむンの混合物を䟛絊しながら生成する共
重合䜓が溶解するずころの所定の枩床、圧力に保
持するこずにより行なわれる。炭化氎玠溶媒ずし
おは䞍掻性のもの䟋えば、ペンタン、ヘキサン、
ヘプタン、オクタン、む゜オクタン等の脂肪族炭
化氎玠、ベンれン、トル゚ン等の芳銙族炭化氎玠
及びシクロヘキサン等の脂環匏炭化氎玠が䜿甚さ
れる。
The polymerization reaction uses a solution polymerization method in which the copolymer is dissolved in the presence of a hydrocarbon solvent while supplying a mixture of ethylene and other olefins. It is done by doing. Inert hydrocarbon solvents such as pentane, hexane,
Aliphatic hydrocarbons such as heptane, octane, and isooctane, aromatic hydrocarbons such as benzene and toluene, and alicyclic hydrocarbons such as cyclohexane are used.

重合反応は通垞〜100気圧の圧力及び120℃〜
300℃奜たしくは180〜250℃の枩床の範囲内から
遞ばれるが、本発明方法は200℃を超える高枩に
おいお実斜される堎合、特に倧きな優䜍性を持
぀。
The polymerization reaction is usually carried out at a pressure of 5 to 100 atm and at 120°C.
300°C is preferably chosen within the temperature range of 180-250°C, but the process of the invention has particular great advantages when carried out at elevated temperatures above 200°C.

たた、本発明方法においお、重合反応垯域に氎
玠を存圚させた堎合、氎玠による分子量の調節効
果が倧きく、容易に目的の分子量の重合䜓を埗る
こずができる。存圚させるべき氎玠の量は、重合
条件や所望する゚チレン共重合䜓の分子量等によ
぀お盞違するので、これらに応じお適宜その導入
量を調節するこずが必芁である。
Further, in the method of the present invention, when hydrogen is present in the polymerization reaction zone, the effect of controlling the molecular weight by hydrogen is large, and a polymer having a desired molecular weight can be easily obtained. The amount of hydrogen to be present varies depending on the polymerization conditions, the desired molecular weight of the ethylene copolymer, etc., and therefore it is necessary to adjust the amount of hydrogen introduced accordingly.

以䞊のような本発明方法によれば、觊媒が非垞
に高掻性であり、溶液重合の枩床範囲の䞭でも極
めお高枩偎においおも重合掻性が倱なわれるこず
がない。埓぀お、重合䜓溶液の粘床䜎䞋、熱回収
効率の向䞊等により、プロセスの゚ネルギヌ消費
が倧幅に枛少し、重合䜓䞭の觊媒残枣陀去工皋の
省略ず盞た぀お、プロセス的にメリツトが倧き
い。
According to the method of the present invention as described above, the catalyst has extremely high activity, and the polymerization activity is not lost even at extremely high temperatures within the temperature range of solution polymerization. Therefore, the energy consumption of the process is significantly reduced due to the reduction in the viscosity of the polymer solution, the improvement of heat recovery efficiency, etc., and this, together with the omission of the step of removing catalyst residues in the polymer, has great advantages in terms of the process.

たた埗られた重合䜓或いは共重合䜓は分子量分
垃が狭く、機械的物性等がすぐれおいる。
Furthermore, the obtained polymer or copolymer has a narrow molecular weight distribution and excellent mechanical properties.

次に本発明を実斜䟋によ぀お曎に詳しく説明す
るが、本発明はその芁旚を超えない限り以䞋の実
斜䟋に限定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実斜䟋䞭メルトむンデツクスはASTM・・
1238・57Tに基づき190℃で2.16Kg荷重で枬定し
MIで衚わした。曎に、分子量分垃の尺床ずしお
の流出量比以䞋FRず略すは溶融粘床の剪断
応力䟝存性を瀺す倀で、ASTM・・1238・
57Tに準じ、剪断応力106dynecm2及び105dyne
cm2においお枬定したメルトむンデツクスの比をも
぀お衚わされ、FRが倧であれば分子量分垃は広
く、小であれば狭いずされおいる。ペンダント゚
チル基の含有量は、赀倖線吞収スペクトル法によ
り770cm-1の吞光床から求めた。党メチル基含有
量は、赀倖線吞収スペクトル法により1378cm-1の
吞光床から求めた。
The melt index in the examples is ASTM・D・
Measured at 190℃ and 2.16Kg load based on 1238・57T.
Expressed in MI. Furthermore, the flow rate ratio (hereinafter abbreviated as FR), which is a measure of molecular weight distribution, is a value that indicates the dependence of melt viscosity on shear stress, and is based on ASTM D 1238.
According to 57T, shear stress 10 6 dyne/cm 2 and 10 5 dyne/cm 2
It is expressed as a ratio of melt indexes measured in cm 2 , and it is said that the larger the FR, the broader the molecular weight distribution, and the smaller the FR, the narrower the molecular weight distribution. The content of pendant ethyl groups was determined from the absorbance at 770 cm -1 by infrared absorption spectroscopy. The total methyl group content was determined from the absorbance at 1378 cm -1 by infrared absorption spectroscopy.

たた觊媒総量圓たりの重合掻性は、ポ
リマヌ・觊媒hrKgcm2オレフむン
圧で、觊媒䞭のチタン圓たりの重合掻性は、
KTiポリマヌ・觊媒䞭チタンhr
Kgcm2オレフむン圧で衚わした。たた、第
図は、本発明に含たれる技術内容の理解を助ける
ためのフロヌチダヌト図であり、本発明はその芁
旚を逞脱しない限り、フロヌチダヌト図によ぀お
䜕ら制玄を受けるものではない。
The polymerization activity per total amount of catalyst is K = (g polymer)/(g catalyst) (hr) (Kg/ cm2 olefin pressure), and the polymerization activity per titanium in the catalyst is:
K Ti = (g polymer) / (g titanium in catalyst) (hr)
(Kg/cm 2 olefin pressure). Also, the first
The figure is a flowchart diagram to help understand the technical content included in the present invention, and the present invention is not limited in any way by the flowchart diagram as long as it does not depart from the gist thereof.

実斜䟋  (1) 觊媒調補 (ã‚€) ノルマルブチルマグネシりムクロラむドの
合成 500c.c.の぀口フラスコに、マグネシりム
粉末200mmolをずり、ここに少量のペり玠
を加えた埌、70℃たで加熱する。70℃で、ノ
ルマルブチルクロラむド45mmolを3mmol
mlのノルマルヘプタン溶液の圢で加える。次
いでノルマルヘプタン200mlを加えた埌、枩
床80℃を保぀ように、ノルマルブチルクロラ
むド155mmolを加える。ノルマルブチルク
ロラむド党量添加埌、30分間加熱還流を行
い、次いで、ノルマルヘプタンを枛圧留去
し、固䜓粉末状のノルマルブチルマグネシり
ムクロラむドを埗た。
Example 1 (1) Catalyst Preparation (a) Synthesis of n-butylmagnesium chloride 200 mmol of magnesium powder is placed in a 500 c.c. four-necked flask, a small amount of iodine is added thereto, and the mixture is heated to 70°C. At 70℃, 45 mmol of n-butyl chloride was added to 3 mmol/
Add in the form of ml normal heptane solution. Next, 200 ml of n-heptane is added, and then 155 mmol of n-butyl chloride is added while maintaining the temperature at 80°C. After the entire amount of n-butyl chloride was added, the mixture was heated under reflux for 30 minutes, and then n-heptane was distilled off under reduced pressure to obtain solid powder n-butylmagnesium chloride.

(ロ) 塩化マグネシりムの合成 䞊述のノルマルブチルマグネシりムクロラ
むド70mmolずベンれン130mlを混合し、次
いでここに、゚チルアルミニりムゞクロラむ
ド70mmolを4molベンれン溶液の圢で加
える。
(b) Synthesis of magnesium chloride 70 mmol of the above-mentioned n-butylmagnesium chloride and 130 ml of benzene are mixed, and then 70 mmol of ethylaluminum dichloride is added thereto in the form of a 4 mol/benzene solution.

添加埌宀枩で時間撹拌し、固䜓郚分をベ
ンれンで掗浄し、塩化マグネシりムのベンれ
ンスラリヌを埗る。
After the addition, the mixture is stirred at room temperature for 1 hour, and the solid portion is washed with benzene to obtain a benzene slurry of magnesium chloride.

(ハ) マグネシりム及びチタンを含む均䞀溶液の
調補 ゞ゚トキシマグネシりム4mmolおよびト
リブトキシチタンモノクロラむド2mmolお
よびノルマルブチルアルコヌル2mmolを混
合し、130℃にお時間撹拌するこずにより
均䞀粘皠䜓を埗た。次いでこれにベンれンを
加えベンれン溶液ずし、党量を50mlずした。
(c) Preparation of homogeneous solution containing magnesium and titanium 4 mmol of diethoxymagnesium, 2 mmol of tributoxytitanium monochloride and 2 mmol of n-butyl alcohol were mixed and stirred at 130°C for 5 hours to obtain a homogeneous viscous body. Next, benzene was added to this to make a benzene solution, and the total volume was adjusted to 50 ml.

(ニ) 固䜓觊媒成分の調補 䞊蚘(ロ)で合成した塩化マグネシりムのベン
れンスラリヌ70.0ml塩化マグネシりムずし
お1.38をずり、ここに、䞊蚘(ハ)で調補し
たベンれン溶液9.1mlを加える。25℃で時
間撹拌した。ここに60℃にお、゚チルアルミ
ニりムセスキクロラむド3.62mmolをベンれ
ン溶液の圢で加える。添加埌65℃で時間撹
拌し埗られた固䜓をノルマルヘキサンで掗浄
し、固䜓觊媒成分を埗た。この固䜓はチタン
1.3重量含んでいた。
(d) Preparation of solid catalyst component Take 70.0 ml of the benzene slurry of magnesium chloride (1.38 g as magnesium chloride) synthesized in (b) above, and add 9.1 ml of the benzene solution prepared in (c) above. Stirred at 25°C for 1 hour. At 60°C, 3.62 mmol of ethylaluminum sesquichloride is added in the form of a benzene solution. After the addition, the mixture was stirred at 65° C. for 1 hour, and the resulting solid was washed with n-hexane to obtain a solid catalyst component. This solid is titanium
It contained 1.3% by weight.

(2) 重 合 2lオヌトクレヌブにシクロヘキサン1000c.c.を
取り、䞊蚘固䜓粉末12mgを仕蟌んだ。200℃に
昇枩埌、気盞における氎玠ず゚チレンのモル比
が0.01ずなるよう氎玠を導入し、次いでゞ゚チ
ルアルミニりムモノクロラむド0.02mmol、ブ
テン−1130ずずもに゚チレンを導入し、党圧
40Kgcm2ずした。゚チレンの導入ずずもに゚チ
レンの吞収が芋られるが党圧を40Kgcm3に保぀
ように゚チレンを远加導入し、30分埌に゚タノ
ヌル圧入により重合を停止したずころMI1.5
10min FR19を有する共重合䜓166が
埗られた。この共重合䜓は1000炭玠圓り28個の
ペンダント゚チル基を持ち、ブテン単䜍含有量
11重量であ぀た。
(2) Polymerization 1000 c.c. of cyclohexane was placed in a 2 liter autoclave, and 12 mg of the above solid powder was charged therein. After raising the temperature to 200℃, hydrogen was introduced so that the molar ratio of hydrogen to ethylene in the gas phase was 0.01, then ethylene was introduced together with 0.02 mmol of diethylaluminum monochloride and 1130 g of butene, and the total pressure was reduced.
The weight was set at 40Kg/ cm2 . Ethylene absorption was observed as ethylene was introduced, but additional ethylene was introduced to maintain the total pressure at 40 Kg/cm 3 , and 30 minutes later, polymerization was stopped by injection of ethanol, resulting in MI = 1.5.
166 g of copolymer with FR=19 were obtained. This copolymer has 28 pendant ethyl groups per 1000 carbons and has a low butene unit content.
It was 11% by weight.

重合掻性は1330、KTi102000ず非垞に
高掻性であ぀た。
The polymerization activity was extremely high with K = 1330 and K Ti = 102000.

実斜䟋  2lオヌトクレヌブにシクロヘキサン1000c.c.を取
り、実斜䟋で甚いた固䜓粉末mgを仕蟌んだ。
130℃に昇枩埌気盞における氎玠゚チレンのモ
ル比が0.15になるよう氎玠を導入し、ゞ゚チルア
ルミニりムクロラむド0.01mmol、ブテン−、
85ずずもに゚チレンを導入し、党圧23Kgcm2ず
した。
Example 2 1000 c.c. of cyclohexane was placed in a 2-liter autoclave, and 6 mg of the solid powder used in Example 1 was charged therein.
After raising the temperature to 130°C, hydrogen was introduced so that the hydrogen/ethylene molar ratio in the gas phase was 0.15, and 0.01 mmol of diethylaluminum chloride, 1 butene,
Ethylene was introduced together with 85 g to give a total pressure of 23 Kg/cm 2 .

以䞋実斜䟋ず同様の操䜜で30分反応を行な
い、MI2.010min、FR19の共重合䜓141
が埗られた。この共重合䜓は1000炭玠圓り23個
のペンダント゚チル基を持ち、ブテン含有率8.5
重量であ぀た。
The reaction was carried out for 30 minutes in the same manner as in Example 1, and copolymer 141 with MI = 2.0 g/10 min and FR = 19 was obtained.
g was obtained. This copolymer has 23 pendant ethyl groups per 1000 carbons and a butene content of 8.5
It was in weight%.

重合掻性は3150、KTi243000であ぀た。 The polymerization activity was K=3150 and K Ti =243000.

実斜䟋  (1) 觊媒調補 ゞ゚トキシマグネシりム4mmolおよびトリ
ブトキシマグネシりム4mmolを混合し、130℃
にお時間撹拌するこずにより均䞀粘皠䜓を埗
た。これにベンれンを加え、ベンれン溶液ず
し、党量を50mlずした。実斜䟋においお(ハ)で
調補した溶液の代わりに、䞊蚘の溶液を甚い、
゚チルアルミニりムセスキクロラむドの䜿甚量
を4.37mmolずする以倖は実斜䟋ず党く同様
に固䜓觊媒成分を調補した。この固䜓はチタン
2.0重量含んでいた。
Example 3 (1) Catalyst preparation 4 mmol of diethoxymagnesium and 4 mmol of tributoxymagnesium were mixed and heated at 130°C.
A homogeneous viscous body was obtained by stirring for 5 hours. Benzene was added to this to make a benzene solution, and the total volume was made up to 50 ml. Using the above solution instead of the solution prepared in (c) in Example 1,
A solid catalyst component was prepared in exactly the same manner as in Example 1 except that the amount of ethylaluminum sesquichloride used was 4.37 mmol. This solid is titanium
It contained 2.0% by weight.

(2) 重 合 2lオヌトクレヌブにシクロヘキサン1000c.c.を
取り、䞊蚘固䜓粉末mgを仕蟌んだ。190℃に
昇枩埌気盞の氎玠ず゚チレンのモル比が0.01ず
なるように氎玠を導入し、次いでゞ゚チルアル
ミニりムモノクロラむド0.02mmol、ブテン−
、110ずずもに゚チレンを導入し、党圧を
40Kgcm2ずした。以䞋実斜䟋ず同様の操䜜で
30分反応を行ない、MI0.9010min、FR
20の共重合䜓165が埗られた。この共重合
䜓は1000炭玠圓り25個のペンダント゚チル基を
持ちブテン含有量10重量であ぀た。
(2) Polymerization 1000 c.c. of cyclohexane was placed in a 2 liter autoclave, and 6 mg of the above solid powder was charged therein. After raising the temperature to 190°C, hydrogen was introduced so that the molar ratio of hydrogen to ethylene in the gas phase was 0.01, and then 0.02 mmol of diethylaluminum monochloride and butene were added.
1. Introduce ethylene with 110g and increase the total pressure.
The weight was set at 40Kg/ cm2 . Following the same operation as in Example 1,
Perform the reaction for 30 minutes, MI = 0.90g/10min, FR
165 g of a copolymer of =20 was obtained. This copolymer had 25 pendant ethyl groups per 1000 carbons and a butene content of 10% by weight.

重合掻性は、2360、KTi118000であ぀
た。
The polymerization activity was K=2360 and K Ti =118000.

実斜䟋  2lオヌトクレヌブにシクロヘキサン1000c.c.をず
り、実斜䟋の(1)で調補した固䜓粉末mgを仕蟌
んだ。150℃に昇枩埌気盞における氎玠゚チレ
ンのモル比が0.2になるよう氎玠を導入し、ゞ゚
チルアルミニりムモノクロラむド0.02mmolずず
もに゚チレンを導入し、党圧を25Kgcm2ずした。
以䞋実斜䟋ず同様の操䜜で30分反応を行ない、
MI0.5210min、FR19の重合䜓150が埗
られた。重合掻性は2990、KTi150000であ
぀た。
Example 4 1000 c.c. of cyclohexane was placed in a 2-liter autoclave, and 6 mg of the solid powder prepared in Example 3 (1) was charged therein. After raising the temperature to 150°C, hydrogen was introduced so that the molar ratio of hydrogen/ethylene in the gas phase was 0.2, and ethylene was introduced together with 0.02 mmol of diethylaluminum monochloride to make the total pressure 25 Kg/cm 2 .
The reaction was carried out for 30 minutes in the same manner as in Example 1.
150 g of polymer with MI=0.52 g/10 min and FR=19 was obtained. The polymerization activity was K=2990 and K Ti =150000.

実斜䟋  2lオヌトクレヌブにシクロヘキサン1000c.c.を取
り、実斜䟋の(1)で調補した固䜓粉末12mgを仕蟌
んだ。200℃に昇枩埌気盞における氎玠ず゚チレ
ンのモル比が0.03ずなるように氎玠を導入し、次
いでゞ゚チルアルミニりムクロリド0.03mmol、
ブテン−、110ずずもに゚チレンを導入し党
圧を30Kgcm2ずした。以䞋実斜䟋ず同様の操䜜
で30分反応を行ない、MI1810min、FR
18の共重合䜓160が埗られた。この共重合䜓は
1000炭玠圓り38個のペンダント゚チル基を持ちブ
テン含有量15.5重量であ぀た。
Example 5 1000 c.c. of cyclohexane was placed in a 2-liter autoclave, and 12 mg of the solid powder prepared in Example 3 (1) was charged therein. After raising the temperature to 200°C, hydrogen was introduced so that the molar ratio of hydrogen to ethylene in the gas phase was 0.03, and then 0.03 mmol of diethylaluminium chloride,
Ethylene was introduced together with 110 g of butene-1 to give a total pressure of 30 Kg/cm 2 . Hereinafter, the reaction was carried out for 30 minutes in the same manner as in Example 1, MI = 18 g / 10 min, FR =
160 g of copolymer No. 18 was obtained. This copolymer is
It had 38 pendant ethyl groups per 1000 carbons and a butene content of 15.5% by weight.

重合掻性は2080、KTi104000であ぀た。 The polymerization activity was K=2080 and K Ti =104000.

実斜䟋  実斜䟋においおブテン−、110をオクテ
ン−、150にかえた以倖は党く同䞀にしお重
合をおこな぀た。その結果MI1.510min、
FR21の共重合䜓198が埗られた。この共重合
䜓の党メチル基含有量は1000炭玠圓り15個でオク
テン−単䜍含有量は12.0重量であ぀た。
Example 6 Polymerization was carried out in the same manner as in Example 3 except that 110 g of butene-1 was replaced with 150 g of octene-1. As a result, MI=1.5g/10min,
198 g of a copolymer with FR=21 was obtained. The total methyl group content of this copolymer was 15 per 1000 carbons, and the octene-1 unit content was 12.0% by weight.

実斜䟋  (1) 觊媒調補 実斜䟋においお、マグネシりム及びチタン
を含む均䞀溶液の䜿甚量を2.3mlずし、゚チル
アルミニりムセスキクロラむド4.37mmolの代
わりに゚チルアルミニりムゞクロラむド
1mmolを甚いる以倖は実斜䟋ず党く同様に
固䜓觊媒成分を調補した。この固䜓はチタン
0.65重量含んでいた。
Example 7 (1) Catalyst Preparation In Example 3, the amount of homogeneous solution containing magnesium and titanium used was 2.3 ml, and ethyl aluminum dichloride was used instead of 4.37 mmol of ethyl aluminum sesquichloride.
A solid catalyst component was prepared in exactly the same manner as in Example 3 except that 1 mmol was used. This solid is titanium
It contained 0.65% by weight.

(2) 重 合 2lオヌトクレヌブにシクロヘキサン900mlを
取り、䞊蚘固䜓粉末24mgを仕蟌んだ。230℃に
昇枩埌気盞における氎玠ず゚チレンのモル比が
0.005ずなるように氎玠を導入し次いで、ゞ゚
チルアルミニりムモノクロラむド0.01mmol、
ブテン−、130ずずもに゚チレンを導入し
党圧を50Kgcm2ずした。
(2) Polymerization 900 ml of cyclohexane was placed in a 2 liter autoclave, and 24 mg of the above solid powder was charged therein. After raising the temperature to 230℃, the molar ratio of hydrogen and ethylene in the gas phase is
Hydrogen was introduced so that the concentration was 0.005, then 0.01 mmol of diethylaluminum monochloride,
Ethylene was introduced together with 130 g of butene-1 to give a total pressure of 50 Kg/cm 2 .

以䞋実斜䟋ず同様の操䜜で30分反応を行な
い、MI1110min、FR19の共重合䜓162
が埗られた。
The reaction was carried out for 30 minutes in the same manner as in Example 1, and the copolymer 162 with MI = 11 g/10 min and FR = 19 was produced.
g was obtained.

この共重合䜓は1000炭玠圓り26個のペンダント
゚チル基を持ちブテン含有率10重量であ぀た。
This copolymer had 26 pendant ethyl groups per 1000 carbons and a butene content of 10% by weight.

重合掻性は、590、KTi91000であ぀た。 The polymerization activity was K=590 and K Ti =91000.

実斜䟋  実斜䟋においおゞ゚チルアルミニりムモノク
ロラむド0.01mmolの代わりにトリ゚チルアルミ
ニりム0.01mmolを甚いる以倖は実斜䟋ず党く
同様に重合し、MI1810min、FR20の共
重合䜓150が埗られた。この共重合䜓は1000炭
玠圓り24個のペンダント゚チル基を持ちブテン含
有率は9.5重量であ぀た。
Example 8 Polymerization was carried out in exactly the same manner as in Example 7 except that 0.01 mmol of triethyl aluminum was used instead of 0.01 mmol of diethylaluminium monochloride, and 150 g of a copolymer with MI = 18 g/10 min and FR = 20 was obtained. It was done. This copolymer had 24 pendant ethyl groups per 1000 carbons and a butene content of 9.5% by weight.

重合掻性は546、KTi92000であ぀た。 The polymerization activity was K=546 and K Ti =92000.

実斜䟋  マグネシりムゞ゚チラヌト20mmolずトリノル
マルブトキシモノクロルチタン20mmolを混合
し、140℃で時間撹拌し均䞀な液䜓を埗た。次
いで80℃たで攟冷埌ベンれンを200ml加え均䞀溶
液ずした。
Example 9 20 mmol of magnesium diethylate and 20 mmol of tri-n-butoxymonochlorotitanium were mixed and stirred at 140°C for 4 hours to obtain a homogeneous liquid. Then, after cooling to 80°C, 200 ml of benzene was added to make a homogeneous solution.

ここに、垂販のフレヌク状塩化マグネシりムを
宀枩で72hrボヌルミルしたもの380mmolを加え、
次いで40℃にお゚チルアルミニりムセスキクロラ
むド120.6mmolを4.0molのベンれン溶液の圢
で加えた。その埌60℃に昇枩し、1hr撹拌を行い
熟成した。生成した沈殿をノルマルヘキサンで掗
浄し、ノルマルヘキサンスラリヌの圢で重合に䟛
した。この觊媒䞭のチタン含量は1.9重量であ
぀た。
Add 380 mmol of commercially available flake magnesium chloride ball-milled at room temperature for 72 hours,
Then, at 40°C, 120.6 mmol of ethylaluminum sesquichloride was added in the form of a 4.0 mol/benzene solution. Thereafter, the temperature was raised to 60°C, and the mixture was stirred for 1 hour to ripen. The generated precipitate was washed with n-hexane and subjected to polymerization in the form of n-hexane slurry. The titanium content in this catalyst was 1.9% by weight.

぀ぎに、2lオヌトクレヌブにシクロヘキサン
1000c.c.をずり、䞊蚘固䜓粉末mgを仕蟌んだ。
Next, add cyclohexane to a 2L autoclave.
1000 c.c. was taken and 9 mg of the above solid powder was charged.

200℃に昇枩埌、気盞の氎玠ず゚チレンのモル
比が0.01ずなるよう氎玠を導入し、ゞ゚チルアル
ミニりムクロリド0.025mmol、ブテン−、85
を゚チレンず共に導入し、党圧40Kgcm2にした。
゚チレンの導入ず共に゚チレンの吞収が芋られる
が党圧を40Kgcm2に保぀ように゚チレンを远加導
入し、30分埌に゚タノヌル圧入により重合を停止
した。その結果、MI1.2、FR20のポリマヌ
160が埗られた。1550、KTi81700であ぀
た。
After raising the temperature to 200℃, hydrogen was introduced so that the molar ratio of hydrogen to ethylene in the gas phase was 0.01, and 0.025 mmol of diethylaluminium chloride and 85 g of butene-1 were added.
was introduced together with ethylene to give a total pressure of 40 Kg/cm 2 .
As ethylene was introduced, absorption of ethylene was observed, but ethylene was additionally introduced to maintain the total pressure at 40 kg/cm 2 , and 30 minutes later, the polymerization was stopped by injection of ethanol. As a result, the polymer with MI=1.2 and FR=20
160g was obtained. K = 1550, K Ti = 81700.

この共重合䜓は1000炭玠圓り23個のペンダント
゚チル基を持ち、ブテン−含有量8.5重量で
あ぀た。
This copolymer had 23 pendant ethyl groups per 1000 carbons and a butene-1 content of 8.5% by weight.

実斜䟋 10 (1) 觊媒調補 マグネシりムゞ゚チラヌト20mmol、トリノ
ルマルブトキシモノクロルチタン10mmol及び
ノルマルブタノヌル10mmolを混合し、140℃
で時間撹拌し、均䞀な溶液ずした。぀いで60
℃たで降枩しベンれン150c.c.を加え均䞀溶液ず
した。
Example 10 (1) Catalyst preparation 20 mmol of magnesium diethylate, 10 mmol of tri-n-butoxymonochlorotitanium and 10 mmol of n-butanol were mixed and heated at 140°C.
The mixture was stirred for 4 hours to form a homogeneous solution. Then 60
The temperature was lowered to ℃ and 150 c.c. of benzene was added to make a homogeneous solution.

次に60℃にお゚チルアルミニりムセスキクロ
ラむド100mmolを20分間で滎䞋し、匕き続き
60℃で時間撹拌した。
Next, 100 mmol of ethylaluminum sesquichloride was added dropwise over 20 minutes at 60℃, and then
The mixture was stirred at 60°C for 1 hour.

生成した沈殿をノルマルヘキサンで掗浄埌也
燥しお固䜓粉末を埗た。この固䜓䞭にはチタン
が11重量含たれおいた。
The generated precipitate was washed with normal hexane and dried to obtain a solid powder. This solid contained 11% by weight of titanium.

(2) 重 合 2lオヌトクレヌブにシクロヘキサン1000c.c.を
取り、䞊蚘固䜓粉末15mgを仕蟌んだ。200℃に
昇枩埌、気盞における氎玠゚チレンのモル比
が0.01になるよう氎玠を導入し、次いでゞ゚チ
ルアルミニりムモノクロラむド0.12mmol、ブ
テン−、38ずずもに゚チレンを導入し党圧
23Kgcm2ずした。
(2) Polymerization 1000 c.c. of cyclohexane was placed in a 2 liter autoclave, and 15 mg of the above solid powder was charged therein. After raising the temperature to 200°C, hydrogen was introduced so that the hydrogen/ethylene molar ratio in the gas phase was 0.01, and then ethylene was introduced together with 0.12 mmol of diethylaluminium monochloride and 38 g of butene-1, and the total pressure was reduced.
The weight was set at 23Kg/ cm2 .

゚チレンの導入ずずもに゚チレンの吞収が芋
られるが党圧を25Kgcm2に保぀よう゚チレンを
远加導入し30分埌に゚タノヌル圧入により重合
を停止したずころMI6.0、FR22を有する
共重合䜓56が埗られた。この共重合䜓は1000
炭玠圓り25個のペンダント゚チル基を持ち、ブ
テン−単䜍含有量10重量であ぀た。
As ethylene was introduced, absorption of ethylene was observed, but ethylene was additionally introduced to maintain the total pressure at 25 kg/ cm2 , and 30 minutes later, the polymerization was stopped by injection of ethanol, resulting in 56 g of copolymer with MI = 6.0 and FR = 22. was gotten. This copolymer has 1000
It had 25 pendant ethyl groups per carbon and a butene-1 unit content of 10% by weight.

重合掻性は885ず高いが、KTiが8050ず䜎か
぀た。
The polymerization activity K was high at 885, but the K Ti was low at 8050.

比范䟋  (1) 觊媒調補 無氎塩化マグネシりム20mmolをノルマルヘ
プタン100mlに懞濁化し、次いで゚タノヌル
20mmolを加え、宀枩で時間撹拌する。次い
でここに四塩化チタン200mmolを加え、90℃
で時間撹拌する。埗られた固䜓をシクロヘキ
サンで掗浄し、固䜓觊媒成分を埗る。この固䜓
はチタン3.5重量含んでいた。
Comparative Example 1 (1) Catalyst Preparation 20 mmol of anhydrous magnesium chloride was suspended in 100 ml of normal heptane, and then ethanol was added.
Add 20 mmol and stir at room temperature for 1 hour. Next, add 200 mmol of titanium tetrachloride and heat at 90°C.
Stir for 2 hours. The obtained solid is washed with cyclohexane to obtain a solid catalyst component. This solid contained 3.5% titanium by weight.

(2) 重 合 䞊蚘固䜓を甚いる以倖は実斜䟋ず党く同様
に重合を行な぀た。埗られたポリマヌはわずか
に16であり重合掻性は、54、KTi1540
ず䜎か぀た。
(2) Polymerization Polymerization was carried out in exactly the same manner as in Example 6 except that the above solid was used. The amount of polymer obtained was only 16 g, and the polymerization activity was K = 54, K Ti = 1540.
It was low.

【図面の簡単な説明】[Brief explanation of drawings]

第図は、本発明の䞀態様を瀺すフロヌチダヌ
ト図である。
FIG. 1 is a flowchart showing one embodiment of the present invention.

Claims (1)

【特蚱請求の範囲】  䞀般匏MgX4 2匏䞭X4はハロゲン原子を衚わ
す。で衚わされるマグネシりムゞハロゲン化物
の存圚䞋、䞀般匏MgOR2mX2 2-n匏䞭、R2は
アルキル、アリヌル又はシクロアルキル基を瀺
し、X2はハロゲン原子を瀺し、は又はで
あるで衚わされるマグネシりムアルコラヌト、
䞀般匏TiOR3nX3 4-o匏䞭、R3はアルキル、ア
リヌル又はシクロアルキル基を瀺し、X3はハロ
ゲン原子を瀺し、は又はである
で衚わされるチタン化合物及び堎合によ぀おは䞀
般匏R5OH匏䞭、R5はアルキル、アリヌル又は
シクロアルキル基を瀺すで衚わされるヒドロキ
シ化合物を含む均䞀な炭化氎玠溶液を、䞀般匏
AlR1 lX1 3-l匏䞭、R1はアルキル、アリヌル又はシ
クロアルキル基を瀺し、X1はハロゲン原子を瀺
し、は≊≊の数を瀺す。で衚わされる
有機ハロゲン化アルミニりム化合物で凊理する際
に、各化合物の量比に぀いお、マグネシりムアル
コラヌト、チタン化合物、ヒドロキシ化合物およ
び有機ハロゲン化アルミニりム化合物のモル数を
それぞれ、、及びずした堎合、前蚘䞀般
匏䞭の、、ずの間に、 0.75≩
×−×−×−
×× が満足されるような比率にし、たた、マグネシり
ムゞハロゲン化物ずマグネシりムアルコラヌトの
モル数の間に、マグネシりムゞハロゲン化物のモ
ル数をずした堎合、 ≊≊100 が満足される様な比率にしお埗られる炭化氎玠䞍
溶性固䜓ず有機アルミニりム化合物を組み合わせ
おなる觊媒系を甚いお炭化氎玠溶媒䞭生成する重
合䜓が該炭化氎玠溶媒䞭に溶解しおいる状態で、
゚チレン単独又ぱチレンず他のα―オレフむン
の混合物を重合するこずを特城ずするポリオレフ
むンの補造方法。
[Claims] 1. In the presence of a magnesium dihalide represented by the general formula MgX 4 2 (in the formula, X 4 represents a halogen atom), the general formula Mg(OR 2 ) mX 2 2-n (in the formula, R 2 represents an alkyl, aryl or cycloalkyl group, X 2 represents a halogen atom, m is 1 or 2);
General formula Ti(OR 3 )nX 3 4-o (wherein R 3 represents an alkyl, aryl or cycloalkyl group, X 3 represents a halogen atom, and m is 1, 2, 3 or 4)
A homogeneous hydrocarbon solution containing a titanium compound represented by the general formula
An organic compound represented by AlR 1 l When treating with an aluminum halide compound, when the number of moles of magnesium alcoholate, titanium compound, hydroxy compound, and organic aluminum halide compound are respectively b, c, e, and a regarding the quantitative ratio of each compound, the general formula Between m, n, and l in the middle, 0.75≩
a×(3-l)+b×(2-m)+c×(4-n)/m
If the ratio is set so that ×b + n × c + e is satisfied, and the number of moles of magnesium dihalide is d between the number of moles of magnesium dihalide and magnesium alcoholate, then 2≩d/b≩100 is satisfied. A polymer produced in a hydrocarbon solvent using a catalyst system consisting of a combination of a hydrocarbon-insoluble solid and an organoaluminum compound obtained in a ratio such that the polymer is dissolved in the hydrocarbon solvent,
A method for producing a polyolefin, which comprises polymerizing ethylene alone or a mixture of ethylene and other α-olefins.
JP4003281A 1981-03-19 1981-03-19 Production of polyolefin Granted JPS57153007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4003281A JPS57153007A (en) 1981-03-19 1981-03-19 Production of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4003281A JPS57153007A (en) 1981-03-19 1981-03-19 Production of polyolefin

Publications (2)

Publication Number Publication Date
JPS57153007A JPS57153007A (en) 1982-09-21
JPH0132246B2 true JPH0132246B2 (en) 1989-06-30

Family

ID=12569564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4003281A Granted JPS57153007A (en) 1981-03-19 1981-03-19 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPS57153007A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780968B2 (en) * 1987-09-09 1995-08-30 䜏友化孊工業株匏䌚瀟 Process for producing olefin polymer

Also Published As

Publication number Publication date
JPS57153007A (en) 1982-09-21

Similar Documents

Publication Publication Date Title
JPH0655783B2 (en) Olefin polymerization catalyst component
US4226964A (en) Process for polymerizing olefin
JPS6247444B2 (en)
SK279040B6 (en) Catalyst for the homo- and co-polymerization of ethylene
JPS59179508A (en) Preparation of ethylene copolymer
KR100192716B1 (en) Silica supported transition metal catalyst
JPS647087B2 (en)
JPS647086B2 (en)
JPH0134447B2 (en)
JPH0132246B2 (en)
JPH0125768B2 (en)
JPS647085B2 (en)
RU2682163C1 (en) Method for preparation of vanadium magnesium polymerization catalyst of ethylene and copolimerization of ethylene with alpha olefines
JPH0118926B2 (en)
JPS6412285B2 (en)
JPS648642B2 (en)
JPS6410529B2 (en)
JPH0134246B2 (en)
JP3055078B2 (en) Method for producing polyolefin
JPH0437843B2 (en)
JPH0134446B2 (en)
JPS643210B2 (en)
JPS61176612A (en) Method for polymerizing ethylene
JPS643209B2 (en)
JPH0339082B2 (en)