JPS6124105B2 - - Google Patents

Info

Publication number
JPS6124105B2
JPS6124105B2 JP8142480A JP8142480A JPS6124105B2 JP S6124105 B2 JPS6124105 B2 JP S6124105B2 JP 8142480 A JP8142480 A JP 8142480A JP 8142480 A JP8142480 A JP 8142480A JP S6124105 B2 JPS6124105 B2 JP S6124105B2
Authority
JP
Japan
Prior art keywords
molten metal
ingot
bath
metal bath
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8142480A
Other languages
Japanese (ja)
Other versions
JPS577356A (en
Inventor
Yasuo Kondo
Hideyo Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8142480A priority Critical patent/JPS577356A/en
Publication of JPS577356A publication Critical patent/JPS577356A/en
Publication of JPS6124105B2 publication Critical patent/JPS6124105B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はエレクトロスラグ再溶解による複合鋳
塊の製造方法に係り、特に電磁力による撹拌効果
を利用して溶着金属の高温割れを防止し、さらに
中空鋳塊の溶込み深さを均一にし得るエレクトロ
スラグ再溶解による複合鋳塊の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a composite ingot by electroslag remelting, in particular, it utilizes the stirring effect of electromagnetic force to prevent hot cracking of weld metal, and furthermore, it The present invention relates to a method for manufacturing a composite ingot by electroslag remelting that can make the depth uniform.

近年発電あるいは圧延設備の大型化に伴つて、
それに使用される発電用タービンロータ、圧延ロ
ール等も大型でかつ信頼性の高い材料であること
が要求され、その素材となる鋼塊も100トンを超
えるものが多い。このような大型鋼塊を従来の鋳
造法により健全に製造することは非常に困難であ
る。
In recent years, with the increase in the size of power generation and rolling equipment,
The power generation turbine rotors, rolling rolls, etc. used in these systems are required to be large and made of highly reliable materials, and the steel ingots from which they are made often exceed 100 tons. It is extremely difficult to produce such large steel ingots in a sound manner using conventional casting methods.

大型鋼塊の製造法として、あらかじめ鋳造され
た鋼塊のVあるいは逆V等のマクロ偏析や引け巣
等の不健全部を軸方向に沿つてせん孔除去して中
空鋼塊となし、その空所をエレクトロスラグ再溶
解により充てんする方法が例えば特公昭52―897
号公報、特公昭52―48933号公報に記載されてい
る。この方法によれば、従来公知のエレクトロス
ラグ再溶解法の特長によりマクロ偏析や引け巣の
ない大型鋼塊を製造することが期待できるが、鋼
塊内部に充てんされた溶着金属中に高温割れを生
ずる欠点がある。割れが軽度であれば、後に鍛造
圧着することも可能であるが、コスト高を招くこ
とになる。また割れがはなはだしい場合には使用
不能に至る。
As a manufacturing method for large steel ingots, unsound parts such as macro segregation such as V or inverted V and shrinkage cavities of pre-cast steel ingots are removed along the axial direction to form hollow steel ingots, and the voids are removed. For example, the method of filling by electroslag remelting is described in Japanese Patent Publication No. 52-897.
It is described in Japanese Patent Publication No. 52-48933. According to this method, it is expected that large steel ingots without macro segregation or shrinkage cavities can be produced due to the features of the conventionally known electroslag remelting method. There are drawbacks that arise. If the cracks are mild, it is possible to forge and press-bond the parts later, but this will result in higher costs. In addition, if the cracks are severe, the product becomes unusable.

上野 誠、有安久共編「消耗ノズルル式エレク
トロスラグ溶接法」(森北出版)はエレクトロス
ラグ再溶解法と原理を同じくするエレクトロスラ
グ溶接法における高温割れと溶着金属の凝固形状
との関係を述べ、第1図に示すように、高温割れ
はShape factorと呼ばれる溶接部の幅bに対する
溶融金属浴の深さhの比b/hに大きく支配さ
れ、Shape factorが大きい程割れにくくなること
を示している。
"Consumable Nozzle Type Electroslag Welding Method" (Morikita Publishing), co-edited by Makoto Ueno and Hisashi Ariyasu, describes the relationship between hot cracking and the solidification shape of the deposited metal in the electroslag welding method, which has the same principle as the electroslag remelting method. As shown in Figure 1, hot cracking is largely controlled by the shape factor, which is the ratio b/h of the depth h of the molten metal bath to the width b of the weld, and the larger the shape factor, the more difficult it is to crack. .

この状況を溶着金属の凝固現象から第1図によ
つて説明くる。すなわち溶融スラグ浴2の抵抗加
熱によつて消耗電極は溶解され、溶融金属浴3を
形成し、母材1の内壁は加熱再溶融される。溶融
金属は母材溶融境界部から冷却されて凝固を開始
し、次第に凝固層の厚みを増して両端から成長し
た柱状晶が溶接線中央部で接触して凝固を完了す
る。この時柱状晶の接触する角度αは溶融金属浴
3の形状によつて決まり、それが深い程すなわち
前述したShape factorが小さい程鈍角をなして接
触する。一方、溶着金属は凝固する際に収縮引張
応力が発生し、結晶粒界に低融点物質あるいは介
在物等が存在する時に作用すると高温割れを招く
が、引張応力は溶融金属浴3が深い程集中して割
れ感受性が大きくなり、逆に浅い程割れ感受性が
小さくなり、柱状晶が軸と平行に成長する場合に
割れに対する抵抗力が最大となる。また母材の拘
束力も大きな影響を及ぼぼし、拘束力が大きい程
高温度割れが促進される。
This situation will be explained from the solidification phenomenon of weld metal with reference to FIG. That is, the consumable electrode is melted by resistance heating of the molten slag bath 2 to form a molten metal bath 3, and the inner wall of the base material 1 is heated and remelted. The molten metal is cooled from the molten boundary of the base metal and begins to solidify, gradually increasing the thickness of the solidified layer, and the columnar crystals that have grown from both ends come into contact at the center of the weld line, completing solidification. At this time, the angle α at which the columnar crystals come into contact is determined by the shape of the molten metal bath 3, and the deeper it is, that is, the smaller the above-mentioned shape factor is, the more obtuse the angle α is at which the columnar crystals come into contact. On the other hand, shrinkage tensile stress is generated when the weld metal solidifies, and if this occurs when there are low melting point substances or inclusions in the grain boundaries, it will cause hot cracking, but the tensile stress is concentrated the deeper the molten metal bath 3 is. On the other hand, the shallower the depth, the lower the cracking susceptibility, and the maximum resistance to cracking occurs when the columnar crystals grow parallel to the axis. The restraint force of the base metal also has a large effect, and the greater the restraint force, the more accelerated high-temperature cracking will occur.

エレクトロスラグ再溶解により中空鋼塊の中空
部を充てんする方法は完全拘束に近く、割れ感受
性が非常に大きい。種々検討した結果、完全拘束
に近い状態で高温割れを防ぐためには、柱状晶の
接触角度を90゜よりも小さくする、すなわち溶融
金属浴深さを溶接部の幅のおよそ1/2以下にする
ことが必要であることがわかつた。しかしなが
ら、熱伝導は中空鋼塊及び凝固相(溶着金属)を
通じて行われるため、その抜熱量は通常のエレク
トロスラグ再溶解に比べて非常に小さく、また鋼
塊が大型になる程入熱量も増加するので溶融金属
浴は深くなりやすく、所望する柱状晶の接触角度
を得ることが難しくなる。溶融金属浴の深さは電
流を下げることで制御されるが、電流の低下は溶
解速度の低下を招き、生産を阻害するとともに母
材の溶込み深さにも影響を及ぼし、鋼塊が大型に
なるほど適正な電流条件を選定することが困難に
なる。
The method of filling the hollow part of a hollow steel ingot by electroslag remelting is close to complete restraint and has a very high cracking susceptibility. As a result of various studies, in order to prevent hot cracking under conditions close to complete restraint, the contact angle of the columnar crystals should be smaller than 90°, that is, the depth of the molten metal bath should be approximately 1/2 or less of the width of the weld zone. I found out that this is necessary. However, since heat conduction occurs through the hollow steel ingot and the solidified phase (welded metal), the amount of heat removed is very small compared to normal electroslag remelting, and the larger the steel ingot, the greater the heat input. Therefore, the molten metal bath tends to become deep, making it difficult to obtain the desired contact angle of the columnar crystals. The depth of the molten metal bath is controlled by lowering the current, but lowering the current leads to a lower melting rate, which inhibits production and also affects the penetration depth of the base metal, resulting in larger steel ingots. The more it becomes, the more difficult it becomes to select appropriate current conditions.

本発明者らは溶融金属浴の形状を変えることに
よつて、高温割れに対する抵抗力が増大する可能
をもつという上記知織に基づいて、従来技術の欠
点を解決することを目的として研究した結果、電
流あるいは入熱量を低下させることなく、溶融金
属浴の深さを浅く、すなわちShape factorを大き
くするためには溶融金属浴に対して電磁撹拌を付
与することが効果的であることを見い出した。
The present inventors have conducted research aimed at solving the shortcomings of the prior art based on the above knowledge that the resistance to hot cracking can be increased by changing the shape of the molten metal bath. We found that applying electromagnetic stirring to the molten metal bath is effective in reducing the depth of the molten metal bath, that is, increasing the shape factor, without reducing the current or heat input. .

すなわち、第2図に示す電磁撹拌に関する研究
結果の一例(JIS規格SS41 80mmφ鋼塊)から明
らかなように、溶融金属浴に対して溶解電流と外
部磁界によつて励起される磁界を利用して電磁撹
拌を付与することによつて柱状晶が軸に対してよ
り平行に成長するようになり、Shape factorを大
きくできることがわかる。電磁撹拌によつて
Shape factorが大きくなるのは以下の理由によ
る。
In other words, as is clear from the example of research results regarding electromagnetic stirring (JIS standard SS41 80mmφ steel ingot) shown in Figure 2, the magnetic stirring is performed using a magnetic field excited by a melting current and an external magnetic field in a molten metal bath. It can be seen that by applying electromagnetic stirring, the columnar crystals grow more parallel to the axis, and the shape factor can be increased. by electromagnetic stirring
The reason why the shape factor becomes large is as follows.

すなわち、通常のエレクトロスラグ再溶解にい
おいては溶融金属浴は水冷鋳型に接しているた
め、強制冷却を受けて表面から凝固を開始する
が、鋼塊内部では凝固層を通じての熱伝導でかあ
り、さらに消耗電極先端で生成した溶鋼滴の持込
む熱によつて凝固が遅れる。その結果、第2図に
示す縦断面のサルフアープリントの模写図かなら
明らかなように、溶融金属浴の形状はV字型とな
る。一方、電磁撹拌によつて溶融金属浴内外部の
温度は均一になるとともに、撹拌流は円心円状の
回転であるので、溶融金属浴の半径方向の流束分
布は鋼塊中心から離れるにつれて増加する。従つ
て鋼塊表層側は最も流速の大きい溶鋼流と接触し
つつ凝固するが、このような場合、凝固速度が大
幅に抑制されることが知られている。さらに電極
先端で生成された溶鋼滴は撹拌された溶融スラグ
浴中を落下する間にアトマイズされて分散する現
象を生ずる。その結果、第2図に示すサルフアー
プリントの模写図から明らかなように、溶融金属
浴形状は平坦となり、Shape factorが他の方法で
は達成不可能なほど著しく大きくなる、また、溶
融スラグ浴を撹拌すれば、消耗電極との間の熱、
物質移動が促進され、溶解速度が向上するなどの
電磁撹拌の効果が得られた。前述したように、撹
拌はスラグ浴及び溶融金属浴の円周方向の温度分
布を均一にするので、溶解の際には母材の溶込み
を均一にする上で有効であることもわかつた。以
上の知見に基づき、本発明は前記従来のエレクト
ロスラグ再溶解により中空鋳塊の中空部を充てん
して複合鋳塊を製造する方法の欠点を解消し、高
温割れを防止して、かつ中空鋳塊の溶込みの均一
化を計るものである。
In other words, in normal electroslag remelting, the molten metal bath is in contact with the water-cooled mold, so it receives forced cooling and starts solidifying from the surface, but inside the steel ingot, heat conduction through the solidified layer occurs. Furthermore, solidification is delayed by the heat brought in by the molten steel droplets generated at the tip of the consumable electrode. As a result, the shape of the molten metal bath becomes V-shaped, as is clear from the longitudinal section of the sulfur print shown in FIG. On the other hand, electromagnetic stirring makes the temperature inside and outside of the molten metal bath uniform, and since the stirring flow is a circular rotation, the flux distribution in the radial direction of the molten metal bath changes as it moves away from the center of the steel ingot. To increase. Therefore, the surface layer side of the steel ingot solidifies while coming into contact with the molten steel flow having the highest flow rate, but it is known that in such a case, the solidification rate is significantly suppressed. Further, the molten steel droplets generated at the tip of the electrode are atomized and dispersed while falling into the stirred molten slag bath. As a result, as is clear from the reproduction of the sulfur print shown in Figure 2, the shape of the molten metal bath becomes flat, and the shape factor becomes significantly larger than can be achieved by other methods. If you stir, the heat between the consumable electrode and
The effects of electromagnetic stirring, such as promoting mass transfer and improving dissolution rate, were obtained. As mentioned above, stirring uniformizes the temperature distribution in the circumferential direction of the slag bath and the molten metal bath, so it was also found that stirring is effective in uniformly penetrating the base material during melting. Based on the above knowledge, the present invention solves the drawbacks of the conventional method of manufacturing a composite ingot by filling the hollow part of the hollow ingot by electroslag remelting, prevents hot cracking, and This measures the uniformity of the infiltration of the lumps.

本発明の特徴は、中空鋳塊の中空部をエレクト
ロスラグ再溶解により充てんする時に、中空鋳塊
内の溶融金属浴または溶融金属浴及び溶融スラグ
浴に対して溶解電流と外部磁界によつて励起され
る磁界を利用して電磁撹拌を付与することにより
同一電気条件でも高温割れの感受性を表わす
Shape factorを大きくするとともに、中空鋳塊の
溶込みを均一にすることにある。
A feature of the present invention is that when the hollow part of the hollow ingot is filled by electroslag remelting, the molten metal bath or the molten metal bath and the molten slag bath in the hollow ingot are excited by a melting current and an external magnetic field. By applying electromagnetic stirring using the magnetic field generated by
The goal is to increase the shape factor and make the penetration of the hollow ingot uniform.

連続鋳造においても、例えば、特公昭53―
16365号公報、特公昭54―19377号公報に記載され
ているように電磁撹拌が行われているが、それら
は撹拌によつて柱状晶を分断して等軸晶を形成さ
せることによつて鋼塊中心偏析、中心ポロシテイ
あるいはホワイトバンドなどの防止を計ることを
目的にしており、本発明のように、溶融金属浴形
状を変えて高温割れを防止することとは明らかに
目的が異なる。以下、本発明を一実施例に基づい
て具体的に説明する。
In continuous casting, for example,
Electromagnetic stirring has been carried out as described in Japanese Patent Publication No. 16365 and Japanese Patent Publication No. 19377. These methods are used to improve the quality of steel by dividing columnar crystals and forming equiaxed crystals. The purpose of this method is to prevent lump center segregation, center porosity, white bands, etc., and the purpose is clearly different from the present invention, which is to prevent hot cracking by changing the shape of the molten metal bath. The present invention will be specifically described below based on one embodiment.

実施例 第3図は本発明による実施状態を示すもので、 以下の条件で本発明を実施した場合の実施例に
ついて説明する。
Embodiment FIG. 3 shows an implementation state of the present invention, and an embodiment in which the invention is implemented under the following conditions will be described.

中空鋼塊 140φ×57φ×350 ここで140φは外径が140mmφ、57φ
は円径が57mmφおよび350は高さ
が350mmであることを示す。
Hollow steel ingot 140φ×57φ×350 Here, 140φ has an outer diameter of 140mmφ and 57φ
indicates that the circle diameter is 57mmφ and 350 indicates that the height is 350mm.

消耗電極 30φ×1250 ここで電極は丸棒であつて30φは30
mmφの径、1250は1250mmの長さを
示す。
Consumable electrode 30φ×1250 Here the electrode is a round bar and 30φ is 30
The diameter of mmφ, 1250, indicates a length of 1250 mm.

電 流 900A 電 圧 35V 溶融金属浴の深さ 30mm (b/H)=2.5 スラグ浴の深さ 45mm 消耗電極の溶解速度 撹拌有り 210g/min 撹拌無し 290g/min 撹拌強度 230ガウスス 溶融スラグ浴2及び溶融金属3の部分に電磁コイ
ル4が配置されている。まず、一方の電極に当る
水冷定盤5上にあらかじめ鋳造され、不健全部が
せん孔除去された中空鋳塊6を配置し、この中に
フツ化カルシウム(CaF2)、酸化アルミニウム
(Al2O3)、酸化カルシウム(CaO)等の酸化物か
らなる溶融スラグを適当力入れて溶融スラグ浴2
を形成する。ここで、溶融スラグ浴の組成は、フ
ツ化カルシウム(CaF2)が40重量%、酸化カルシ
ウム(CaO)が30重量%、酸化アルミニウム
(Al2O3)が30重量%である。次に中空鋳塊6と同
種または異種材料からなる消耗電極7と水冷定盤
5の間に溶融スラグ浴2を介して通電し、発生す
るジユール熱によつて消耗電極7を溶解する。溶
融金属浴3が形成されるとともに、中空鋳塊6の
内壁は溶融スラグ浴2によつて加熱再溶融され、
溶融金属浴3と混合する。そしてこの時に、消耗
電極7を通じて流れる電流と電磁コイル4によつ
て、溶融スラグ浴2及び溶融金属浴3を中空鋳塊
6の円周方向に沿つて電磁撹拌する。溶融金属浴
3の深さは撹拌によつて浅く、平坦なものとされ
る。また消耗電極7と溶融スラグ浴2の間の熱、
物質移動が促進され、溶解速度の向上が計られ
る。溶解はこうした状態で進行し、そして溶融金
属は中空鋳塊境界部から冷却されて凝固を開始
し、次第に凝固層の厚みを増して複合鋳塊が形成
されるが、溶着金属8は電磁撹拌によつてShape
factorが大きくされているので、高温割れはほと
んど発生しない。また溶融スラグ浴2及び溶融金
属浴3の温度が撹拌によつて均一になるので、中
空鋳塊6の円周方向の溶込みも均一になる。
Current 900A Voltage 35V Molten metal bath depth 30mm (b/H) = 2.5 Slag bath depth 45mm Consumable electrode dissolution rate With stirring 210g/min Without stirring 290g/min Stirring strength 230 Gauss Molten slag bath 2 and An electromagnetic coil 4 is arranged in a portion of the molten metal 3. First, a hollow ingot 6 which has been previously cast and whose unhealthy parts have been removed is placed on a water-cooled surface plate 5 corresponding to one electrode, and calcium fluoride (CaF 2 ), aluminum oxide (Al 2 O 3 ) The molten slag made of oxides such as calcium oxide (CaO) is poured into the molten slag bath 2.
form. Here, the composition of the molten slag bath is 40% by weight of calcium fluoride (CaF 2 ), 30% by weight of calcium oxide (CaO), and 30% by weight of aluminum oxide (Al 2 O 3 ). Next, electricity is applied through the molten slag bath 2 between the consumable electrode 7 made of the same or different material as the hollow ingot 6 and the water-cooled surface plate 5, and the consumable electrode 7 is melted by the generated Joule heat. While the molten metal bath 3 is formed, the inner wall of the hollow ingot 6 is heated and remelted by the molten slag bath 2,
Mix with molten metal bath 3. At this time, the molten slag bath 2 and the molten metal bath 3 are electromagnetically stirred along the circumferential direction of the hollow ingot 6 by the current flowing through the consumable electrode 7 and the electromagnetic coil 4 . The depth of the molten metal bath 3 is made shallow and flat by stirring. Also, the heat between the consumable electrode 7 and the molten slag bath 2,
Mass transfer is promoted and dissolution rate is improved. Melting proceeds in this state, and the molten metal is cooled from the boundary of the hollow ingot and starts to solidify, gradually increasing the thickness of the solidified layer to form a composite ingot. Yotsute Shape
Since the factor is set large, high-temperature cracking hardly occurs. Further, since the temperatures of the molten slag bath 2 and the molten metal bath 3 are made uniform by stirring, the penetration of the hollow ingot 6 in the circumferential direction is also made uniform.

溶融スラグ浴及び溶融金属浴に付加する撹拌強
度は材質、中空鋳塊の大きさ、入力等の操業因子
によつて決定されるが、第2図の結果から、撹拌
強度が大きすぎる場合には溶融金属浴が深くなり
Shape factorが減少することがわかつた。
The stirring intensity applied to the molten slag bath and molten metal bath is determined by operational factors such as the material, the size of the hollow ingot, and the input power, but from the results shown in Figure 2, if the stirring intensity is too high, The molten metal bath becomes deeper
It was found that the shape factor decreased.

以上の説明では撹拌領域を溶融スラグ浴及び溶
融金属浴としたが高温割れの防止は溶融金属浴の
みに撹拌を付加することも達成される。また撹拌
を一定時間間隔で付加したり、溶解の最終段階の
み行うこともできる。さらに撹拌を鋳塊軸方向の
循環流をすることも有効である。
In the above description, the stirring regions are the molten slag bath and the molten metal bath, but prevention of hot cracking can also be achieved by adding stirring only to the molten metal bath. It is also possible to add stirring at regular time intervals or to perform it only at the final stage of dissolution. Furthermore, it is also effective to stir the ingot in a circulating flow in the axial direction of the ingot.

以上のように本発明によれば、溶融スラグ浴及
び溶融金属浴に電磁撹拌を付加することで、それ
らの温度分布を均一にし、Shape factorを大きく
することができるので、中空鋳塊の溶込みが均一
でかつ高温割れのほとんどない複合鋳塊が製造で
きる。
As described above, according to the present invention, by adding electromagnetic stirring to the molten slag bath and the molten metal bath, it is possible to make their temperature distribution uniform and increase the shape factor. It is possible to produce composite ingots with uniform properties and almost no hot cracking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエレクトロスラグ溶接における溶着金
属の凝固形状の説明図、第2図は電磁撹拌法を適
用した時の電磁コイルに付与した磁束密度と
Shape factorとの関係を示す図及び溶融金属形状
を示す鋼塊縦断面のサルフア―プリントの模写
図、第3図は本発明による電磁撹拌法を適用する
エレクトロスラグ再溶解による複合鋳塊の実施状
況を示す断面図である。 1……母材、2……溶融スラグ浴、3……溶融
金属浴。
Figure 1 is an explanatory diagram of the solidified shape of deposited metal in electroslag welding, and Figure 2 is the magnetic flux density applied to the electromagnetic coil when applying the electromagnetic stirring method.
A diagram showing the relationship with the shape factor and a reproduction of the sulfur print of a vertical section of the steel ingot showing the shape of the molten metal. Figure 3 shows the implementation status of composite ingots by electroslag remelting applying the electromagnetic stirring method according to the present invention. FIG. 1... Base material, 2... Molten slag bath, 3... Molten metal bath.

Claims (1)

【特許請求の範囲】[Claims] 1 中空部を有する鋳塊の中空部に上記鋳塊と同
種または異種の材料で形成された消耗電極材を挿
入し、消耗電極材に溶解電流を供給して溶融スラ
グ浴の下でエレクトロスラグ再溶解させ、溶融金
属により上記鋳塊の中空部を充てんして複合鋳塊
を製造する方法において、溶解電流と外部磁界に
よつて励起される磁界を利用して溶融金属浴また
溶融金属浴及び溶融スラグ浴に対して電磁撹拌を
付与することを特徴とするエレクトロスラグ再溶
解による複合鋳塊の製造方法。
1 A consumable electrode material made of the same or different material as the ingot is inserted into the hollow part of the ingot, and a melting current is supplied to the consumable electrode material to re-electro-slag under the molten slag bath. In the method of manufacturing a composite ingot by melting the ingot and filling the hollow part of the ingot with molten metal, a molten metal bath or a molten metal bath and a molten metal are heated using a melting current and a magnetic field excited by an external magnetic field. A method for producing a composite ingot by electroslag remelting, characterized by applying electromagnetic stirring to a slag bath.
JP8142480A 1980-06-18 1980-06-18 Production of composite cast ingot by electroslag refining Granted JPS577356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8142480A JPS577356A (en) 1980-06-18 1980-06-18 Production of composite cast ingot by electroslag refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8142480A JPS577356A (en) 1980-06-18 1980-06-18 Production of composite cast ingot by electroslag refining

Publications (2)

Publication Number Publication Date
JPS577356A JPS577356A (en) 1982-01-14
JPS6124105B2 true JPS6124105B2 (en) 1986-06-09

Family

ID=13745971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8142480A Granted JPS577356A (en) 1980-06-18 1980-06-18 Production of composite cast ingot by electroslag refining

Country Status (1)

Country Link
JP (1) JPS577356A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057011A (en) * 1983-09-08 1985-04-02 Hitachi Ltd Turbine rotor
AT509495B1 (en) * 2010-03-02 2012-01-15 Inteco Special Melting Technologies Gmbh METHOD AND APPENDIX FOR PRODUCING HOLLOWING TRANSPARENCIES
CN103056344B (en) * 2013-01-18 2015-05-06 上海大学 Method for controlling electroslag melting casting by added transient magnetic field and electroslag smelting casting device

Also Published As

Publication number Publication date
JPS577356A (en) 1982-01-14

Similar Documents

Publication Publication Date Title
CN113061741B (en) Electroslag remelting composite device and method for improving temperature distribution of slag bath by external magnetic field
US7243701B2 (en) Treating molten metals by moving electric arc
AU2002222478A1 (en) Treating molten metals by moving electric arc
CN109047685B (en) Method for preparing steel ingot
JPS6124105B2 (en)
JPS62130755A (en) Continuous casting method by electron beam melting method
JPS5847255B2 (en) Steel ingot making method
JPH08279B2 (en) Manufacturing method of steel forgings
JPH01210157A (en) Method for preventing surface longitudinal crack on continuous cast slab
JPH0220645A (en) Mold for continuously casting steel
JP7406073B2 (en) Manufacturing method for titanium ingots
JPS61255757A (en) Dropping type casting method
JPH10211546A (en) Hot-top casting method
JPS5829546A (en) Production of large sized steel ingot having no segregation
Shi et al. Present Situation and Key Technology Analysis of Bimetallic Composite Roll Preparation Method
JPS60124442A (en) Production of composite steel ingot
JP2006289431A (en) Method for casting molten alloy
Kumar et al. Continuous Casting of Steel and Simulation for Cost Reduction
JPS6111709B2 (en)
SU1197769A1 (en) Ingot mould for casting big ingots
JPS61195772A (en) Method for executing continuously padding to periphery of base material
AU2008200261B2 (en) Treating molten metals by moving electric arc
RU2232669C1 (en) Method for electroslag surfacing of small-size ends
JP3083653B2 (en) Manufacturing method of retaining ring material
JPH0745094B2 (en) Manufacturing method of free-cutting steel by continuous casting