JPH01315906A - Anisotropic electrically conductive film - Google Patents

Anisotropic electrically conductive film

Info

Publication number
JPH01315906A
JPH01315906A JP14721288A JP14721288A JPH01315906A JP H01315906 A JPH01315906 A JP H01315906A JP 14721288 A JP14721288 A JP 14721288A JP 14721288 A JP14721288 A JP 14721288A JP H01315906 A JPH01315906 A JP H01315906A
Authority
JP
Japan
Prior art keywords
grains
conductive film
film
particles
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14721288A
Other languages
Japanese (ja)
Inventor
Minoru Tashiro
稔 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14721288A priority Critical patent/JPH01315906A/en
Publication of JPH01315906A publication Critical patent/JPH01315906A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To facilitate the electrical connecting work and enable the simplification of the facility thereof by dispersing metal grains and insulator grains into a thermoplastic resin to obtain an anisotropic electrically conductive film. CONSTITUTION:Metal grains 12 consisting of low melting point metal grains 12a, formed from a metal such as lead, tin, indium, etc., or an alloy such as solder, applied with electrically insulating coating 12b such as epoxy resin, Al2O3, etc., and insulator grains 13 consisting of high melting point glass beads, etc., having a diameter smaller than that of the grains 12 are dispersed into a thermoplastic resin 11 to form an anisotropic electrically conductive film 1. When this film 1 is interposed between a conductor terminal of a thick film printed circuit board and a conductor terminal of a flexible circuit substrate, etc., and heated and pressed, the film 12b maintains unnecessary lateral electrically insulating property, and prevents the short circuit between adjacent terminals, and the grains 13 serves as a spacer maintaining the spacing between the connecting portions without being deformed by heating and pressing. As a result, electrical connection between the conductor terminals can be effected by simplified facility and easy work, without strictly controlling the heating and pressing conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導体端子とフレキシブル回路板(FPC)等を
電気的かつ機械的に接続するための異方性導電膜に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anisotropic conductive film for electrically and mechanically connecting a conductor terminal and a flexible circuit board (FPC) or the like.

〔従来の技術〕[Conventional technology]

電子機器の小形高能率化にともない回路板端子部などへ
の配線接続もまずます微細かつ高密化しつつある。この
ような微細接続技術の一つに異方性導電膜と呼ばれる接
続部材か実用に供せられている。これ等は熱可塑性樹脂
層中に金属や黒鉛などの導電体粒子(以下、導体粒子と
呼ぶ)を適量分散させたものて、これを被接続部間に挟
み込み加熱と同時に加圧して接続部とうしを接着する。
As electronic equipment becomes smaller and more efficient, the wiring connections to circuit board terminals are becoming increasingly finer and denser. As one of such fine connection techniques, a connection member called an anisotropic conductive film has been put into practical use. These are made by dispersing an appropriate amount of conductor particles (hereinafter referred to as conductor particles) such as metal or graphite in a thermoplastic resin layer, which is sandwiched between the parts to be connected and heated and pressurized at the same time to form the connection part. Glue the

このとき樹脂層中に分散していた導体粒子は互に接触し
て加圧方向に導通状態となり、同時に樹脂が硬化して被
接続部とうしを接着・固定する。−方、加圧方向と垂直
な方向では導体粒子の接触が起りにくいため、導体粒子
は接触せず電気的絶縁か保たれる。
At this time, the conductor particles dispersed in the resin layer come into contact with each other and become electrically conductive in the pressing direction, and at the same time, the resin hardens to bond and fix the connected portion and the cowl. On the other hand, in the direction perpendicular to the pressurizing direction, contact between the conductor particles is unlikely to occur, so the conductor particles do not come into contact and electrical insulation is maintained.

異方性導電膜はこのような特性を持つため、従来、はん
だ付か困難な高密度プリント基板の端子部の接続や、非
常に多数かつ微細な端子(ランド)に、夫々リート線群
を一括接続する必要があるドツトマトリクス型表示パネ
ルへの利用などが進みつつある。従来、このような異方
性導電膜には、溶剤型アクリル樹脂などの基剤に導体粒
子として、はんだ、ニッケル、黒鉛などのいずれか−種
を混合したものか用いられていた。この内でもはんだ粒
子を用いたものは、粒子が熱可塑性樹脂の流動温度での
加熱により溶融して接触面積が著しく増加するため、接
続抵抗が低く、特性が安定していた。
Because anisotropic conductive films have these characteristics, they can be used to connect the terminals of high-density printed circuit boards, which are difficult to solder, and to connect groups of REET wires to extremely large numbers of minute terminals (lands) at once. It is increasingly being used in dot matrix type display panels that require Conventionally, such anisotropic conductive films have been made using a base material such as a solvent-type acrylic resin mixed with conductive particles such as solder, nickel, or graphite. Among these, those using solder particles had low connection resistance and stable characteristics because the particles were melted by heating at the flow temperature of the thermoplastic resin and the contact area increased significantly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した従来の異方性導電膜には次の様な欠点
があった。それは、加熱、加圧条件を極めて精密に制御
する必要かあることて、その理由を第3図および第4図
により説明する。第3図は、従来の異方性導電膜40の
断面を模式的に示す図、第4図はこの異方性導電膜40
を用い、2枚の回路板20および30の相対する端子2
1と31を電気的に接続した場合を示す図である。この
異方性導電膜40において熱可塑性樹脂層4]はアクリ
ル系樹脂でアクリルポリマーに可塑剤などを加えたもの
てあり、一方、金属粒子42は、直径的10〜20 μ
mのPb−3m−In系はんだボールである。また、回
路板20は銀箔とポリイミドから成るフレキシブル回路
板(FPC)てあり、回路板30は通常のプリント配線
板(PWB)である。これ等を接続する異方性導電膜4
0の全体の厚さは、約25μm〜50μm程度で、厚さ
は端子21.31の厚みの合計と端子の巾寸法と端子間
隔の比率なとによって適宜選択する。
However, the conventional anisotropic conductive film described above has the following drawbacks. The reason for this is that it is necessary to control the heating and pressurizing conditions extremely precisely, and the reason for this will be explained with reference to FIGS. 3 and 4. FIG. 3 is a diagram schematically showing a cross section of a conventional anisotropic conductive film 40, and FIG. 4 is a diagram showing this anisotropic conductive film 40.
using the opposite terminals 2 of the two circuit boards 20 and 30.
1 and 31 are electrically connected. FIG. In this anisotropic conductive film 40, the thermoplastic resin layer 4] is made of an acrylic resin with a plasticizer added to the acrylic polymer, while the metal particles 42 have a diameter of 10 to 20 μm.
This is a Pb-3m-In based solder ball. Further, the circuit board 20 is a flexible circuit board (FPC) made of silver foil and polyimide, and the circuit board 30 is a normal printed wiring board (PWB). Anisotropic conductive film 4 connecting these
The overall thickness of the terminal 0 is about 25 μm to 50 μm, and the thickness is appropriately selected depending on the total thickness of the terminals 21, 31, the width of the terminals, and the ratio of the terminal spacing.

これ等を加熱、加圧して接着する場合、特に圧縮率か接
続抵抗および隣接端子間の絶縁性に極めて重要な影響を
及ばず。すなわち、圧縮率が小さけれは接続抵抗は大き
くなり、圧縮率が大きすぎると、第4図に示す通り、金
属粒子42か流動する熱可塑性樹脂41とともに流れ出
る量が多くなり隣接端子どうしが短絡するかもしくは絶
縁性が損なわれる危険が大きくなる。一般に、接着後の
端子間寸法は3〜5μm程度であるから圧縮寸法許容値
も同程度以下に抑える必要がある。このため接続部品の
反りや端子厚のバラツキおよび加熱加圧工具の熱変形や
傾斜などを3〜5μm以下とする必要が生じる。しなか
って、作業条件や、設備面て細心の注意か必要となり、
作業能率の低下や接続の信頼性品質への悪影響か生し問
題となっていた。
When these are bonded by heating and pressurizing, there is no significant effect on compressibility, connection resistance, or insulation between adjacent terminals. That is, if the compression ratio is small, the connection resistance will be large, and if the compression ratio is too large, as shown in FIG. 4, a large amount of the metal particles 42 will flow out together with the flowing thermoplastic resin 41, leading to short circuits between adjacent terminals. Otherwise, there is a greater risk of loss of insulation. Generally, the dimension between the terminals after bonding is about 3 to 5 μm, so the compression dimension tolerance must also be kept to the same level or less. For this reason, it is necessary to limit warpage of the connecting parts, variation in terminal thickness, thermal deformation and inclination of the heating and pressing tool to 3 to 5 μm or less. Otherwise, extreme care must be taken in terms of working conditions and equipment.
This has caused problems such as a decrease in work efficiency and an adverse effect on the reliability and quality of the connection.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の異方性導電膜は、鉛、錫、インジウム等の純金
属やはんな等の合金など低融点金属から成る粒子の表面
に有機又は無機質の電気絶縁性物質、例えばエポキシや
メラミン樹脂およびSiO2、Al2O3、カラスなと
の被膜を施した金属粒子と金属粒子より小さな粒径の電
気絶縁性の粒子例えはカラスヒーズ、球状アルミナ、熱
硬化性樹脂の粒子等から成る絶縁体粒子とを熱可塑性樹
脂層中に混合・分散させたものである。
The anisotropic conductive film of the present invention includes an organic or inorganic electrically insulating material, such as epoxy or melamine resin, on the surface of particles made of pure metals such as lead, tin, indium, etc. or low melting point metals such as alloys such as solder. Metal particles coated with SiO2, Al2O3, glass etc. and electrically insulating particles with a particle size smaller than the metal particles, such as glass heat, spherical alumina, thermosetting resin particles, etc., are heated. It is mixed and dispersed in the plastic resin layer.

金属粒子は電気的接続に用い、その表面の絶縁性被膜は
不要の横方向の電気絶縁性を保ち、隣接端子間の短絡を
防ぐ働きをする。一方、絶縁体粒子は金属粒子より高融
点の付値のものを選ひ、加熱圧着時も変形しないため、
接続部間隔を一定に保つスペーサとしての働きをする。
The metal particles are used for electrical connections, and the insulating coating on their surface provides unnecessary lateral electrical insulation and serves to prevent short circuits between adjacent terminals. On the other hand, the insulator particles are selected to have a higher melting point than the metal particles, and do not deform during heat-pressing.
It acts as a spacer to keep the connection distance constant.

このため、加熱や加圧条件を従来に比べ厳密に制御する
必要が無くなり、接続作業のや容易化や設備の簡素化が
可能となる。
Therefore, it is no longer necessary to control heating and pressurizing conditions more strictly than in the past, making connection work much easier and equipment simpler.

〔実施例〕〔Example〕

次に、本発明について図面により詳細に説明する。第1
図は本発明の第1の実施例による異方性導電膜の断面図
である。この異方性導電膜1は以下の様にして製造する
。まず、金属粒子12として市販の粒径か20〜50 
u、 mの608n−40pbはんだ粒子12aを用意
する。別に、はんだ粒子1 ’2 aに電気絶縁性被膜
121)を被覆するため、表1に示すエポキシ/ポリア
ミド樹脂(アミン硬化型)を以下により塗布する。
Next, the present invention will be explained in detail with reference to the drawings. 1st
The figure is a cross-sectional view of an anisotropic conductive film according to a first embodiment of the present invention. This anisotropic conductive film 1 is manufactured as follows. First, as the metal particles 12, commercially available particle size is 20 to 50.
608n-40pb solder particles 12a of sizes u and m are prepared. Separately, in order to coat the electrically insulating film 121) on the solder particles 1'2a, an epoxy/polyamide resin (amine curing type) shown in Table 1 is applied as follows.

表1 エポキシ/ポリアミド樹脂の調合組成(a)ラッ
カーヘース エピコート] OO]、      50部メチルーイ
ソフチルケ1〜ン 25部 ギシレン         25部 (b)ポリアミド樹脂溶液 ポリアミド樹脂      50部 インプロパツール     25部 1ヘルエン         25部 (c)シンナー メヂル イソブヂルケ1〜ン 20重量%オキシトール
(セロソルブ)20重量%フチルオキシトール    
10重量%n−ブタノール       5重量%1〜
ルエン         45重1%以上の(a)液お
よび(b)液を7525の割合で調合した液に(C)液
を加え粘度をおよそ200センチボイスにする。
Table 1 Preparation composition of epoxy/polyamide resin (a) Lacquer Hese Epicoat] OO], 50 parts Methyl-Isophthylkene 1~25 parts Gysilene 25 parts (b) Polyamide resin solution Polyamide resin 50 parts Impropatool 25 parts 1 Heluene 25 parts (c) Thinner Medyl Isobutylken 1-20% by weight Oxytol (Cellosolve) 20% by weight Phthyloxytol
10% by weight n-butanol 5% by weight 1~
Luene 45 Add liquid (C) to a liquid prepared by blending liquid (a) and liquid (b) at a ratio of 7525 at least 1% by weight to a viscosity of approximately 200 centibois.

この液にはんだ粒子12aを入れ、この混合液を80〜
100℃のN2力°ス中に噴霧してシンナー分を蒸発さ
せ樹脂を予備硬化する。その後さらに150〜170℃
のN2ガス中で約1o分間浮遊攪拌して樹脂層を完全に
硬化させ電気絶縁性被膜]21〕とする。
Add the solder particles 12a to this liquid, and add this mixed liquid to 80~
The thinner is evaporated by spraying in a N2 gas at 100°C to pre-cure the resin. Then further 150-170℃
The resin layer is completely cured by floating and stirring in N2 gas for about 10 minutes to form an electrically insulating coating [21].

一方、絶縁体粒子]−3として市販の最大粒径が10μ
mの球状シリカ(SjO2)を用意する。
On the other hand, the maximum particle size of commercially available insulator particles]-3 is 10μ
m spherical silica (SjO2) is prepared.

電気絶縁被膜12bを施した金属粒子12を1゜0部に
対し球状シリカを10部(いずれも重量比)の割合で混
合する。これ等混合粒子を従来の異方性導電膜の製造と
同様にメタクリル酸エステル重合体(アクリルポリマー
)とキシレンく溶剤)およびシフヂルフタレ−1・(可
塑剤)がら成る溶液に混合し、パラフィンコーチインク
したクラフト紙(台紙)に塗布、乾燥してフィルム化す
る。このようにして完成した異方性導電:膜1の厚さは
40μmであった。
Spherical silica is mixed at a ratio of 10 parts (both weight ratios) to 1.0 parts of the metal particles 12 coated with the electrically insulating coating 12b. These mixed particles are mixed in a solution consisting of methacrylic acid ester polymer (acrylic polymer), xylene (solvent) and sydylphthale-1 (plasticizer) in the same way as in the production of conventional anisotropic conductive films. It is applied to kraft paper (mounting paper), dried and made into a film. The thickness of the anisotropic conductive film 1 thus completed was 40 μm.

次に、前記の方法によって製造した異方性導電M1を用
いて、ドツトマトリクス型表示パネルの厚膜印刷による
回路板3の端子31にFPC(フレキシブル回路板)2
を以下の様にして接続する(第2図)。まず、クラフト
紙(図示せず)上に形成された異方性導電膜1をFPC
2の導体端子21の配列郡全体を覆う様な寸法のテープ
状に切断し貼付ける。異方性導電膜1は、熱可塑性樹脂
11を構成するアクリル樹脂中の可塑剤の働きにより、
わずかなタック性があり、押圧すること又は約100〜
120°Cのアイロン等て圧着して仮接着てきる。その
後、クラフト紙を剥離除去する。次に異方性導電膜1か
仮接着されたFPC2を厚膜印刷回路板3の導体端子3
1に精密に位置合わせする。その後熱圧着装置を用い温
度175°C圧力30〜60 kg/ cm2て5秒間
熱圧着する。
Next, using the anisotropic conductive material M1 manufactured by the above method, FPC (flexible circuit board) 2 is attached to the terminal 31 of the circuit board 3 by thick film printing of the dot matrix type display panel.
Connect as follows (Figure 2). First, an anisotropic conductive film 1 formed on kraft paper (not shown) is printed on an FPC.
It is cut into a tape shape with a size that covers the entire array of conductor terminals 21 of No. 2 and pasted. The anisotropic conductive film 1 is formed by the action of the plasticizer in the acrylic resin constituting the thermoplastic resin 11.
It has a slight tackiness and cannot be pressed or about 100 ~
Temporarily adhere by pressing with an iron at 120°C. After that, the kraft paper is peeled off and removed. Next, the anisotropic conductive film 1 or the temporarily bonded FPC 2 is attached to the conductor terminal 3 of the thick film printed circuit board 3.
1. Align precisely. Thereafter, thermocompression bonding is performed using a thermocompression bonding device at a temperature of 175° C. and a pressure of 30 to 60 kg/cm2 for 5 seconds.

この過程で異方性導電膜1中の熱可塑性樹脂1]か軟化
し、圧力によって接続部の導体端子21.31の間隔か
加圧前の約1/4の10μmに狭められる。この時、金
属粒子12中の60Sn−40Pbはんた粒子]2a(
融点168°C)は溶融しているので加圧力により電気
絶縁性被膜]2b(エポキシ/ポリアミド樹脂)を破っ
て流れ出る。これによってFPC2の導体端子21と厚
膜印刷回路板3の導体端子31がはんだ12a″て接合
状態となり電気的接続が達成される。
In this process, the thermoplastic resin 1 in the anisotropic conductive film 1 is softened, and the distance between the conductor terminals 21 and 31 of the connection portion is narrowed to 10 μm, which is about 1/4 of that before the pressure is applied. At this time, 60Sn-40Pb solder particles in metal particles 12 ] 2a (
Since the resin (melting point: 168°C) is molten, it ruptures the electrically insulating coating 2b (epoxy/polyamide resin) due to pressure and flows out. As a result, the conductor terminals 21 of the FPC 2 and the conductor terminals 31 of the thick film printed circuit board 3 are joined by the solder 12a'', thereby achieving electrical connection.

一方、導体端子21.31の間隔以外の部分に位置する
金属粒子12は加圧力を受ける割合が小さいため、電気
絶縁性被膜12bは破壊されずそのまま冷却する。従っ
て、電気的接続は起らず隣接する導体端子(図示せず)
間の絶縁性が保たれる。この時、絶縁体粒子13である
球状シリカは加熱加圧によって溶融や破壊することが無
い。従って、導体端子21と31の間隙寸法はその間に
挟まれた絶縁体粒子の直径寸法以下になり得ないため、
加圧力を従来の異方性導電膜のそれに比べ約2倍まで高
めても良好な接続が達成できた。もちろん導体端子間以
外の部分に流れ出た絶縁体粒子]3は電気的接続には全
く無関係であり無害である。
On the other hand, since the metal particles 12 located outside the spacing between the conductor terminals 21 and 31 receive only a small proportion of the pressurizing force, the electrically insulating coating 12b is not destroyed and is cooled as it is. Therefore, no electrical connection occurs and the adjacent conductor terminal (not shown)
The insulation between them is maintained. At this time, the spherical silica which is the insulator particles 13 is not melted or destroyed by heating and pressurization. Therefore, the gap between the conductor terminals 21 and 31 cannot be smaller than the diameter of the insulator particles sandwiched between them.
A good connection was achieved even when the pressure was increased to about twice that of conventional anisotropic conductive films. Of course, the insulator particles] 3 flowing out to areas other than between the conductor terminals have no relation to electrical connection and are harmless.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の異方性導電膜を用いた電気
的接続方法によれば、従来の裸の金属粒子だけを用いた
接続方法に比べ隣接端子間の短絡不良の発生率を極めて
小さくできる。このため、例えば液晶テレヒジョン用X
−Yドツトマトリクス表示パネルの例では、400X6
40本の導体端子が0.3+nm以下の間隔て配列して
いるものを夫々FPCの端子と接続する工程で、従来の
接続不良の発生率を5分1以下に改善し得な。
As explained above, according to the electrical connection method using the anisotropic conductive film of the present invention, the incidence of short circuit failures between adjacent terminals is extremely reduced compared to the conventional connection method using only bare metal particles. can. For this reason, for example,
-Y dot matrix display panel example is 400X6
In the process of connecting 40 conductor terminals arranged at intervals of 0.3+nm or less to the terminals of the FPC, it is not possible to improve the conventional connection failure rate to 1/5 or less.

この外、ファクシミリセンサ、CCDセンサ、等々、微
細接続の必要性は枚挙のいとまがなく、本発明の接続方
法はこれ等の製造工程歩留りを飛−]〇− 躍的に改善できると同時に絶縁粒子による寸法調節効果
により圧着設備や作業条件が簡略化できるため工業上極
めて有効、かつ重要ある。
In addition, the need for microscopic connections is too numerous to mention for facsimile sensors, CCD sensors, etc., and the connection method of the present invention can dramatically improve the manufacturing process yield for these devices and at the same time provide insulation. It is extremely effective and important industrially because the size control effect of the particles can simplify the crimping equipment and working conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例を示す異方性導電膜の
断面図、第1図(b)は金属粒子の拡大断面図、第2図
は本発明の異方性導電膜を用いて電気的接続した状態を
示す断面図、第3図は従来の異方性導電膜の断面図、第
4図は従来の異方性導電膜を用いて電気的接続をした状
態を示す断面図である。 1.40・・・異方性導電膜、2.20・・FPC53
・・・厚膜回路板、30・・・PWB、11.4]・熱
可塑性樹脂、12.42・・・金属粒子、12a・はん
な粒子、12b・・電気絶縁性被膜、13・・絶縁体粒
子、21.31・・・導体端子。
FIG. 1(a) is a cross-sectional view of an anisotropic conductive film showing one embodiment of the present invention, FIG. 1(b) is an enlarged cross-sectional view of metal particles, and FIG. 2 is an anisotropic conductive film of the present invention. Figure 3 is a cross-sectional view of a conventional anisotropic conductive film, and Figure 4 shows an electrical connection made using a conventional anisotropic conductive film. FIG. 1.40...Anisotropic conductive film, 2.20...FPC53
Thick film circuit board, 30 PWB, 11.4] Thermoplastic resin, 12.42 Metal particles, 12a Solder particles, 12b Electrical insulating coating, 13... Insulator particles, 21.31...conductor terminal.

Claims (1)

【特許請求の範囲】[Claims] 表面が電気絶縁性の被膜で覆われた低融点金属粒子と、
該低融点金属粒子の粒径より小さい粒径を有しかつ前記
低融点金属粒子とり高い融点を有する絶縁体粒子とを熱
可塑樹脂層中に分散させたことを特徴とする異方性導電
膜。
Low melting point metal particles whose surfaces are covered with an electrically insulating film,
An anisotropic conductive film characterized in that insulating particles having a particle size smaller than the particle size of the low melting point metal particles and having a higher melting point than the low melting point metal particles are dispersed in a thermoplastic resin layer. .
JP14721288A 1988-06-14 1988-06-14 Anisotropic electrically conductive film Pending JPH01315906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14721288A JPH01315906A (en) 1988-06-14 1988-06-14 Anisotropic electrically conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14721288A JPH01315906A (en) 1988-06-14 1988-06-14 Anisotropic electrically conductive film

Publications (1)

Publication Number Publication Date
JPH01315906A true JPH01315906A (en) 1989-12-20

Family

ID=15425106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14721288A Pending JPH01315906A (en) 1988-06-14 1988-06-14 Anisotropic electrically conductive film

Country Status (1)

Country Link
JP (1) JPH01315906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770305A (en) * 1994-09-30 1998-06-23 Nec Corporation Anisotropic conductive film
JP2009277652A (en) * 2008-04-17 2009-11-26 Hitachi Chem Co Ltd Circuit connection material and connection structure for circuit member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770305A (en) * 1994-09-30 1998-06-23 Nec Corporation Anisotropic conductive film
JP2009277652A (en) * 2008-04-17 2009-11-26 Hitachi Chem Co Ltd Circuit connection material and connection structure for circuit member

Similar Documents

Publication Publication Date Title
KR100382759B1 (en) Method of packaging semiconductor device using anisotropic conductive adhesive
US6199751B1 (en) Polymer with transient liquid phase bondable particles
JPH0758148A (en) Electronic element
KR20050088946A (en) Adhesives and adhesive films
JPH0817109B2 (en) Electric wiring and connection method
JPH1050886A (en) Conductive polymer ball bonding to grid array semiconductor package
JPH0623349B2 (en) Anisotropic conductive adhesive
KR100772454B1 (en) Anisotropic conductive film and method of manufacturing the same
JP2000133050A (en) Anisotropic conductive film and conductive connection structural body
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JPH01315906A (en) Anisotropic electrically conductive film
JPH114064A (en) Anisotropic conductive resin and mounting structure for electronic component using the same
JP3114162B2 (en) Electrical connection method
JPS63110506A (en) Anisotropic conducting sheet
JP3092118B2 (en) Conductive particle transfer type anisotropic conductive film and electrical connection method
JP2004006417A (en) Connecting element and connection structure of electrode using this
JPH11176879A (en) Mounting method of semiconductor and anisotropic conductive bonding agent used in method thereof
JP4223581B2 (en) Multi-chip mounting method
JP2000011760A (en) Anisotropic conductive composition and manufacture of anisotropic conductive member using it
JP4378788B2 (en) IC chip connection method
JPH087957A (en) Connecting method of circuit board and connecting structure body, and adhesive film using for it
JPH09147928A (en) Connecting member
JP3129218B2 (en) Fine pitch connector members
JP3148008B2 (en) Method of connecting substrate and chip using conductive adhesive
JPH0636613A (en) Joint material for electronic parts and electronic equipment using the material