JPH01312398A - Missile launching and guiding device - Google Patents

Missile launching and guiding device

Info

Publication number
JPH01312398A
JPH01312398A JP14176188A JP14176188A JPH01312398A JP H01312398 A JPH01312398 A JP H01312398A JP 14176188 A JP14176188 A JP 14176188A JP 14176188 A JP14176188 A JP 14176188A JP H01312398 A JPH01312398 A JP H01312398A
Authority
JP
Japan
Prior art keywords
coordinate system
ship
missile
fire
guidance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14176188A
Other languages
Japanese (ja)
Inventor
Haruyoshi Kuno
久野 治義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14176188A priority Critical patent/JPH01312398A/en
Publication of JPH01312398A publication Critical patent/JPH01312398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To launch and guide a missile accurately from a ship by detecting an angular deviation of a coordinate system on a ship from a terrestrial coordinate system obtained by an inertial device, and transforming a coordinate system for fire and guidance control to the terrestrial coordinate system on the basis of the results of detection. CONSTITUTION:An inertial device 11 forms a terrestrial coordinate system THETA, PHI based on the magnetic north and the horizontal direction, then conforms an FCS coordinate system of a missile fire control system 12 to the terrestrial coordinate system in an initial condition, and sets detection angles theta, phi of angle sensors 122, 123 to zero. The angular data theta, phi represent angular deviations of the FCS coordinate system from the terrestrial coordinate system THETA, PHI. The angular deviations are subtracted from the terrestrial coordinate system by the inertial device 11 to correct the FCS coordinate system, thereby representing azimuth and elevation angle control signals delta, epsilon for controlling the launching direction of a missile launcher 13 in the terrestrial coordinate system. Angular data delta', epsilon' on a target T of fire is detected by a radar device 141 of a fire target guidance device 14, and a guidance coordinate system of a fire target control device 143 is transformed to the terrestrial coordinate system according to the deviation data. It is thereby possible to launch and guide a missile accurately from a ship, regardless of variations in the position and angle of the ship.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、海上から例えばミサイルを発射して射撃目
標に命中させる飛翔体発射誘導装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a flying object launch guidance device for launching, for example, a missile from the sea and hitting a target.

(従来の技術) 周知のようにミサイルの射撃訓練は広い範囲の制限区域
が必要であり、日本では海岸から海に向かって射撃する
のが常である。しかし、ミサイルの飛行距離が伸びたも
のの、近海での交通が多くなり、補償の問題も含めて海
岸からミサイルを射撃することが困難になってきている
。そこで、最近では艦上にミサイル射撃場を作る構想が
出てきている。
(Prior Art) As is well known, missile firing training requires a wide restricted area, and in Japan it is customary to fire from the coast toward the sea. However, although the flight range of missiles has increased, there has been an increase in traffic in nearby waters, making it difficult to fire missiles from the coast due to compensation issues and other issues. Recently, there has been an idea to build a missile firing range on board the ship.

ここで、艦上からの射撃は、陸地からの射撃に比べ、艦
が潮流によって流される点、艦が波によって多少揺れる
点で問題がある。ミサイルは最終的には射撃目標に命中
すればよいので、結果だけを評価するなら射撃目標の座
標でミサイルの座標を表わし、その最小点すなわちミス
デイスタンス射撃の評価を行なう場合、射撃目標の誘導
、ミサイルの発射方向、発射後の誘導について、艦の流
れによる距離的な変化、艦の揺れによる角度変化を共に
補正する必要がある。
Here, firing from a ship has a problem compared to firing from land in that the ship is washed away by the currents and the ship is swayed by the waves to some extent. Ultimately, the missile only needs to hit the shooting target, so if you want to evaluate only the result, you can express the missile's coordinates by the shooting target's coordinates, and when evaluating the minimum point, that is, misdistance shooting, you can use the shooting target's guidance. Regarding the launch direction of the missile and its post-launch guidance, it is necessary to compensate for changes in distance due to the flow of the ship and changes in angle due to the rocking of the ship.

(発明が解決しようとする課題) 以上述べたように、ミサイル、射撃目標等の飛翔体の発
射及び誘導を艦上か°ら行う場合、射撃目標の誘導、ミ
サイルの発射方向、発射後の誘導について、艦の流れに
よる位置変化、艦の揺れによる角度変化を共に補正する
必要がある。
(Problems to be Solved by the Invention) As described above, when launching and guiding flying objects such as missiles and shooting targets from a ship, there are issues regarding the guidance of the shooting target, the direction of missile launch, and the guidance after launch. It is necessary to correct for both positional changes due to the ship's flow and angle changes due to the ship's sway.

この発明は上記課題を解決するためになされたもので、
艦の位置変化、角度変化に係わらず、艦上から飛翔体の
発射、誘導を正確に行い得る飛翔体発射誘導装置を提供
することを目的とする。
This invention was made to solve the above problems,
To provide a flying object launch guidance device capable of accurately launching and guiding a flying object from a ship, regardless of changes in the position and angle of the ship.

[発明の構成〕 (課題を解決するための手段) 上記目的を達成するためにこの発明に係る飛翔体発射誘
導装置は、艦上から飛翔体を発射及び誘導するものにお
いて、前記艦に設けられ地球座標系を検出する慣性装置
と、前記艦に設けられ前記慣性装置で得られる地球座標
系に対する艦の座標系のずれ角を検出するずれ角検出手
段と、この手段で得られたずれ角情報に基づいて前記飛
翔体の発射誘導制御の座標系を補正して地球座標系に変
換する座標系変換手段とを具備して構成される。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, a flying object launch guidance device according to the present invention is provided for launching and guiding a flying object from a ship, and is installed on the ship and an inertial device for detecting a coordinate system; a deviation angle detection means provided on the ship for detecting a deviation angle of the ship's coordinate system with respect to the earth coordinate system obtained by the inertial device; and deviation angle information obtained by this means. and coordinate system conversion means for correcting the coordinate system for launch guidance control of the flying object based on the coordinate system and converting it into the earth coordinate system.

(作用) 上記構成による飛翔体発射誘導装置では、発射誘導制御
の座標系を地球座標系に変換するので、艦の位置変化、
角度変化によらずに飛翔体を発射誘導することができる
(Function) The projectile launch guidance device with the above configuration converts the launch guidance control coordinate system to the earth coordinate system, so changes in the ship's position,
It is possible to launch and guide a flying object without changing the angle.

(実施例) 以下、第1図を参照してこの発明の一実施例を説明する
(Embodiment) An embodiment of the present invention will be described below with reference to FIG.

第1図は艦Sから射撃目標Tを飛行誘導し、この射撃目
標Tに向けてミサイルMを発射誘導するシステムにこの
発明を適用した場合の構成を示すもので、艦Sには慣性
装置(INS)11、ミサイル射撃統制装置(Fe2)
12、ミサイル発射機13、射撃目標誘導装置14が設
けられている。
Figure 1 shows a configuration in which the present invention is applied to a system that guides a firing target T from a ship S and launches a missile M toward the firing target T. INS) 11, missile fire control system (Fe2)
12, a missile launcher 13, and a shooting target guidance device 14 are provided.

慣性装置11は地球の磁極に基づいて磁北方向及びこの
磁北方向に垂直な水平方向を示し、地球を基べへにした
座標系(以下、地球座標系と称する)(e、Φ)を作る
。一方、ミサイル射撃統制装置12のプラットホーム1
21には任意の時刻の方位角θ及び仰角φを検出する角
度センサ122 、123が取付けられており、ミサイ
ル発射時に出力値を(0,O)にリセットしておき、以
後角度を積分してFC3座標系(θ、φ)を出力する。
The inertial device 11 indicates the magnetic north direction and the horizontal direction perpendicular to the magnetic north direction based on the earth's magnetic poles, and creates a coordinate system (hereinafter referred to as the earth coordinate system) (e, Φ) based on the earth. On the other hand, platform 1 of the missile fire control system 12
21 is equipped with angle sensors 122 and 123 that detect the azimuth angle θ and the elevation angle φ at any time.The output value is reset to (0, O) at the time of missile launch, and the angle is then integrated. Outputs the FC3 coordinate system (θ, φ).

この角度センサ122 、 123としては、レートジ
ャイロの積分出力を用いるもの、インチグレートジャイ
ロの出力を用いるものがある。慣性装置11は上記角度
センサ122 、123で検出されたFC5座標系(θ
、φ)を入力し、地球座標系(e、Φ)とのずれ分(θ
−θ、Φ−φ)を検出する。
The angle sensors 122 and 123 include those that use the integral output of a rate gyro and those that use the output of an inch rate gyro. The inertial device 11 uses the FC5 coordinate system (θ
, φ), and calculate the deviation from the earth coordinate system (e, Φ) (θ
−θ, Φ−φ).

ミサイル射撃統制装置12は慣性装置11からずれ情報
(θ−θ、Φ−φ)を受取り、この情報に基づいてミサ
イル発射方向を設定する座標系を補正し、この補正した
座標系に設定された方向指令に基づいてミサイル発射機
13の発射方向を制御する方位角制御信号δ及び仰角制
御信号εを作成する。
The missile fire control device 12 receives the deviation information (θ-θ, Φ-φ) from the inertial device 11, corrects the coordinate system for setting the missile launch direction based on this information, and sets the coordinate system to this corrected coordinate system. An azimuth control signal δ and an elevation control signal ε for controlling the firing direction of the missile launcher 13 are created based on the direction command.

射撃目標誘導装置14はレーダ装置141によって射撃
目標の位置を方位角δ′及び仰角ε′の角度情報で検出
し、この角度情報(δ′、ε′)を座標変換器142に
入力する。この座標変換器142はレーダ装置からの角
度情報(δ′、ε′)と慣性装置11からのずれ情報(
θ−θ、Φ−φ)との角度差δ′−(e−θ)、ε′−
(Φ−φ)を求め、この角度差情報を元に射撃目標制御
装置143の誘導座標系を作成する。射撃目標制御装置
143はその誘導座標系に基づいて射撃目標Tの誘導信
号を生成し、射撃目標Tへ向けて送出する。
The shooting target guidance device 14 detects the position of the shooting target using the angular information of the azimuth angle δ' and the elevation angle ε' using the radar device 141, and inputs this angular information (δ', ε') to the coordinate converter 142. This coordinate converter 142 uses angle information (δ', ε') from the radar device and deviation information (
θ-θ, Φ-φ) angular difference δ'-(e-θ), ε'-
(Φ-φ) is determined, and a guidance coordinate system for the shooting target control device 143 is created based on this angular difference information. The shooting target control device 143 generates a guidance signal for the shooting target T based on the guidance coordinate system, and sends it toward the shooting target T.

上記構成において、以下その運用について説明する。The operation of the above configuration will be explained below.

まず、慣性装置11は自身で磁北方向及び水平方向を示
し、両方向に基づいて地球座標系(e、Φ)を作る。こ
の地球座標系を基準とし、初期状態でミサイル射撃統制
装置12のFC3座標系を地球座標系に一致させると共
に、プラットフォーム121に設けた角度センサ122
 、123の検出角度θ、φを共にOとする。つまり、
艦Aの揺れは角度センサ122 、123の検出角度θ
、φとなって現われる。
First, the inertial device 11 indicates the magnetic north direction and the horizontal direction by itself, and creates an earth coordinate system (e, Φ) based on both directions. Using this earth coordinate system as a reference, the FC3 coordinate system of the missile fire control system 12 is made to match the earth coordinate system in the initial state, and the angle sensor 122 provided on the platform 121
, 123, the detection angles θ and φ are both O. In other words,
The shaking of ship A is determined by the detected angle θ of angle sensors 122 and 123.
, φ.

この角度情報(θ、φ)は基準とする地球座標系(e、
Φ)とFC3座標系とのずれ角を示す。
This angle information (θ, φ) is based on the earth coordinate system (e,
Φ) and the FC3 coordinate system.

そこで、慣性装置11にて地球座標系(θ、Φ)から予
めすれ角(θ、φ)を減算し、この減算結果(e−θ、
Φ−φ)によりFC3座標系を補正し、地球座標系に変
換する。これにより、ミサイル射撃統制装置12で作成
されるミサイル発射機13の発射方向を制御する方位角
制御信号δ及び仰角制御信号εは地球座標系に基づくこ
とになる。
Therefore, the inertial device 11 subtracts the slip angle (θ, φ) from the earth coordinate system (θ, φ) in advance, and the subtraction result (e−θ,
The FC3 coordinate system is corrected by Φ-φ) and converted to the earth coordinate system. As a result, the azimuth control signal δ and the elevation control signal ε that control the firing direction of the missile launcher 13, which are created by the missile fire control device 12, are based on the earth coordinate system.

一方、射撃目標誘導装置14では、レーダ装置141で
射撃目標Tの角度情報δ′、ε′を捕えるが、これらの
角度情報は艦Aの座標系、すなわちFC3座漂系に基づ
く。そこで、座標変換器142でレーダ装置141から
の角度情報(δ′、ε′)と慣性装置11からのずれ情
報(e−θ、Φ−φ)との角度差δ′−(e−θ)、ε
′−(Φ−φ)を求め、この角度差情報を元に射撃目標
制御装置143の誘導座標系を作成して地球座標系に変
換する。これにより、射撃目標制御装置143は地球座
標系に変換された射撃目標Tの誘導信号を生成し、射撃
目標Tへ向けて送出するので、射撃目標Tは地球座標系
に基づいて飛行することになる。
On the other hand, in the shooting target guidance device 14, the radar device 141 captures angle information δ' and ε' of the shooting target T, but this angular information is based on the coordinate system of the ship A, that is, the FC3 stranding system. Therefore, the coordinate converter 142 calculates the angle difference δ'-(e-θ) between the angle information (δ', ε') from the radar device 141 and the deviation information (e-θ, Φ-φ) from the inertial device 11. ,ε
'-(Φ-φ) is determined, and based on this angular difference information, a guidance coordinate system for the shooting target control device 143 is created and converted to the earth coordinate system. As a result, the shooting target control device 143 generates a guidance signal for the shooting target T converted into the earth coordinate system and sends it toward the shooting target T, so that the shooting target T flies based on the earth coordinate system. Become.

尚、艦Aは潮流によって流されるが、これは時間的に無
視できるものである。つまり、ミサイル発射撃目標Tは
共に角度によって制御されるので、遠距離の射撃目標T
を扱う限り問題は生じない(射撃目標Tまでの距離とl
l1Aが流された距離との比は小さく、角度にすればほ
とんど無視できる)。
Incidentally, ship A is swept away by the current, but this can be ignored in terms of time. In other words, since the missile firing target T is both controlled by the angle, the long-range firing target T
No problem will arise as long as the distance to the shooting target T and l
The ratio to the distance l1A was swept is small and can be almost ignored in terms of angle).

したかって、上記構成によれば、ミサイルMの発射方向
制御も射撃目標Tの飛行制御も地球座標系に基づいた角
度により制御されるので、艦Aの潮流による位置変化や
揺れによる角度変化に係わることなく、各制御を正確に
行うことができる。
Therefore, according to the above configuration, since the launch direction control of the missile M and the flight control of the shooting target T are controlled by angles based on the earth coordinate system, changes in the position of the ship A due to tidal currents and angle changes due to swaying are not affected. Each control can be performed accurately without any trouble.

尚、」二足実施例ではFC3座標系を地球座標系に補正
するようにしたが、射撃統制装置12と発射機13が共
にFC3座標系であり、発射後はミサイルM自身で射撃
目標Tを検知して自己誘導していくような場合、特に地
球座標系に変換しなくてもよいことは勿論である。
In addition, in the two-legged embodiment, the FC3 coordinate system is corrected to the earth coordinate system, but both the fire control device 12 and the launcher 13 are in the FC3 coordinate system, and after launch, the missile M itself can aim at the target T. Of course, when detecting and self-guiding, there is no need to convert to the earth coordinate system.

[発明の効果] 以上のようにこの発明によれば、艦の位置変化、角度変
化に係わらず、艦上から飛翔体の発射、誘導を正確に行
い得る飛翔体発射誘導装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a flying object launch guidance device that can accurately launch and guide a flying object from a ship, regardless of changes in the position or angle of the ship. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る飛翔体発射誘導装置の一実施例
を示すブロック図である。 S・・・艦、T・・・射撃目標、M・・・ミサイル、1
1・・・慣性装置(INS)、12・・・ミサイル射撃
統制装置(Fe2)、121・・・プラットホーム12
1.122 。 123・・・角度センサ、13・・・ミサイル発射機、
14・・・射撃目標誘導装置、141・・・レーダ装置
、142・・・座標変換器、143・・・射撃目標制御
装置。
FIG. 1 is a block diagram showing an embodiment of a flying object launch guidance device according to the present invention. S...ship, T...shooting target, M...missile, 1
1... Inertial system (INS), 12... Missile fire control system (Fe2), 121... Platform 12
1.122. 123...Angle sensor, 13...Missile launcher,
14... Shooting target guidance device, 141... Radar device, 142... Coordinate converter, 143... Shooting target control device.

Claims (1)

【特許請求の範囲】[Claims] 艦上から飛翔体を発射及び誘導する飛翔体発射誘導装置
において、前記艦に設けられ地球座標系を検出する慣性
装置と、前記艦に設けられ前記慣性装置で得られる地球
座標系に対する艦の座標系のずれ角を検出するずれ角検
出手段と、この手段で得られたずれ角情報に基づいて前
記飛翔体の発射誘導制御の座標系を補正して地球座標系
に変換する座標系変換手段とを具備する飛翔体発射誘導
装置。
A projectile launch guidance device that launches and guides a projectile from a ship, includes an inertial device installed on the ship to detect an earth coordinate system, and a coordinate system of the ship relative to the earth coordinate system obtained by the inertial device installed in the ship. a deviation angle detection means for detecting a deviation angle of the object; and a coordinate system conversion means for correcting a coordinate system for launch guidance control of the flying object and converting it into an earth coordinate system based on the deviation angle information obtained by this means. Equipped with a flying object launch guidance device.
JP14176188A 1988-06-10 1988-06-10 Missile launching and guiding device Pending JPH01312398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14176188A JPH01312398A (en) 1988-06-10 1988-06-10 Missile launching and guiding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14176188A JPH01312398A (en) 1988-06-10 1988-06-10 Missile launching and guiding device

Publications (1)

Publication Number Publication Date
JPH01312398A true JPH01312398A (en) 1989-12-18

Family

ID=15299574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14176188A Pending JPH01312398A (en) 1988-06-10 1988-06-10 Missile launching and guiding device

Country Status (1)

Country Link
JP (1) JPH01312398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020044886A (en) * 2000-12-07 2002-06-19 송재인 Regulation apparatus for shooting of projectile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020044886A (en) * 2000-12-07 2002-06-19 송재인 Regulation apparatus for shooting of projectile

Similar Documents

Publication Publication Date Title
US5425514A (en) Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same
US5379968A (en) Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same
US8258999B2 (en) System and method for roll angle indication and measurement in flying objects
US10718850B1 (en) Fusion between AOA and TDOA
CN112255615B (en) Radar moving platform electron beam stabilization and compensation system
GB1605273A (en) Missile guidance system
US4179088A (en) Offset beacon homing
CN110017830B (en) Method for resolving aircraft attitude by using geomagnetic information and gravity sensor
CN110345814A (en) A kind of terminal guidance algorithm not depending on itself target seeker metrical information
US4142695A (en) Vehicle guidance system
JP3545709B2 (en) High accuracy long range light assisted inertial guided missile
JPH01312398A (en) Missile launching and guiding device
US5988562A (en) System and method for determining the angular orientation of a body moving in object space
KR101645565B1 (en) Guided weapon system
CN110955256A (en) Underwater high-precision attitude control method suitable for submarine-launched missile
US6651004B1 (en) Guidance system
CN109471103A (en) A kind of missile-borne Bistatic SAR data fusion positioning error correcting method
JP3313169B2 (en) Calibration method of set value of coordinate system of inertial reference device in moving object
Doty et al. A demonstration of advanced spinning-vehicle navigation
RU2253820C2 (en) Mobile antiaircraft guided missile system
GB1056815A (en) Fire control system for weapons
US10429151B2 (en) Recapture of remotely-tracked command guided vehicle into the tracker's field-of-view
US10274288B2 (en) Missile for use in a laser beam riding missile guidance system
RU176385U1 (en) Self-propelled firing system
Zhang et al. Analysis of maneuver occupying angle of submarine launching anti-torpedo torpedo