JPH01299718A - Method for forming di can by laminated steel sheet - Google Patents

Method for forming di can by laminated steel sheet

Info

Publication number
JPH01299718A
JPH01299718A JP63129445A JP12944588A JPH01299718A JP H01299718 A JPH01299718 A JP H01299718A JP 63129445 A JP63129445 A JP 63129445A JP 12944588 A JP12944588 A JP 12944588A JP H01299718 A JPH01299718 A JP H01299718A
Authority
JP
Japan
Prior art keywords
resin
temperature
laminated steel
forming
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63129445A
Other languages
Japanese (ja)
Inventor
Yashichi Oyagi
大八木 八七
Hiroshi Nishida
浩 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63129445A priority Critical patent/JPH01299718A/en
Publication of JPH01299718A publication Critical patent/JPH01299718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To improve DI formability without generating coat defects such as fine cracks by heating and holding laminated steel sheet having a saturated polyester resin coat at a specified temperature directly before it is ironed. CONSTITUTION:When resin in an amorphous state is worked, the resin is oriented and crystallized according to a condition and a working problem may occur in a working time of a next stage. Accordingly, in order to keep the crystal state of the resin in the midst of working under an excellent control, the laminated steel sheet, directly before it is worked, is heated and held at or over the glass transition point of saturated polyester resin, at or under the cold crystallization temperature Tco measured by a differential scanning calorimeter (cold crystallization temperature from a complete non-crystallization state under a condition of temperature rising speed 5 deg.C/min) and after the laminated steel sheet is cooled, the DI forming is performed at the room temperature. Consequently, it is possible to obtain an excellent formability of saturated polyester resin at the room temperature and excellent lubricating properties to metal plated coat at the same time by heating and cooling the amorphous resin directly before it is worked.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビール・炭酸飲料等の飲料缶あるいはへアー
クリーム・制汗剤等のエアーゾール缶として利用されて
いるDI缶の成形方法に関するものである。ここでいう
DI缶とは、絞りとしごき加工の組み合わせにより、缶
の側壁の板厚をしごき加工により缶底より薄く成形する
事を特徴とする。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for molding DI cans that are used as beverage cans for beer, carbonated drinks, etc., or aerosol cans for hair cream, antiperspirants, etc. It is something. The DI can referred to herein is characterized by forming the side wall of the can to be thinner than the bottom of the can by a combination of drawing and ironing.

〔従来の技術〕[Conventional technology]

従来これらの用途には、錫めっき鋼板であるふりさある
いはアルミニウム板が使用されている。
Traditionally, tin-plated steel sheets or aluminum sheets have been used for these applications.

これらの素材は、無塗装状態にて潤滑油を塗布後、第1
段階のカップ成形に供され、その後、第2段目の絞り成
形および引き続いてのしごき成形に使用される。しごき
成形は、最終製品の形態により、2段あるいは3段の成
形工程が多用されている。
After applying lubricating oil to these materials in an unpainted state, the first
It is subjected to cup forming in the first stage, and then used in second stage drawing forming and subsequently ironing forming. In ironing, a two-stage or three-stage molding process is often used depending on the form of the final product.

その際、第2段目の絞り成形としごき成形は、1台のプ
レス成形機中にて連続した加工(1ストローク成形)と
して瞬時に行なわれる。
At this time, the second-stage drawing and ironing are instantaneously performed as continuous processing (one-stroke forming) in one press forming machine.

又、第1段階のカップ成形の終了後、第2段目の絞り成
形としごき成形に至るまでの時間は、はとんどの場合カ
ップの搬送時間程度のものであり、長くても数分から3
0分程度である。
In addition, the time from the end of the first step of cup forming to the second step of drawing and ironing is approximately the time required to transport the cup, and can take from several minutes to 30 minutes at most.
It takes about 0 minutes.

成形後の缶体は、酸性あるいはアルカリクリーナーにて
、成形時の潤滑材を除去し、更に良好な塗装下地を得る
ための化成処理が施された後、乾燥後エポキシ樹脂、ビ
ニル樹脂等を代表とする熱硬化性樹脂を5〜20μm程
度の厚さで1回ないしは2回の塗装が施される。
After molding, the can body is treated with an acidic or alkaline cleaner to remove the lubricant during molding, and then undergoes chemical conversion treatment to obtain a good base for painting. After drying, it is made of epoxy resin, vinyl resin, etc. A thermosetting resin having a thickness of about 5 to 20 μm is coated once or twice.

内面塗装後の缶体は、ネックドイン加工またはカーリン
グ加工等により、缶蓋の巻き締めが可能な形態に上端部
の加工が行なわれ、缶体としての加工は終了する。
After the inner surface of the can body has been painted, the upper end of the can body is processed by neck-in processing or curling processing so that the can lid can be tightened, and the processing as a can body is completed.

また、缶用材料として鋼板を基材としてその片面に金属
皮膜を、他の片面に有機樹脂皮膜を被覆した複合鋼板が
特開昭58−39447号公報に示されている。さらに
本発明者等はラミネート鋼板として特願昭60−168
643号に記載した様な鋼板の片面に錫めっき、もう片
方の面にクロム酸処理を施した下地の上に飽和ポリエス
テル系樹脂を積層したもの、あるいは特願昭63−00
7461号に記載した鋼板の片面に樹脂を含有するZn
めっき、もう片方の面にクロム酸処理を施した下地の上
に飽和ポリエステル系樹脂を積層したものを提案した。
Further, as a material for cans, a composite steel plate is disclosed in JP-A-58-39447, in which a steel plate is used as a base material and one side thereof is coated with a metal film and the other side is coated with an organic resin film. Furthermore, the inventors of the present invention have applied for a patent application for laminated steel sheets in 1988-168.
A steel plate with tin plating on one side and chromic acid treatment on the other side and a saturated polyester resin laminated on the base as described in No. 643, or the patent application filed in 1983-00.
Zn containing resin on one side of the steel plate described in No. 7461
We proposed a layered layer of saturated polyester resin on a base plated and chromic acid treated on the other side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この様な加工法で行なわれているDI缶の用途へ飽和ポ
リエステル系樹脂をその皮膜構成として有するラミネー
ト鋼板の適用を考える場合、解決すべき問題が発生する
When considering the application of a laminated steel sheet having a saturated polyester resin as its film structure to the use of DI cans manufactured by such a processing method, a problem arises that must be solved.

従来の製造工程にてこの様なラミネート鋼板を成形する
場合、ポリエステル系樹脂皮膜に何らの損傷も与えず成
形を行なうことが重要である。
When forming such laminated steel sheets using conventional manufacturing processes, it is important to perform the forming without causing any damage to the polyester resin coating.

片面に金属めっき、片面にポリエステル系樹脂皮膜を有
する鋼板の場合、ポリエステル系樹脂皮膜面を缶内面と
する成形を行なうことになるが、成形条件が適切でない
場合、ポリエステル系樹脂皮膜に微小な割れ等が発生す
る場合がある。微小な割れは、その後の2回目絞りある
いはしごき加工時に拡大され致命的な皮膜欠陥となるた
め、絶対に避けねばならない。
In the case of a steel plate that has metal plating on one side and a polyester resin film on the other side, molding is performed with the polyester resin film side as the inner surface of the can, but if the molding conditions are not appropriate, minute cracks may occur in the polyester resin film. etc. may occur. Minute cracks must be avoided at all costs, as they will become enlarged during the subsequent second drawing or ironing process, resulting in fatal coating defects.

適切で゛ない成形条件とは、金型表面の仕上げ不良、異
物の噛み込み、加工応力が局部的に集中する場合等を示
しており、さらには樹脂の特性上、第1段階のカップ成
形はうまく行ったとしてもそれ以陣の成形加工時に皮膜
欠陥が生じるようでは問題である。
Inappropriate molding conditions include poor finishing of the mold surface, foreign matter getting stuck, and localized processing stress.Furthermore, due to the characteristics of the resin, the first stage of cup molding is Even if the process is successful, it will be a problem if film defects occur during subsequent molding processes.

従来の成形方法では、例えばラミネート作業後長期に室
温にて保管された材料を、室温にて絞り加工を行なった
場合、樹脂の成形性不足のため5%以上の伸び特性が必
要とされる部分には微細な割れが多数発生する傾向にあ
った。これを回避するために、例えば特開昭60−17
0532号公報に見られる如く、当該樹脂の適正延伸温
度にまで加温して加工する方法が提案されている。
With conventional molding methods, for example, when material that has been stored at room temperature for a long period of time after lamination is drawn at room temperature, parts that require elongation properties of 5% or more due to insufficient moldability of the resin. There was a tendency for many fine cracks to occur. In order to avoid this, for example, JP-A-60-17
As seen in Japanese Patent No. 0532, a method of processing the resin by heating it to an appropriate stretching temperature has been proposed.

この加温加工においても非常に大きな問題が存在する。There are also very big problems in this heating process.

即ち、ポリエステル系樹脂フィルムの場合、そのガラス
転移温度は約70℃であるため、加工温度もその温度に
出来るだけ近づけるか、それ以上の温度に設定する必要
がある。その際、樹脂フィルム面側の成形は比較的順調
に行なわれるが、缶外面に相当する金属めっき面側にお
ける潤滑に少なからぬ問題が発生する。その理由は必ず
しも明白ではないが、40℃以上、特に50℃以上での
成形を行なおうとすると缶外面での潤滑条件が劣化し、
長期の連続成形が不能となる問題が発生する。高温での
成形は、成形時に発生する熱が有効に除去されにくいた
め、錫あるいは亜鉛等のめっき金属の局部的溶融による
潤滑不良をもたらすものと考えられる。
That is, in the case of a polyester resin film, its glass transition temperature is approximately 70° C., so the processing temperature must be set as close to or higher than that temperature. At this time, although the molding on the resin film side is relatively smooth, considerable problems occur in lubrication on the metal-plated side, which corresponds to the outer surface of the can. The reason for this is not necessarily clear, but when molding is performed at temperatures above 40°C, especially above 50°C, the lubrication conditions on the outer surface of the can deteriorate.
A problem arises in which long-term continuous molding becomes impossible. Molding at high temperatures is thought to cause poor lubrication due to local melting of the plated metal, such as tin or zinc, since the heat generated during molding is difficult to remove effectively.

このように樹脂被覆鋼板を加熱しておいて加工する・方
法も片面に金属被覆を有する場合には十分とはいえなか
った。
This method of heating and processing a resin-coated steel sheet was not sufficient when one side had a metal coating.

本発明の目的はこのような従来の問題点を解決して、加
工性の良いDI缶の成形加工法を提供することにある。
An object of the present invention is to solve these conventional problems and provide a method for molding DI cans with good workability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は以下のとおりである。 The gist of the present invention is as follows.

1、薄鋼板の片面に金属めっき、もう片方の面に飽和ポ
リエステル系樹脂をその皮膜構成として有するラミネー
ト鋼板を用い、絞りとしごき加工によるDI缶を成形加
工するに際して、加工直前にラミネート鋼板を前記樹脂
のガラス転移点以上、示差走査熱量計測による冷結晶化
温度Tco  (昇温速度5℃/分の条件で完全非結晶
状態より冷結晶化する温度)以下に加熱保持し、冷却後
に室温でDI底成形行うことを特徴とするラミネートM
板によるDI缶の成形加工方法。
1. When forming a DI can by drawing and ironing using a laminated steel plate that has metal plating on one side of the thin steel plate and saturated polyester resin on the other side, the laminated steel plate is The resin is heated and maintained at a temperature above the glass transition point of the resin and below the cold crystallization temperature Tco determined by differential scanning calorimetry (temperature at which cold crystallization occurs from a completely amorphous state at a heating rate of 5°C/min), and after cooling, DI is performed at room temperature. Laminate M characterized by bottom molding
Method for forming DI cans using plates.

2、薄鋼板の片面に金属めっき、もう片方の面に飽和ポ
リエステル系樹脂をその皮膜構成として有するラミネー
ト鋼板を用い、絞りとしごき加工によるDI缶を成形加
工するに際して、加工直前にラミネート鋼板を前記樹脂
のガラス転移点以上、示差走査熱量計測による冷結晶化
温度Tco  (昇温速度5℃/分の条件で完全非結晶
状態より冷結晶化する温度)以下に加熱保持し、冷却後
に室温でDI缶底成形加工行い、且つ、第1段階のカッ
プ成形後の飽和ポリエステル系樹脂の結晶状態として示
差走査熱量計測による冷結晶化温度TCI  (昇温速
度5℃/分での測定)がTc、≧(Tco  15)℃
に保持されるようにすることを特徴とするラミネート鋼
板によるDI缶の成形加工方法。
2. When forming a DI can by drawing and ironing using a laminated steel plate with metal plating on one side of the thin steel plate and saturated polyester resin on the other side, the laminated steel plate is The resin is heated and maintained at a temperature above the glass transition point of the resin and below the cold crystallization temperature Tco determined by differential scanning calorimetry (temperature at which cold crystallization occurs from a completely amorphous state at a heating rate of 5°C/min), and after cooling, DI is performed at room temperature. The cold crystallization temperature TCI (measured at a heating rate of 5° C./min) determined by differential scanning calorimetry as the crystalline state of the saturated polyester resin after the can bottom molding process and the first step of cup molding is Tc, ≧ (Tco 15)℃
A method for forming a DI can using a laminated steel plate, the method comprising: forming a DI can using a laminated steel plate;

前記の完全非結晶状態サンプルは、融点以上に加熱され
た樹脂を水中に急冷することにより得られ、その樹脂の
冷結晶化温度は示差走査熱量針にて測定することにより
確認することが出来る。
The completely amorphous sample described above is obtained by rapidly cooling a resin heated above its melting point in water, and the cold crystallization temperature of the resin can be confirmed by measuring it with a differential scanning calorimetry needle.

−aに、樹脂の成形加工において、その樹脂の加工性を
最大に発揮させるために、ガラス転移点近傍あるいはそ
れ以上の温度にて成形加工を行なうことは周知の事実で
あるが、本発明の場合、鋼板の表裏に異種の皮膜を有す
るため従来のような方法を採用することは出来ない。即
ち、高温度域の成形は、金属めっき面の潤滑性を阻害し
、かじりの発生あるいは成形途中の破断等の成形不良に
つながるため採用出来ない。また、低温(室温)域での
成形では、樹脂の加工性が悪く、微小な割れの発生をも
たらし、成形缶の耐食性が劣化する。
-a. It is a well-known fact that in molding a resin, molding is performed at a temperature near or above the glass transition point in order to maximize the workability of the resin. In this case, conventional methods cannot be used because the front and back surfaces of the steel plate have different types of coatings. That is, molding in a high temperature range cannot be adopted because it impairs the lubricity of the metal-plated surface and leads to molding defects such as galling or breakage during molding. Furthermore, when molding is performed in a low temperature (room temperature) range, the resin has poor processability, resulting in the occurrence of minute cracks, and the corrosion resistance of the molded can deteriorates.

本発明はこのようにそれぞれの片面で適正加工温度が異
る問題を同時に解決するためにDII工直前にラミネー
ト鋼板を、ラミネート樹脂のガラス転移点以上、冷結晶
化温度以下の温度に加熱保持し、冷却後、室温にてDI
缶成形を行なうことを特徴としているが、この意味は、
金属と高分子化合物の特性差をうまく応用するもので、
本発明の骨子をなすものである。
In this way, in order to solve the problem that the appropriate processing temperature is different for each side at the same time, the present invention heats and maintains the laminated steel plate at a temperature above the glass transition point of the laminate resin and below the cold crystallization temperature immediately before the DII process. , After cooling, DI at room temperature
It is characterized by can forming, but the meaning of this is:
It makes good use of the difference in characteristics between metals and polymer compounds.
This is the gist of the present invention.

一度加熱された高分子は、すぐにはもとの状態に復帰せ
ず、しばらくは加熱状態での特性を保持しているが、金
属の場合、温度変化に応じ比較的短時間のうちにその特
性は変化する。従って、加工直前に加熱・冷却すること
により、常温において飽和ポリエステル樹脂の優れた成
形性と金属めっき皮膜の良好な潤滑性を同時にうろこと
が出来る。
Once heated, a polymer does not immediately return to its original state and retains its heated properties for a while, but in the case of metals, the properties change in a relatively short period of time as the temperature changes. Characteristics change. Therefore, by heating and cooling immediately before processing, it is possible to simultaneously enjoy the excellent moldability of a saturated polyester resin and the good lubricity of a metal plating film at room temperature.

次に、多段階に亘る加工を行なう場合、樹脂の結晶状態
は加工途中に変化するため、最終製品での優れた性能を
確保するためには、途中段階での結晶状態を艮(管理す
る必要がある。樹脂の結晶状態の判定法としては、顕微
鏡法、X線法、密度測定法等多くのものが知られている
が、本発明では、示差走査熱量計による冷結晶化温度を
測定する方法によった。非晶質化した飽和ポリエステル
樹脂を室温より徐りに加熱してゆくと、ある特定の温度
より樹脂の結晶化が起こり、それに伴って熱放出が起こ
る。その熱量を測定することにより、樹脂の結晶状態を
知ることが出来る。
Next, when performing multi-stage processing, the crystalline state of the resin changes during processing, so it is necessary to control (control) the crystalline state at intermediate stages in order to ensure excellent performance in the final product. There are many known methods for determining the crystalline state of resins, such as microscopy, Depending on the method. When an amorphous saturated polyester resin is gradually heated from room temperature, the resin crystallizes at a certain temperature and heat is released accordingly. The amount of heat is measured. By this, the crystalline state of the resin can be known.

非晶質状態の樹脂を加工すると、条件によっては樹脂の
配向・結晶化が起こり、次段階の加工時に加工上の問題
を起こすことがある。これを避けるためには、加工途中
での樹脂の結晶状態を良く管理する必要がある。本発明
では、樹脂の結晶状態の管理法として、前述した示差走
査熱量計による冷結晶化温度を測定する方法を利用し、
成形途中段階での樹脂の冷結晶化温度TcIを(Tco
−15)’C以上に保持することが重要であることを見
い出した。但し、Tcoは樹脂が昇温速度5℃/分の条
件で完全非結晶状態より冷結晶する温度を示す。
When processing resin in an amorphous state, orientation and crystallization of the resin may occur depending on the conditions, which may cause processing problems in the next step of processing. In order to avoid this, it is necessary to carefully control the crystalline state of the resin during processing. In the present invention, as a method of controlling the crystalline state of the resin, the method of measuring the cold crystallization temperature using the differential scanning calorimeter described above is used,
The cold crystallization temperature TcI of the resin in the middle of molding is (Tco
-15) It was found that it is important to maintain the temperature above 'C. However, Tco indicates the temperature at which the resin cools and crystallizes from a completely amorphous state under conditions of a heating rate of 5° C./min.

樹脂の冷結晶化温度Tc、を(Tco−15)’C以上
に限定した理由は、これ未満の冷結晶化温度を有する樹
脂では、その後の加工工程において、微細な加工割れを
発生し、成形缶の耐食性が劣ったものとなるためである
The reason why the cold crystallization temperature Tc of the resin is limited to (Tco-15)'C or higher is that resins with a cold crystallization temperature lower than this will cause fine processing cracks in subsequent processing steps, making it difficult to mold This is because the corrosion resistance of the can becomes poor.

本発明では、加工直前におけるラミネート鋼板の加熱・
冷却と加工途中工程における樹脂皮膜の冷結晶化温度を
(Tco−15)”C以上に保持することの両条件が満
たされた時に最も好ましい結果を得ることが出来るもの
である。
In the present invention, the heating and
The most favorable results can be obtained when both the conditions of cooling and maintaining the cold crystallization temperature of the resin film at (Tco-15)''C or higher during processing are satisfied.

樹脂皮膜の冷結晶化温度を(Tc、〜15)’C以上に
保持する方法としては、1回当たりの絞り加工の比率を
なるべく小さく、望ましくは絞り比(ブランク径/カッ
プ径)1.5以下に設定する。製品設計上やむをえず大
きな絞り比を採用せざるをえず、加工工程中に冷結晶化
温度が(Tco−15)’C未満になる恐れのある時に
は成形途中にてカップを樹脂の融点以上に加熱し急冷す
ることにより、樹脂皮膜の冷結晶化温度を(Tco−1
5)”C以上に保持することが必要である。
As a method for maintaining the cold crystallization temperature of the resin film at (Tc, ~15)'C or higher, the ratio of each drawing process is as small as possible, and preferably the drawing ratio (blank diameter/cup diameter) is 1.5. Set as below. If it is unavoidable to adopt a large drawing ratio due to product design, and there is a risk that the cold crystallization temperature will drop below (Tco-15)'C during the processing process, the cup should be heated to above the melting point of the resin during molding. By heating and rapidly cooling, the cold crystallization temperature of the resin film is lowered to (Tco-1
5) It is necessary to hold it at ``C'' or higher.

本発明における加工方法はDI缶に限定されるものでは
なく、多段絞りにより成形される深絞り缶あるいは缶蓋
成形等の単純なプレス加工にも応用される。以下に本発
明の実施例を述べる。
The processing method of the present invention is not limited to DI cans, but can also be applied to simple press processing such as deep drawing cans formed by multistage drawing or can lid forming. Examples of the present invention will be described below.

〔実施例1〕 板厚0.28 ttmO薄鋼板の片面に、粒径0.2ミ
クロンのフッソ樹脂(ポリテトラフルオロエチレン)を
5vo1%含有する平均膜厚1.0ミクロンのZnめっ
きを電気めっき方法により施した。一方、もう片方の面
には、若干のアニオンを含有するクロム酸溶液中で陰極
電解処理を行ない、水和酸化物皮膜を形成させた後、膜
厚40ミクロンのポリエチレンテレフタレートフィルム
を熱圧着方式にて樹脂が完全に非晶質状態になるような
条件にてラミネートした。
[Example 1] One side of a 0.28 ttmO thin steel plate was electroplated with Zn plating with an average thickness of 1.0 microns and containing 5 vol% of fluorocarbon resin (polytetrafluoroethylene) with a particle size of 0.2 microns. It was applied according to the method. On the other hand, on the other side, a polyethylene terephthalate film with a thickness of 40 microns was bonded using a thermocompression method after cathodic electrolytic treatment was performed in a chromic acid solution containing some anions to form a hydrated oxide film. The resin was laminated under conditions such that the resin became completely amorphous.

この表裏具なった皮膜を有するラミネート鋼板をDI底
成形るに先立って、90℃に30分加熱後、再度室温に
まで冷却した。加熱後の鋼板板温が室温近傍に達してか
ら、すぐに、ブランク径139M、成形後のカップ径8
5mmの絞り加工を行なった。
Prior to DI bottom forming of this laminated steel plate having a front and back coating, it was heated to 90° C. for 30 minutes and then cooled to room temperature again. Immediately after the temperature of the steel plate after heating reaches near room temperature, the blank diameter is 139M and the cup diameter after forming is 8M.
A drawing process of 5 mm was performed.

絞り加工後のカップは、即座に、第2段目の絞り加工お
よび3段におよぶアイアニング加工工程を含むDI成形
機にかけられ、缶径65胴、缶側壁の板厚として0.0
85閣の市販ビール缶相当の缶にまで加工された。
After drawing, the cup is immediately subjected to a DI molding machine that includes a second drawing process and a three-stage ironing process, resulting in a can diameter of 65 mm and a can side wall thickness of 0.0 mm.
It has been processed into cans that are equivalent to 85-kaku commercial beer cans.

これらの加工時の室温は25℃であり、DI成形時の潤
滑剤(エマルジョンオイル)の温度は20℃にコントロ
ールされていた。
The room temperature during these processes was 25°C, and the temperature of the lubricant (emulsion oil) during DI molding was controlled at 20°C.

製造直後(加工前)のラミネート皮膜(樹脂)の冷結晶
化温度Tcoは、昇温速度5℃/分において153℃で
あり、第1段の絞り加工後のカップ側壁の樹脂の冷結晶
化温度Tc、は、145℃であった。
The cold crystallization temperature Tco of the laminate film (resin) immediately after production (before processing) is 153°C at a heating rate of 5°C/min, which is the cold crystallization temperature of the resin on the side wall of the cup after the first stage drawing process. Tc was 145°C.

脱脂後、缶外面を印刷し、缶蓋巻き締めのためのネック
ドイン・フランジ成形を行ない、その後缶内面のラミネ
ート皮膜の健全性を調査した。調査方法としては、1%
の食塩水を缶内に入れ、白金電極と缶の間に6ボルトの
電圧(缶を陽極として)をかけた場合に流れる電流値に
より、缶内面のラミネート皮膜の健全性を判定した。
After degreasing, the outer surface of the can was printed, necked-in flange molding was performed to tighten the can lid, and then the soundness of the laminate film on the inner surface of the can was examined. As a survey method, 1%
The health of the laminate film on the inner surface of the can was determined based on the value of the current flowing when a 6-volt voltage (using the can as an anode) was applied between the platinum electrode and the can.

前述の方法により成形されたDI缶に流れた電流値は、
0.01mAと低く、缶内にビールを内容物として行な
った奥底試験(常温6ケ月)においても、優れたフレー
バーと低い鉄溶出値(0,2ppm以下)であった。
The current value flowing through the DI can formed by the above method is:
It was as low as 0.01 mA, and even in a deep test (at room temperature for 6 months) conducted with beer inside the can, it had an excellent flavor and a low iron elution value (0.2 ppm or less).

〔実施例2〕 板厚0.28mmの薄鋼板の片面に、0.3ミクロンの
金属錫めっき、もう片方の面に、水和酸化クロム皮膜を
介して膜厚40ミクロンのポリエチレンテレフタレート
/イソフタレート樹脂を積層した。
[Example 2] One side of a thin steel plate with a thickness of 0.28 mm is coated with 0.3 micron metal tin plating, and the other side is coated with polyethylene terephthalate/isophthalate with a thickness of 40 microns via a hydrated chromium oxide film. Laminated resin.

その際、積層した樹脂は完全に非晶質化させるため、そ
の樹脂の融点以上の温度にまで加熱され、溶融状態のま
ま水中に急冷された。
At this time, in order to completely amorphize the laminated resin, it was heated to a temperature higher than the melting point of the resin, and then quenched in water while still in a molten state.

その後、このラミネート鋼板を85℃に30分間加熱後
、室温にまで冷却し、その後即座に絞り成形に供した。
Thereafter, this laminated steel plate was heated to 85° C. for 30 minutes, cooled to room temperature, and then immediately subjected to drawing forming.

製造直後(加工前)のラミネート皮膜(樹脂)の冷結晶
化温度Tcoは昇温速度5℃/分において145℃であ
り、第1段の絞り加工後のカップ側壁の樹脂の冷結晶化
温度Tc、は昇温温度5℃/分において138℃であっ
た。
The cold crystallization temperature Tco of the laminate film (resin) immediately after production (before processing) is 145°C at a heating rate of 5°C/min, and the cold crystallization temperature Tc of the resin on the side wall of the cup after the first drawing process is , was 138°C at a heating temperature of 5°C/min.

絞り成形およびDI成形条件は実施例1の条件と全く同
一の条件にて行ない、最終的な缶内面のラミネート皮膜
の健全性を調べた所、流れた電流値は0.02mAと低
く、缶内にビールを内容物として行なった奥伝試験(常
温6ケ月)においても、優れたフレーバーと低い鉄溶出
値(0,2ppm以下)であった。
Drawing forming and DI forming conditions were carried out under exactly the same conditions as in Example 1, and when the soundness of the final laminate film on the inner surface of the can was examined, the current value that flowed was as low as 0.02 mA. Also in the Okuden test (at room temperature for 6 months) conducted with beer as the content, it had an excellent flavor and a low iron elution value (0.2 ppm or less).

〔比較例1] 実施例2にて使用されたラミネート鋼板と全く同一のも
のを用いて、絞り加工前の加熱処理を行なわずに成形を
行なった所、1段目の絞り加工時において、カップのコ
ーナー8部において樹脂に微細な割れが生じ、その後の
DI成形時にこの割れは拡大し、最終的な缶内面のラミ
ネート皮膜の健全性を調べた所、流れた電流値は15m
Aと大きく、缶内にビールを内容物として行なった奥伝
試験(常温6ケ月)において、フレーバーが悪く実用性
に乏しいものであり、鉄溶出値も1.4 ppmと大き
な値であった。
[Comparative Example 1] Using exactly the same laminated steel plate as used in Example 2, forming was performed without heat treatment before drawing. A minute crack appeared in the resin at the 8th corner of the can, and this crack expanded during subsequent DI molding, and when the soundness of the final laminate film on the inner surface of the can was examined, the current value that flowed was 15 m.
In the Okuden test (at room temperature for 6 months) conducted with beer in the can, the flavor was bad and it was not practical, and the iron elution value was as large as 1.4 ppm.

〔比較例2〕 実施例2にて使用されたラミネート鋼板と全く同一のも
のを用いて、絞り成形時の板温を55℃とした成形を行
なった。第1段目の絞り成形は順調に行き、引き続いて
のDI成形時にカップ温度が55℃となるように加温す
るとともに、DI成形時の潤滑剤も55℃に保温したも
のを使用し、全ての加工を55℃にて行なった。しかし
ながら、再絞り工程までは順調な成形が可能であったが
、アイアニング成形段階にて缶壁での板破断が多発し、
満足なりI成形が出来ない状態であった。
[Comparative Example 2] Using exactly the same laminated steel plate as used in Example 2, forming was carried out at a plate temperature of 55° C. during drawing. The first stage of drawing went smoothly, and during the subsequent DI forming, the cup temperature was heated to 55°C, and the lubricant used during DI forming was kept at 55°C. The processing was carried out at 55°C. However, although smooth forming was possible up to the re-drawing process, plate breakage at the can wall occurred frequently during the ironing process.
The condition was such that I-forming was not possible.

(発明の効果) 本発明によれば、飽和ポリエステル系樹脂を皮膜構成と
して有するラミネート鋼板を、微小な割れ等の皮膜欠陥
を生ずることなしに、加工性よくDI成形加工すること
ができる。
(Effects of the Invention) According to the present invention, a laminated steel sheet having a saturated polyester resin as a film structure can be subjected to DI molding with good workability without producing film defects such as minute cracks.

Claims (2)

【特許請求の範囲】[Claims] (1)薄鋼板の片面に金属めっき、もう片方の面に飽和
ポリエステル系樹脂をその皮膜構成として有するラミネ
ート鋼板を用い、絞りとしごき加工によるDI缶を成形
加工するに際して、加工直前にラミネート鋼板を前記樹
脂のガラス転移点以上、示差走査熱量計測による冷結晶
化温度Tc_0(昇温速度5℃/分の条件で完全非結晶
状態より冷結晶化する温度)以下に加熱保持し、冷却後
に室温でDI成形を行うことを特徴とするラミネート鋼
板によるDI缶の成形加工方法。
(1) When forming a DI can by drawing and ironing using a laminated steel plate with metal plating on one side of the thin steel plate and saturated polyester resin on the other side, the laminated steel plate is The resin is heated and maintained at a temperature above the glass transition point of the resin and below the cold crystallization temperature Tc_0 (temperature at which a completely amorphous state becomes cold crystallized under conditions of a heating rate of 5° C./min) measured by differential scanning calorimetry, and after cooling at room temperature. A method for forming a DI can using a laminated steel plate, the method comprising performing DI forming.
(2)薄鋼板の片面に金属めっき、もう片方の面に飽和
ポリエステル系樹脂をその皮膜構成として有するラミネ
ート鋼板を用い、絞りとしごき加工によるDI缶を成形
加工するに際して、加工直前にラミネート鋼板を前記樹
脂のガラス転移点以上、示差走査熱量計測による冷結晶
化温度Tc_0(昇温速度5℃/分の条件で完全非結晶
状態より冷結晶化する温度)以下に加熱保持し、冷却後
に室温でDI缶成形加工を行い、且つ、第1段階のカッ
プ成形後の飽和ポリエステル系樹脂の結晶状態として示
差走査熱量計測による冷結晶化温度Tc_1(昇温速度
5℃/分での測定)がTc_1≧(Tc_0−15)℃
に保持されるようにすることを特徴とするラミネート鋼
板によるDI缶の成形加工方法。
(2) When forming a DI can by drawing and ironing using a laminated steel plate with metal plating on one side of the thin steel plate and saturated polyester resin on the other side, the laminated steel plate is The resin is heated and maintained at a temperature above the glass transition point of the resin and below the cold crystallization temperature Tc_0 (temperature at which a completely amorphous state becomes cold crystallized under conditions of a heating rate of 5° C./min) measured by differential scanning calorimetry, and after cooling at room temperature. The cold crystallization temperature Tc_1 (measured at a heating rate of 5°C/min) determined by differential scanning calorimetry as the crystalline state of the saturated polyester resin after the DI can molding process and the first step of cup molding is Tc_1≧ (Tc_0-15)℃
A method for forming a DI can using a laminated steel plate, the method comprising: forming a DI can using a laminated steel plate;
JP63129445A 1988-05-28 1988-05-28 Method for forming di can by laminated steel sheet Pending JPH01299718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129445A JPH01299718A (en) 1988-05-28 1988-05-28 Method for forming di can by laminated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129445A JPH01299718A (en) 1988-05-28 1988-05-28 Method for forming di can by laminated steel sheet

Publications (1)

Publication Number Publication Date
JPH01299718A true JPH01299718A (en) 1989-12-04

Family

ID=15009649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129445A Pending JPH01299718A (en) 1988-05-28 1988-05-28 Method for forming di can by laminated steel sheet

Country Status (1)

Country Link
JP (1) JPH01299718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150367A (en) * 2004-11-25 2006-06-15 Mitsubishi Alum Co Ltd Method for manufacturing resin coated metal formed product having excellent corrosion resistance
JP2008105724A (en) * 2006-10-27 2008-05-08 Jfe Steel Kk Production method of two-piece can body and of laminated steel plate for can body and two-piece laminated can
US9131947B2 (en) 2003-05-08 2015-09-15 Nuvasive, Inc. Neurophysiological apparatus and procedures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131947B2 (en) 2003-05-08 2015-09-15 Nuvasive, Inc. Neurophysiological apparatus and procedures
US10695108B1 (en) 2003-05-08 2020-06-30 Nuvasive, Inc. Neurophysiological apparatus and procedures
JP2006150367A (en) * 2004-11-25 2006-06-15 Mitsubishi Alum Co Ltd Method for manufacturing resin coated metal formed product having excellent corrosion resistance
JP2008105724A (en) * 2006-10-27 2008-05-08 Jfe Steel Kk Production method of two-piece can body and of laminated steel plate for can body and two-piece laminated can
EP2085318A4 (en) * 2006-10-27 2010-12-01 Jfe Steel Corp Laminate steel sheet for two-piece can body, two-piece can body made of laminate steel sheet, and method for production of the two-piece can body
US20130119057A1 (en) * 2006-10-27 2013-05-16 Jfe Steel Corporation Two-piece can body made of laminated steel sheet, and method of producing the two-piece can body
US8727155B2 (en) * 2006-10-27 2014-05-20 Jfe Steel Corporation Two-piece can body made of laminated steel sheet, and method of producing the two-piece can body

Similar Documents

Publication Publication Date Title
JPWO2013099563A1 (en) Laminated metal plate and canned food containers
JPH0225784B2 (en)
JPH01192545A (en) Laminated steel plate for can excellent in processability and corrosion resistance
JPS5882717A (en) Manufacture of polyester resin film-coated metal plate
US5094924A (en) Polyester resin film laminated steel sheet for drawn and ironed can
JPH0155055B2 (en)
JPH01299718A (en) Method for forming di can by laminated steel sheet
JPH0333506B2 (en)
JP2803854B2 (en) Composite steel sheet excellent in formability of drawn and ironed cans
JP2803837B2 (en) Manufacturing method of polyester resin film laminated steel sheet
JP4103974B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP3876459B2 (en) Polyester film, laminated metal plate, method for producing the same, and metal container
JP2790647B2 (en) Composite coated steel sheet excellent in DI formability and method for producing the same
JP4226103B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JPH0387249A (en) Polyester resin coated metal plate excellent in processability and production thereof
JP5884180B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, resin-coated steel sheet, can and can lid
JP2000006979A (en) Polyester resin-coated aluminum seamless can and its manufacture
FR2664532A1 (en) Laminate formed by a tin-plated steel sheet, carrying a double layer of chromium, and by a film of copolyester resin, and method for producing it
JPH0398844A (en) Contracted or contracted-stroked can of laminated material and manufacture thereof
JPH0270430A (en) Metallic plate coated with polyester resin for use in draw-forming can
JPH01180336A (en) Preparation of composite steel excellent in di moldability
JP4339046B2 (en) Method for producing resin-coated aluminum material
JP2000024722A (en) Polyester resin coated aluminum plate for seamless can, and manufacture of seamless can
JPH02169246A (en) Composite steel plate for can and processed can
JPH0310835A (en) Double-side coated steel sheet for drawn can and manufacture thereof