JPH0225784B2 - - Google Patents

Info

Publication number
JPH0225784B2
JPH0225784B2 JP59024402A JP2440284A JPH0225784B2 JP H0225784 B2 JPH0225784 B2 JP H0225784B2 JP 59024402 A JP59024402 A JP 59024402A JP 2440284 A JP2440284 A JP 2440284A JP H0225784 B2 JPH0225784 B2 JP H0225784B2
Authority
JP
Japan
Prior art keywords
layer
ironing
steel plate
resin
coated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59024402A
Other languages
Japanese (ja)
Other versions
JPS60168643A (en
Inventor
Takaaki Okamura
Katsuhiro Imazu
Seishichi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP59024402A priority Critical patent/JPS60168643A/en
Publication of JPS60168643A publication Critical patent/JPS60168643A/en
Publication of JPH0225784B2 publication Critical patent/JPH0225784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、絞りしごき罐用被覆鋼板に関するも
ので、より詳細には、絞りしごき加工性に際立つ
て優れていると共に、絞りしごき加工により、樹
脂被膜の密着性、耐腐食性及び外観特性に優れた
絞りしごき罐を得ることができる被覆鋼板に関す
る。 従来、ポリブチレンテレフタレート等の熱可塑
性ポリエステルのフイルムを鋼板等の金属素材に
熱接着させ、この被覆金属構造物を絞り加工或い
は絞りしごき加工等に付して、容器蓋や容器とす
ることは既に知られている。 しかしながら、公知の方法で製造される絞り容
器は、絞り比が1.5程度の皿状乃至カツプ状の浅
絞り容器であり、またしごき加工容器と行われる
ものでも、しごき率が20%程度の加工の程度の概
して低いものであり、現在ビール罐や炭酸飲料罐
に使用されるような罐高が100乃至230mmでしごき
率が50%以上の高しごき率の絞りしごき罐を製造
するのに適用することは到底困難であつた。 更に、このようなフイルム被覆鋼板を絞り成形
乃至は絞り―しごき成形して成る容器において
は、フイルム層と鋼板との密着性が経時により著
しく低下し、両者の界面で容易に剥離が生じるよ
うになる。この傾向は、絞り―しごき加工の程度
が大きくなるにつれて一層顕著に表われることに
なる。 従つて、本発明の目的は、絞りしごきに対する
加工性に顕著に優れており、内面に樹脂被膜を備
えた状態で高度のしごき率でのしごき加工が可能
となる絞りしごき罐用被覆鋼板を提供するにあ
る。 本発明の他の目的は、絞りしごき加工により、
樹脂被膜の密着性、耐腐食性及び外観特性に優れ
た絞りしごき罐を得ることが可能な被覆鋼板を提
供するにある。 本発明によれば、絞りしごき罐としたとき内側
となるべき最表面に、配向可能な熱可塑性ポリエ
ステル樹脂の被覆層と該被覆層の下に密着下地と
して、6.5〜150mg/m2(Cr換算)のクロム水和酸
化物からなる無機酸化物皮膜層を有し、且つ絞り
しごき罐としたとき、外側となるべき面に0.7〜
15g/m2のすず層或いは1.8〜20g/m2のニツケ
ルまたはアルミニウム層のいずれか一種あるいは
二種の展延性金属のメツキ層を有することを特徴
とする絞りしごき罐用被覆鋼板が提供される。 本発明を、添付図面に示す具体例に基づき以下
に詳細に説明する。 本発明の被覆鋼板を示す第1図において、この
被覆鋼板1は、鋼板2と配向性、即ち延伸により
分子配向可能な熱可塑性ポリエステル樹脂層3と
から成つている。 この鋼板2は、鋼基質4と、該基質4の罐外面
となるべき側に設けられた展延性金属、即ちす
ず、ニツケルまたはアルミニウムのメツキ層5
と、罐内面となるべき側に設けられた特定の無機
酸化物皮膜層6とから成る非対称の表面処理構造
となつており、この無機酸化物皮膜層6を密着下
地として、その上に配向性ポリエステル樹脂層3
が設けられていることが、本発明の顕著な特徴で
ある。 即ち、本発明においては、被覆鋼板1のしごき
ダイスと係合されるべき面を、展延性に優れた金
属のメツキ層5とすることにより、しごき加工に
際して優れた潤滑効果が達成され、高いしごき率
でのしごき加工が可能となる。しかも、鋼板2の
メツキ層5と反対側の面を、被覆の密着下地とな
る無機酸化物皮膜層6とし、この上に配向性樹脂
層3を設けたことにより、この配向性樹脂層3の
鋼板への密着性が、しごき加工後は勿論のこと、
加工後の罐胴を経時させた場合にも極めて強固な
ものとなる。 本発明においては、樹脂被覆材として配向性が
良好な樹脂、特に熱可塑性ポリエステルを用いる
ことも重要であり、しごき工程で樹脂層3に分子
配向を与えることにより、鋼板への経時密着性が
顕著に向上すると共に、耐腐食性も向上するよう
になる。 鋼基質4としては、冷間圧延鋼板が使用され、
その厚みは、罐の大きさや、しごき加工の程度に
よつても相違するが、一般的に0.15乃至0.5mm、
特に0.2乃至0.45mmの厚みを有するものがよい。 メツキ層5としては、任意の展延性金属、例え
ばすず、ニツケル、亜鉛、アルミニウム、砲金、
真ちゆう等を挙げることができるが、有効性や経
済性などを総合的に考えるとすず、ニツケル、ア
ルミニウムが好ましく、更に好ましくはすず、或
いはニツケル、或いはこれ等を主体とする金属か
らなり以下のメツキ量を有するものががよい。 (1) すず:0.7〜15g/m2 (2) ニツケルまたはアルミニウム:1.8〜20g/
m2 更に、上記メツキ層がすずの場合は、ポリエチ
レンテレフタレートのように、すずの融点より高
い融点を有するフイルムを接着剤を用いないで熱
接着により鋼板に被覆する場合においては、被覆
時すずのメツキ量が大すぎるとすずのロールへの
付着、それにともなう外観不良の問題などが生じ
ること、また被覆後にすずメツキすることも工程
が複雑になることから、すずのメツキ量は0.7〜
2.3g/m2であることが好ましい。 このメツキ層は、ノーリフロー板(マツト板)
のように溶融処理を受けていないすず等のメツキ
層であつてもよいし、またリフロー板(ブライト
板)のように溶融処理を受けたすず等のメツキ層
であつてもよい。また、展延性金属上に印刷性改
良などを目的として化成、或いは化学処理を行つ
てもよいが、しごき性が問題にならない範囲内で
行うできである。 一方、密着下地となる無機酸化物皮膜層6と
は、電解クロム酸処理等の化成処理で形成される
クロム水和酸化物皮膜層を言うが、絞りしごき加
工後の密着性や耐食性、或いは経済性を考慮する
と金属クロム換算による値でクロムとして6.5〜
150mg/m2のクロム水和酸化物であることが好ま
しい。なお、ここで言う金属クロム換算による値
とは、一般的に行われている方法によるもので、
はじめに螢光X線により試料のクロム・カウント
を計り、次に試料を100℃の7.5NのNaOH溶液中
に5分間浸漬して、クロム水和酸化物を除去し
て、ふたたびクロム・カウントを計り、両者の差
から検量線によつて求めたクロム量である。 また、この無機酸化物皮膜層6は、鋼基質4の
上に直接形成されていてもよく、また、第2図に
示すように、鋼基質4の上に形成された金属メツ
キ層7を介して設けられていてもよい。 第2図に示されている具体例において、金属メ
ツキ層7は種々の金属であることができる。例え
ば、電解クロム酸処理の場合には、金属クロム層
7の上に、クロム水和酸化物層6が形成されるこ
とになる。また、金属メツキ層7は、被覆鋼板1
の罐外面となるべき面に設けられた展延性金属メ
ツキ層5と同種の金属から成るメツキ層であつて
よく、その上に化学処理により施された無機酸化
物層6が存在してもよい。勿論、第2図の態様に
おいて、内面側の金属メツキ層7は外面側のメツ
キ層5のみと同じであつてもよいし、外面側メツ
キ層よりも薄い厚みであることができるが、高耐
腐食性を要求される場合は有効性や経済性などを
考慮するとクロム水和酸化物層の下層に40〜700
mg/m2の金属クロムがあることが好ましく、更に
高耐食性を要求される場合は、更に金属クロム層
の下層に、すず、或いはニツケル、或いはこれら
を主体とする金属から成り、且つ以下のメツキ量
を有する層があることが好ましい。 (1) すず:0.15〜0.6g/m2 (2) ニツケル:0.3〜1.5g/m2 なお、ここで言うメツキ量はいずれも常法より
得た値であるが、金属クロム量に関しては、先に
示した方法によりクロム水和酸化物を除去してか
ら、螢光X線法によつてクロム・カウントを計
り、次に20%の熱硫酸溶液に浸漬して金属クロム
層を除去してから鋼基質のクロム・カウントを計
り、金属クロム除去前とのクロム・カウント差よ
り、検量線によつて金属クロム量を求めたもので
ある。 次に、配向性の熱可塑性樹脂層3は、第1図に
示す通り、直接表面処理鋼板2に対して熱接着さ
れていることができる。また、第3図に示すよう
に、配向性樹脂層3は、接着剤層8を介して表面
処理鋼板2に接着されていてもよい。 配向性熱可塑性樹脂層3としては、熱可塑性ポ
リエステル樹脂、ホモポリエステルやコポリエス
テル、特にエチレンテレフタレート単位を主体と
するポリエステル類を使用する。 その例は、これに限定されないが、次の通りで
ある。 一般式 或いは 式中R1は炭素数2乃至6のアルキレン基、R2
は炭素数2乃至24のアルキレン基又はアリーレン
基である、 で表わされる反復単位から成るポリエステル。 例えば、ポリエチレンテレフタレート、ポリエ
チレンテレフタレート/イソフタレート、ポリテ
トラメチレンテレフタレート、ポリエチレン/テ
トラメチレンテレフタレート、ポリテトラメチレ
ンテレフタレート/イソフタレート、ポリテトラ
メチレン/エチレンテレフタレート、ポリエチレ
ン/テトラメチレンテレフタレート/イソフタレ
ート、ポリエチレン/オキシベンゾエート、或い
はこれらのブレンド物。 これらの配向性樹脂は、所謂ブレンド物の形で
も使用し得るし、積層構成でも使用し得る。 配向性樹脂層3は、最終絞りしごき罐の内面保
護層となるものであるから、一般に下記の性質を
有していることが望ましい。その一つは、この樹
脂層自体が苛酷なしごき加工を受けることから、
大きな伸びを有することが望ましい。好適な樹脂
はASTM D―882〜61Tで測定して5%以上、
特に10%以上の伸びを有することが望ましい。 第2は、金属腐食成分に対するバリヤー性であ
る。この腐食成分に対するバリヤー性を数値で直
接表示する尺度は未だないが、このバリヤー性
は、樹脂の水素結合の強さとも関連していると思
われる。本発明に用いる配向性樹脂は、一般に
9.0以上、特に9.5以上の溶解度指数(SOlubility
parameterSp値)を有することが望ましい。尚、
このSp値とは凝集エネルギー密度(cal/c.c.)の
1/2乗値として定義されるもので、水素結合の強
さと密接に関連するものである。 第3に、これも金属材料の腐食性に関連する
が、この樹脂は、ASTM D―570〜63(23℃で24
時間)で測定して、15%以下、特に10%以下の吸
水率を示すべきである。即ち、樹脂層自体が高度
に分子配向され、また金属素材に対する密着性が
強固であつても、吸水率が上記範囲よりも大きい
樹脂では、金属素材の腐食や、内容物中への金属
溶出が出じるようになる。 第4に、この樹脂は、金属素材への接着性、特
に熱接着性に関連して、カルボン酸、カルボン酸
塩、カルボン酸無水物、カルボン酸エステル、カ
ルボン酸アミド、ケトン、炭酸エステル、ユリア
等に基づくカルボニル基
The present invention relates to a coated steel plate for drawing and ironing cans. More specifically, the present invention relates to a coated steel plate for drawing and ironing cans. More specifically, the present invention relates to a coated steel plate for drawing and ironing cans. The present invention relates to a coated steel plate from which a drawn and ironed can can be obtained. Conventionally, it has already been possible to thermally bond a thermoplastic polyester film such as polybutylene terephthalate to a metal material such as a steel plate, and then subject this covered metal structure to drawing or drawing ironing to make container lids or containers. Are known. However, drawn containers manufactured by known methods are shallow drawn containers in the shape of plates or cups with a drawing ratio of about 1.5, and even those that are made with ironing process are processed with an ironing rate of about 20%. The degree of ironing is generally low, and it can be applied to the production of squeezed ironing cans with a can height of 100 to 230mm and a high ironing rate of 50% or more, such as those currently used for beer cans and carbonated beverage cans. was extremely difficult. Furthermore, in containers formed by drawing or drawing-iron forming such film-coated steel sheets, the adhesion between the film layer and the steel sheet deteriorates significantly over time, and peeling easily occurs at the interface between the two. Become. This tendency becomes more pronounced as the degree of drawing and ironing increases. Accordingly, an object of the present invention is to provide a coated steel sheet for drawing and ironing cans that has significantly excellent workability for drawing and ironing, and that can be ironed at a high ironing rate with a resin coating on the inner surface. There is something to do. Another object of the present invention is to provide, by drawing and ironing,
It is an object of the present invention to provide a coated steel plate capable of obtaining a drawn ironing can having excellent resin coating adhesion, corrosion resistance, and appearance characteristics. According to the present invention, a coating layer of an orientable thermoplastic polyester resin is provided on the outermost surface that should be the inner side when the drawing and ironing can is made, and a coating layer of 6.5 to 150 mg/m 2 (in terms of Cr ) has an inorganic oxide film layer consisting of chromium hydrated oxide, and when it is made into a drawing and ironing can, the surface that should be the outside has an inorganic oxide film layer of 0.7~
Provided is a coated steel sheet for drawing and ironing cans, characterized in that it has a plating layer of one or two types of malleable metal, such as a tin layer of 15 g/m 2 or a nickel or aluminum layer of 1.8 to 20 g/m 2 . The present invention will be explained in detail below based on specific examples shown in the accompanying drawings. In FIG. 1 showing a coated steel sheet of the present invention, the coated steel sheet 1 is composed of a steel sheet 2 and a thermoplastic polyester resin layer 3 that has orientation, that is, molecular orientation is possible by stretching. This steel plate 2 includes a steel substrate 4 and a plating layer 5 of a malleable metal, that is, tin, nickel, or aluminum, provided on the side of the substrate 4 that is to become the outer surface of the can.
and a specific inorganic oxide film layer 6 provided on the side that should become the inner surface of the can.This inorganic oxide film layer 6 is used as an adhesion base, and an oriented film is applied on top of it. Polyester resin layer 3
It is a distinctive feature of the present invention that the following is provided. That is, in the present invention, by forming the plated layer 5 of metal with excellent malleability on the surface of the coated steel plate 1 that is to be engaged with the ironing die, an excellent lubrication effect is achieved during ironing, and a high ironing effect is achieved. Ironing processing at a high rate is possible. In addition, the surface of the steel plate 2 opposite to the plating layer 5 is made into an inorganic oxide film layer 6 that serves as an adhesion base for the coating, and the oriented resin layer 3 is provided on top of this. The adhesion to the steel plate is of course after ironing,
Even when the can body is left to age after processing, it becomes extremely strong. In the present invention, it is also important to use a resin with good orientation, especially thermoplastic polyester, as the resin coating material, and by imparting molecular orientation to the resin layer 3 in the ironing process, the adhesion to the steel plate over time becomes remarkable. In addition to improving corrosion resistance, corrosion resistance also improves. As the steel substrate 4, a cold rolled steel plate is used,
The thickness varies depending on the size of the can and the degree of ironing, but generally it is 0.15 to 0.5 mm.
Particularly preferred is one having a thickness of 0.2 to 0.45 mm. The plating layer 5 may be any malleable metal, such as tin, nickel, zinc, aluminum, gun metal,
Examples include brass, but from a comprehensive consideration of effectiveness and economy, tin, nickel, and aluminum are preferred, and more preferably tin, nickel, or a metal mainly composed of these. It is preferable to have a plating amount of . (1) Tin: 0.7~15g/ m2 (2) Nickel or aluminum: 1.8~20g/m2
m 2Furthermore , if the plating layer is tin, if the steel plate is coated with a film that has a melting point higher than that of tin, such as polyethylene terephthalate, by thermal bonding without using an adhesive, the amount of tin plating at the time of coating will be If it is too large, problems such as adhesion of tin to the roll and resulting poor appearance will occur, and tin plating after coating also complicates the process, so the amount of tin plating should be 0.7~
Preferably it is 2.3 g/m 2 . This plating layer is a no-reflow board (pine board)
It may be a plating layer made of tin or the like that has not undergone melting treatment, as in the case of a reflow plate (bright plate), or it may be a plating layer of tin or the like that has been subjected to melting treatment, such as a reflow plate (bright plate). In addition, chemical conversion or chemical treatment may be performed on the malleable metal for the purpose of improving printability, but it can be carried out within a range where the ironability is not a problem. On the other hand, the inorganic oxide film layer 6, which serves as the adhesion base, refers to a chromium hydrated oxide film layer formed by chemical conversion treatment such as electrolytic chromic acid treatment, but it is difficult to improve adhesion after drawing and ironing, corrosion resistance, or economy. Taking into account the properties of chromium, the value is 6.5 to chromium based on metal chromium conversion.
Preferably it is 150 mg/m 2 of chromium hydrated oxide. Note that the value expressed here in terms of metallic chromium is based on a commonly used method.
First, measure the chromium count of the sample using fluorescent X-rays, then immerse the sample in a 7.5N NaOH solution at 100°C for 5 minutes to remove hydrated chromium oxide, and measure the chromium count again. , is the amount of chromium determined from the difference between the two using a calibration curve. Further, this inorganic oxide film layer 6 may be formed directly on the steel substrate 4, or as shown in FIG. may be provided. In the embodiment shown in FIG. 2, the metal plating layer 7 can be of various metals. For example, in the case of electrolytic chromic acid treatment, a chromium hydrated oxide layer 6 is formed on the metal chromium layer 7. Further, the metal plating layer 7 is formed on the coated steel plate 1
It may be a plating layer made of the same type of metal as the malleable metal plating layer 5 provided on the surface that is to become the outer surface of the can, and an inorganic oxide layer 6 applied by chemical treatment may be present thereon. . Of course, in the embodiment of FIG. 2, the metal plating layer 7 on the inner surface side may be the same as only the plating layer 5 on the outer surface side, or may have a thinner thickness than the plating layer on the outer surface side. When corrosion resistance is required, considering effectiveness and economy, the lower layer of the chromium hydrated oxide layer should be 40 to 700
mg/m 2 of metallic chromium is preferable, and if even higher corrosion resistance is required, the lower layer of the metallic chromium layer is made of tin, nickel, or a metal mainly composed of these, and the following plating is applied. Preferably, there is a layer having a volume. (1) Tin: 0.15 to 0.6 g/m 2 (2) Nickel: 0.3 to 1.5 g/m 2 The plating amounts mentioned here are all values obtained by conventional methods, but regarding the amount of metallic chromium, After removing the chromium hydrated oxide by the method shown above, the chromium count was measured by fluorescent X-ray method, and then the metallic chromium layer was removed by immersion in a hot 20% sulfuric acid solution. The chromium count of the steel substrate was measured from the steel substrate, and the amount of metallic chromium was determined from the difference in chromium count from before removing metallic chromium using a calibration curve. Next, the oriented thermoplastic resin layer 3 can be directly thermally bonded to the surface-treated steel sheet 2, as shown in FIG. Further, as shown in FIG. 3, the oriented resin layer 3 may be bonded to the surface-treated steel sheet 2 via an adhesive layer 8. As the oriented thermoplastic resin layer 3, a thermoplastic polyester resin, homopolyester or copolyester, particularly polyesters mainly containing ethylene terephthalate units, is used. Examples include, but are not limited to: general formula Or In the formula, R 1 is an alkylene group having 2 to 6 carbon atoms, R 2
is an alkylene group or arylene group having 2 to 24 carbon atoms, and a polyester consisting of a repeating unit represented by: For example, polyethylene terephthalate, polyethylene terephthalate/isophthalate, polytetramethylene terephthalate, polyethylene/tetramethylene terephthalate, polytetramethylene terephthalate/isophthalate, polytetramethylene/ethylene terephthalate, polyethylene/tetramethylene terephthalate/isophthalate, polyethylene/oxybenzoate , or a blend thereof. These oriented resins can be used in the form of a so-called blend or in a laminated structure. Since the oriented resin layer 3 serves as a protective layer for the inner surface of the final drawing and ironing can, it is generally desirable that the oriented resin layer 3 has the following properties. One of the reasons is that this resin layer itself undergoes a harsh ironing process.
It is desirable to have a large elongation. Suitable resins are 5% or more as measured by ASTM D-882~61T;
In particular, it is desirable to have an elongation of 10% or more. The second is barrier properties against metal corrosive components. Although there is still no scale that directly indicates numerically the barrier property against corrosive components, it is thought that this barrier property is also related to the strength of the hydrogen bond of the resin. The oriented resin used in the present invention is generally
A solubility index of 9.0 or higher, especially 9.5 or higher
parameterS p value). still,
This S p value is defined as the 1/2 power value of the cohesive energy density (cal/cc), and is closely related to the strength of hydrogen bonding. Third, and also related to the corrosivity of metal materials, this resin has a
It should show a water absorption of less than 15%, especially less than 10%, measured in hours). In other words, even if the resin layer itself has highly oriented molecules and strong adhesion to the metal material, a resin with a water absorption rate greater than the above range may cause corrosion of the metal material or metal elution into the contents. It starts to come out. Fourthly, this resin has properties related to adhesion to metal materials, especially thermal adhesion, such as carboxylic acids, carboxylates, carboxylic acid anhydrides, carboxylic acid esters, carboxylic acid amides, ketones, carbonate esters, urea, etc. Carbonyl group based on etc.

【式】を主鎖或いは 側鎖に含有することが望ましい。樹脂層中のカル
ボニル基の濃度は、接着性の点で10meq(ミリイ
クイバレント)/100g樹脂以上、特に50meq/
100g樹脂以上であることが望ましい。 第5に、この配向性熱可塑性樹脂は、成形が容
易で、しかも罐に要求される耐熱性を有するよう
に、70乃至300℃の融点乃至軟化点を有するべき
であり、またフイルムを形成するに足る分子量を
有するべきである。 これらの特性を同時に満足するものとして、本
発明では熱可塑性ポリエステル乃至はコポリエス
テル、特にエチレンテレフタレート単位を主体と
するポリエステル類を使用する。 配向性樹脂層の厚みも、しごき加工の程度によ
つて相違するが、一般的に言つて、5乃至300ミ
クロン、特に10乃至120ミクロンの厚みを有する
ことが望ましい。 被覆金属素材を製造するために、鋼板2に対し
て配向性樹脂層3を接着させる。この接着は、配
向性樹脂層自体が鋼板に対して熱接着性を有して
いる場合には、その熱接着性を利用して行うこと
ができ、また、両者の間に別個の接着剤層8を介
在させて行うことができる。例えば、前述したポ
リエステル類の多くは、鋼板に対して優れた接着
性を示すので、これをそのまま鋼板に熱接着す
る。また、直接熱接着では十分な接着強度が得ら
れない場合には、コポリエステル或いはブレンド
物等の熱接着性により優れた材料を接着剤として
使用して熱接着を行う。用いる接着剤は熱可塑性
のものに限定されず、例えばウレタン系接着剤、
エポキシ系接着剤等の熱硬化タイプのものも使用
できる。 この被覆鋼板においては、配向性樹脂層が鋼板
に強固に接着されていることが必要であり、一般
的に言つて、その接着強度は0.5Kg/cm以上、特
に1Kg/cm以上であることが、高度のしごき加工
を行う上で必要である。 被覆鋼板を製造する上で、注意しなければなら
ない他の点は、配向性樹脂層の延伸による分子配
向を可能にするために、この製造工程における配
向性樹脂の球晶の生成を可及的に抑制することで
ある。即ち、この工程で配向性樹脂の球晶が過度
に生じている場合には、しごき工程での樹脂層の
延伸が困難になり、破断、剥離、クラツク発生等
のトラブルを生じるようになる。このために、例
えば熱接着後の被覆素材は、急冷して、樹脂層が
過冷却状態にあるようにするのがよい。また、樹
脂層が結晶化温度を溶融―固化の段階で急速に通
過するようにする。 本発明において、配向性樹脂層としてT―ダイ
法で製造された、結晶化度が低く、未配向のフイ
ルムを用いることができる。また、この配向性樹
脂層としては、配向による微結晶を有するもの、
例えば、既に一軸延伸或いは二軸延伸で配向され
たフイルムを用いることもできる。例えば、二軸
延伸により配向されたポリエチレンテレフタレー
トフイルムを、この樹脂層として用いると、面内
配向度が低下し、しごき方向への一軸配向がより
大きく生じるようになる。 また、本発明においては、バリヤー性能の観点
から被覆材は樹脂のガラス転移温度が常温(35
℃)以上のものが好ましく、さらには、バリヤー
性能、フレーバー、経済性などの観点からポリエ
チレンテレフタレート樹脂がより好ましい。さら
に該ポリエチレンテレフタレート樹脂フイルムと
鋼板とからなる積層体は、経済性及び密着性など
の観点から該ポリエチレンテレフタレート樹脂フ
イルムを該樹脂の一部あるいは全部を熱溶融して
鋼板に被覆したものが好ましい。更に、経済性を
特に要求される場合は、熱可塑性樹脂がポリエチ
レンテレフタレートのみからなり、且つ接着剤を
用いず該樹脂の一部あるいは全部を熱溶融して鋼
板に被覆したものが好ましい。 本発明によれば、このようにして製造された成
形用の被覆鋼板1を、配向性樹脂層3の適性延伸
温度において、ポンチとダイスとの間で絞りしご
き加工に付する。この絞りしごき加工で、被覆鋼
板はカツプ状の無継目筒体の形に絞り成形される
と共に、側壁部が薄肉化されることによつてしご
き加工が行われる。本発明においては、この際樹
脂層が適性延伸温度に保持されることにより、樹
脂層に顕著な分子配向が与えられ、この分子配向
により樹脂層の諸物性が顕著に向上すると共に、
樹脂層の鋼板に対する密着性乃至接着性が顕著に
向上し、更に罐としての耐腐食性も顕著に向上す
る。この密着性及び耐腐食性の向上は、顕著であ
り、例えばポリエチレンテレフタレートフイルム
の場合、常温でのしごき成形では、1分程度の放
置で、フイルムの剥離が既に発生するのに対し
て、本発明による成形では、内容物充填、長期の
保存後にも、このような剥離は殆んど認められな
い。また耐食性に関しては特にフランジ巻締部な
どの加工耐食性に効果を発揮する。例えば、本発
明において期待出来る被覆鋼板としてポリエチレ
ンテレフタレート樹脂フイルムを接着剤を用いな
いで該樹脂の一部あるいは全部を熱溶融して鋼板
に被覆した被覆鋼板が挙げられるが、該被覆鋼板
はX線回折や密度、あるいは染色後の樹脂層の断
面観察などにより、例えば第4―A図あるいは第
4―D図の構成を有していると考えられる。特に
第4―A図に示すものは、経済性、バリヤー性の
観点からも罐用素材として相当有望であるが、該
被覆鋼板により3ピース罐を作ることを考えた場
合、印刷工程を考慮すると、例えば180℃の雰囲
気中に数分間置かれることになる。その結果、無
配向層9は配向していないがゆえに大きな球晶を
生じるようになる。従つてフランジー巻締部のよ
うな厳しい加工を受ける部分は、球晶のある部分
にクラツクを生じ、結果として、その部分に腐食
が集中すると言う欠点も有している。従つて無配
向層9が厳しい加工を受ける部分にあることは、
あまり好ましくない。この無配向層9をなくすた
めには、第4―B図或いは第4―E図に示したよ
うに被覆鋼板1を圧延して無配向層9を一軸ある
いは一軸一面配向層9′に変化させることも考え
られるが、工程が複雑になるなどの問題を有して
いる。本発明のように、該被覆鋼板を用いて適性
延伸温度で絞りしごき加工を行うと第4―C図に
示したように側壁部は二軸配向層10は面内配向
度は低下するが、依然二軸配向構造を有してお
り、無配向層9は一軸あるいは一軸一面配向層
9′に、また第4―F図に示したように無配向層
9は、同様に一軸あるいは一軸一面配向層に変化
しており、絞りしごき罐が得られるだけでなく、
加工性などの特性も同時に達成できる。また、無
配向層9の下層に、さらに有機樹脂層が存在して
も、同様の効果がある。 絞りしごき罐、即ち側面無継目金属罐の加工の
順序を説明するための添付図面第5―A図におい
て、先ず、前述した被覆鋼板1を、円板の形状に
打抜く(第1工程―剪断)。この被覆鋼板1の大
きさは、後述する絞り比やしごき率を考慮して、
最終容器に必要な金属素材が確保されるように決
定する。 次いで、第5―B図に示す絞り工程で、剪断さ
れた素材を、絞りダイス11とポンチ12との間
で絞り加工し、浅絞りされたカツプ状成形物13
に成形する。絞りダイス11とポンチ12とのク
リアランスは、前述した被覆鋼板1の肉厚にほぼ
等しいか、或いはこれより若干大きい。本発明の
被覆鋼板を用いる場合、下記式 RD=D/d 式中Dは剪断した被覆鋼板の最小径であり、 dはポンチ最小径である、 で定義される絞り比RDは、金属素材の種類によ
つてもかなり相違するが、実用的には一段では
1.1乃至3.0、好適には1.2乃至2.8の範囲にあるの
がよい。 次いで、第1段の絞に工程で得られたカツプ状
成形物13を、第5―C図に示す再絞り工程にお
いて、より小径の再絞りダイス14と再絞りポン
チ15との間で再絞り加工し、深絞りされたカツ
プ状成形物16に成形する。勿論、この再絞り工
程における絞り比、即ちカツプ状成形物13の径
と再絞りポンチ15の径との比も、絞り工程にお
いて前述した値の範囲内にあることが多くの場合
必要である。再絞りポンチ15と再絞りダイス1
4との間のクリアランスは、被覆鋼板1の厚さと
実質的に等しくして素材にしごきが加わらないよ
うにすることができ、或いは前記クリアランスを
被覆鋼板1の厚さよりも小さくして素材に若干の
しごきが加わるようにすることもできる。この絞
り加工或いは再絞り加工には、通常使用されてい
る潤滑剤を用いることもできる。また再絞り加工
で形成された絞り成形物を、3段目の絞り加工に
賦してより深絞りされた成形物とすることもでき
る。 第5―B図の絞り工程で得られたカツプ状成形
物13及び第5図―Cで得られたカツプ状成形物
16をしごき加工に賦する。即ち、第5―D図に
おいて、しごきポンチ17の移動路に沿つて、複
数個のしごきダイス18(図面では1個のみが示
されている)が配置され、カツプ状成形物13或
いは16の側壁19がしごきポンチ17としごきダ
イス18との間でしごき加工される。しごきダイ
ス18としごきポンチ17とのクリアランスは、
被覆鋼板の肉厚よりも小であり、従つてカツプ状
成形物の側壁19はしごきダイス18との噛み合
いにより延伸され薄肉化される。 この場合、下記式 RI=t0−t1/t0×100 式中、t0は罐底部被覆鋼板の厚みであり、t1
側壁部被覆鋼板の厚みである、 で定義される総しごき率(RI)は、金属素材の
種類や、配向性樹脂被覆層の厚みによつても相違
するが、一般的に言つて一段のしごきで、10乃至
50%、全体としてのしごきで30乃至85%の範囲に
あるのが望ましい。 本発明においては、少くともこのしごき工程、
好適には絞り工程としごき工程との全部を、配向
性樹脂フイルム層の適性延伸温度において行う。
フイルムの適性延伸温度とは、個々の樹脂フイル
ムについて固有の温度であり、一般的に言つて、
樹脂の結晶化温度よりも低く且つガラス転移温度
(Tg)±30℃以内の温度である。 この適性延伸温度は、例として、エチレンテレ
フタレート単位を主体とするポリエステルの場合
には40乃至100℃の範囲である。 既に指摘した如く、しごき加工の温度が適性な
延伸温度よりも低い場合には、本発明の場合に比
して、フイルム層自体に有効な分子配向を与える
ことが困難であると共に、鋼板との密着性や、耐
腐食性も著しく劣るようになる。また、このしご
き加工をフイルムの適性延伸温度よりも高い温度
で行う場合にも、フイルム層自体に有効な分子配
向を与えることが困難であり、かえつて結晶化等
により加工性が低下して、破断、剥離等のトラブ
ルが生じることになる。 本発明において、フイルム層に付与される分子
配向は、しごき方向における一軸分子配向であ
り、その配向の程度は、しごき率と対応するもの
である。この分子配向の程度は、例えば、フイル
ム層がポリエチレンテレフタレートの場合は、下
記式 fc=180−H/180×100 式中、Hは該被膜をX線回折に付したときの罐
円周方向及びポリエステル被膜表面に平行にX線
を照射して得られる結晶面(100)干渉の環上回
折強度曲線から求めた半価巾を表わす、 で定義される配向度(fc)が25%以上となるよう
なものであることが望ましい。 本発明によれば、被膜の密着性及び耐腐食性に
優れた内面被覆絞りしごき罐が容易に得られるば
かりでなく、成形中乃至は成形後における鋼板の
発錆等が有効に防止され、更に成形後の罐に塗膜
密着性向上の処理を行い、或いは個々の罐の内部
にスプレー塗装を行う煩しさが解消される等極め
て多くの利点がある。 本発明を次の例で説明する。 実施例 1 軟鋼板(板厚:0.32mm、テンパー:T―1)の
片面(フイルム被覆面)に上層にクロム水和酸化
物層(クロムとして28mg/m2)、下層に金属クロ
ム層(157mg/m2)のメツキ層を有し、他の面
(フイルム非被覆面)にすず層(1.5g/m2)、或
いはニツケル層(4.3g/m2)、或いはアルミ層
(2.5g/m2)の展延性金属のメツキ層を有した三
種の鋼板を各々高周波加熱にて310℃の板温まで
加熱し、該加熱板に二軸延伸したポリエチレンテ
レフタレートフイルム(東レ(株)製、ルミラー(タ
イプS)、50μm)を被覆し、すぐさま水浸漬に
より急冷することにより第6―A,B,C図に示
す被覆鋼板を得た。該被覆鋼板を罐内面がフイル
ム被覆面になるようにして下記の成形条件にて絞
りしごき加工を行つた。その結果、表―1に示す
ように、被膜密着性の良好な絞りしごき罐が得ら
れた。 〈成形条件〉 1 延伸温度(成形直前の樹脂温度);65℃ 2 ブランク径;125mm 3 絞り条件;1st絞り比:1.75、2nd絞り比:
1.35 4 しごきポンチ径;52.65mm 5 総しごき率;68% 実施例 2 被覆鋼板の片面(フイルム非被覆面)をすず層
或いはニツケル層のメツキ量を変化(すず:0.8
〜14.2g/m2、ニツケル:2〜18.3g/m2)させ
たものである他は実施例1と同様の被覆鋼板、成
形条件にて絞りしごき加工を行つた。その結果い
ずれも表―2に示すように、連続的に被覆密着性
の良好な絞りしごき罐が得られた。 実施例 3 実施例1と同じ軟鋼板の片面(フイルム被覆
面)に、最上層に各々3水準のクロム水和酸化物
層(クロムとして8、或いは30、或いは142mg/
m2)を有し、その下層に金属クロム層(150mg/
m2)、さらにその下層にすず層(0.5g/m2)を有
しており、他の面(フイルム非被覆面)がすず層
(1.8g/m2)を有している3種の鋼板を用いて、
実施例1と同様の被覆鋼板、成形条件にて絞りし
ごき加工を行い絞りしごき罐を得た。該絞りしご
き罐を下記の条件にて保存試験を行つた。その結
果、表―3に示すように良好な結果が得られた。 〈保存試験条件〉 絞りしごき罐を脱脂・洗滌後180℃で5分間乾
燥し、フランジ加工後、合成炭酸飲料(登録商
標:スプライト)を罐高の9割の高さまで充填
し、エポキシフエノール系塗料を乾燥厚みで10μ
m塗装焼付したアルミ蓋を巻締め、蓋面を下にし
て50℃の雰囲気中に2ケ月放置する。 比較例 1 実施例1と同じ軟鋼板を用い、片面(フイルム
被覆面)が実施例1と同様のメツキ層を有し、他
の面(フイルム非被覆面)が、上層にクロム水和
酸化物(クロムとして28mg/m2)、下層に金属ク
ロム層(157mg/m2)のメツキ層、或いは単一金
属クロム層(157mg/m2)を有した2種の鋼板及
び同じく実施例1と同じ軟鋼板を用い、両面にす
ず層(1.5g/m2)、或いはニツケル層(4.3g/
m2)、或いはアルミ層(2.5g/m2)を有した3種
の鋼板、合計5種類の鋼板を用いて、各々実施例
1と同様にして第6―D,E,F,G,Hに示す
被覆鋼板を得た。該被覆鋼板を実施例1と同様に
して絞りしごき加工を行つた。その結果、表―1
の比較1〜5に示すようにいずれも罐の成形が不
可能であつたり、被膜密着性が劣つた。 比較例 2 被覆鋼板の片面(フイルム非被覆面)がすず層
(0.57g/m2、或いは16.3g/m2)、或いはニツケ
ル層(1.6g/m2、或いは21.6g/m2)である他
は実施例2と同様の被覆鋼板、成形条件にて絞り
しごき加工を行つた。その結果、表―2に示すよ
うに、いずれも罐の成形が不可能であつたり、連
続生産性が著しく劣つていた。 比較例 3 クロム水和酸化物層がクロムとして5mg/m2
いは162mg/m2である他は実施例3と同様の被覆
鋼板、成形条件にて絞りしごき罐を得た。該絞り
しごき罐を実施例3と同様にして保存試験を行つ
た結果、いずれも満足すべき結果は得られなかつ
た。
It is desirable to contain [Formula] in the main chain or side chain. The concentration of carbonyl groups in the resin layer should be 10meq (milli equivalent)/100g resin or more, especially 50meq/100g resin in terms of adhesion.
It is desirable that the amount is 100g or more of resin. Fifth, this oriented thermoplastic resin should have a melting point or softening point of 70 to 300 degrees Celsius so that it is easy to mold and has the heat resistance required for cans, and it should also be able to form a film. It should have sufficient molecular weight. In order to simultaneously satisfy these properties, the present invention uses thermoplastic polyester or copolyester, particularly polyesters containing ethylene terephthalate units as a main component. Although the thickness of the oriented resin layer also varies depending on the degree of ironing, it is generally desirable to have a thickness of 5 to 300 microns, particularly 10 to 120 microns. In order to manufacture a coated metal material, an oriented resin layer 3 is adhered to a steel plate 2. If the oriented resin layer itself has thermal adhesive properties to the steel plate, this adhesion can be achieved by utilizing that thermal adhesive property, or by using a separate adhesive layer between the two. This can be done with the intervention of 8. For example, many of the above-mentioned polyesters exhibit excellent adhesion to steel plates, so they are directly thermally bonded to steel plates. If sufficient adhesive strength cannot be obtained by direct thermal bonding, thermal bonding may be performed using a material with superior thermal bonding properties such as copolyester or a blend as an adhesive. The adhesive used is not limited to thermoplastic adhesives, such as urethane adhesives,
Thermosetting adhesives such as epoxy adhesives can also be used. In this coated steel sheet, it is necessary that the oriented resin layer is firmly adhered to the steel sheet, and generally speaking, the adhesive strength is 0.5 kg/cm or more, particularly 1 kg/cm or more. , is necessary for performing advanced ironing processing. Another point that must be taken into account when manufacturing coated steel sheets is to minimize the formation of spherulites of the oriented resin in this manufacturing process in order to enable molecular orientation by stretching the oriented resin layer. It is to suppress the That is, if excessive spherulites of the oriented resin are formed in this step, it becomes difficult to stretch the resin layer in the ironing step, resulting in troubles such as breakage, peeling, and cracking. For this purpose, for example, the coating material after thermal bonding is preferably cooled rapidly so that the resin layer is in a supercooled state. Also, the resin layer is made to rapidly pass through the crystallization temperature during the melting-solidification stage. In the present invention, an unoriented film with low crystallinity manufactured by the T-die method can be used as the oriented resin layer. In addition, as this oriented resin layer, one having oriented microcrystals,
For example, it is also possible to use a film that has already been oriented by uniaxial stretching or biaxial stretching. For example, if a polyethylene terephthalate film oriented by biaxial stretching is used as this resin layer, the degree of in-plane orientation will decrease and uniaxial orientation in the ironing direction will occur more greatly. In addition, in the present invention, from the viewpoint of barrier performance, the glass transition temperature of the resin for the coating material is room temperature (35
C) or higher is preferable, and polyethylene terephthalate resin is more preferable from the viewpoints of barrier performance, flavor, economical efficiency, etc. Further, from the viewpoint of economy and adhesion, the laminate made of the polyethylene terephthalate resin film and the steel plate is preferably one in which the polyethylene terephthalate resin film is coated on a steel plate by thermally melting part or all of the resin. Furthermore, when economic efficiency is particularly required, it is preferable that the thermoplastic resin is made only of polyethylene terephthalate, and that a part or all of the resin is thermally melted and coated on a steel plate without using an adhesive. According to the present invention, the thus-manufactured coated steel sheet 1 for forming is subjected to drawing and ironing between a punch and a die at an appropriate stretching temperature for the oriented resin layer 3. In this drawing and ironing process, the coated steel plate is drawn into the shape of a cup-shaped seamless cylinder, and the ironing process is performed by thinning the side wall portion. In the present invention, by maintaining the resin layer at an appropriate stretching temperature, remarkable molecular orientation is imparted to the resin layer, and this molecular orientation significantly improves various physical properties of the resin layer.
The adhesion or adhesion of the resin layer to the steel plate is significantly improved, and the corrosion resistance of the can is also significantly improved. This improvement in adhesion and corrosion resistance is remarkable. For example, in the case of polyethylene terephthalate film, when ironing is performed at room temperature, peeling of the film already occurs after about 1 minute, whereas the present invention In molding, such peeling is hardly observed even after filling and long-term storage. Regarding corrosion resistance, it is particularly effective in processing corrosion resistance of flange seams and the like. For example, as a coated steel plate that can be expected in the present invention, there is a coated steel plate in which a polyethylene terephthalate resin film is coated on a steel plate by heat-melting part or all of the resin without using an adhesive. Based on diffraction, density, cross-sectional observation of the resin layer after dyeing, etc., it is thought that it has the structure shown in FIG. 4-A or 4-D, for example. In particular, the material shown in Figure 4-A is quite promising as a material for cans from the viewpoint of economy and barrier properties. For example, it will be placed in an atmosphere of 180°C for several minutes. As a result, since the non-oriented layer 9 is not oriented, large spherulites are generated. Therefore, parts that undergo severe machining, such as the flange seaming part, also have the disadvantage that cracks occur in the part where the spherulites are located, and as a result, corrosion concentrates in that part. Therefore, the fact that the non-oriented layer 9 is in a part that undergoes severe processing means that
I don't like it very much. In order to eliminate this non-oriented layer 9, the coated steel sheet 1 is rolled as shown in Figure 4-B or 4-E to change the non-oriented layer 9 into a uniaxially or uniaxially uniplane oriented layer 9'. Although this is possible, there are problems such as the process becomes complicated. When the coated steel sheet is drawn and ironed at an appropriate drawing temperature as in the present invention, as shown in FIG. The non-oriented layer 9 still has a biaxially oriented structure, and the non-oriented layer 9 can be uniaxially or uniaxially uniplanarly oriented, and as shown in FIG. It changes into layers, and not only can you obtain a squeezed can, but also
Properties such as processability can also be achieved at the same time. Further, even if an organic resin layer is further present below the non-oriented layer 9, the same effect can be obtained. In Figure 5-A of the attached drawing for explaining the processing order of a drawn and ironed can, that is, a metal can with seamless sides, first, the above-mentioned coated steel plate 1 is punched into a disc shape (first step - shearing). ). The size of this coated steel plate 1 is determined by considering the drawing ratio and ironing rate, which will be described later.
Determine to ensure that the necessary metal materials are available for the final container. Next, in a drawing step shown in FIG. 5-B, the sheared material is drawn between a drawing die 11 and a punch 12 to form a shallowly drawn cup-shaped molded product 13.
Form into. The clearance between the drawing die 11 and the punch 12 is approximately equal to or slightly larger than the thickness of the coated steel plate 1 described above. When using the coated steel sheet of the present invention, the drawing ratio R D defined by the following formula R D = D/d, where D is the minimum diameter of the sheared coated steel sheet and d is the minimum diameter of the punch, is It varies considerably depending on the type of material, but in practical terms
It is preferably in the range of 1.1 to 3.0, preferably 1.2 to 2.8. Next, the cup-shaped molded product 13 obtained in the first stage drawing process is re-drawn between a re-drawing die 14 having a smaller diameter and a re-drawing punch 15 in a re-drawing process shown in FIG. 5-C. The product is processed and formed into a deep-drawn cup-shaped molded product 16. Of course, it is often necessary that the drawing ratio in this redrawing step, that is, the ratio of the diameter of the cup-shaped molded product 13 to the diameter of the redrawing punch 15, be within the range of values mentioned above in the drawing step. Re-drawing punch 15 and re-drawing die 1
4 can be made substantially equal to the thickness of the coated steel plate 1 to prevent straining from being applied to the material, or the clearance can be made smaller than the thickness of the coated steel plate 1 so that the material is slightly strained. It is also possible to add strain. A commonly used lubricant can also be used for this drawing or re-drawing. Further, the drawn product formed by the re-drawing process can be subjected to a third drawing process to obtain a more deeply drawn product. The cup-shaped molded product 13 obtained in the drawing step of FIG. 5-B and the cup-shaped molded product 16 obtained in FIG. 5-C are subjected to ironing. That is, in FIG. 5-D, a plurality of ironing dies 18 (only one is shown in the drawing) are arranged along the movement path of the ironing punch 17, and the side walls of the cup-shaped molded product 13 or 16 are arranged. 19 is ironed between an ironing punch 17 and an ironing die 18. The clearance between the ironing die 18 and the ironing punch 17 is
It is smaller than the wall thickness of the coated steel plate, and therefore, the side wall 19 of the cup-shaped molded product is stretched and thinned by engagement with the ironing die 18. In this case, the following formula R I = t 0t 1 / t 0 ×100 In the formula, t 0 is the thickness of the steel plate covering the can bottom, and t 1 is the thickness of the steel plate covering the side wall. The ironing rate (R I ) varies depending on the type of metal material and the thickness of the oriented resin coating layer, but generally speaking, one round of ironing is 10 to 10.
50%, preferably in the range of 30 to 85% for the overall stroke. In the present invention, at least this ironing step,
Preferably, the drawing step and the ironing step are all performed at an appropriate stretching temperature for the oriented resin film layer.
The appropriate stretching temperature for a film is a temperature specific to each resin film, and generally speaking,
The temperature is lower than the crystallization temperature of the resin and within ±30°C of the glass transition temperature (Tg). This suitable stretching temperature is, for example, in the range of 40 to 100°C in the case of polyester mainly containing ethylene terephthalate units. As already pointed out, when the ironing temperature is lower than the appropriate stretching temperature, it is more difficult to impart effective molecular orientation to the film layer itself than in the case of the present invention, and it is difficult to provide effective molecular orientation to the film layer itself, as well as to prevent the film layer from bonding with the steel sheet. Adhesion and corrosion resistance also become significantly inferior. Furthermore, even when this ironing process is performed at a temperature higher than the appropriate stretching temperature of the film, it is difficult to impart effective molecular orientation to the film layer itself, and the processability deteriorates due to crystallization, etc. Troubles such as breakage and peeling will occur. In the present invention, the molecular orientation imparted to the film layer is uniaxial molecular orientation in the ironing direction, and the degree of the orientation corresponds to the ironing rate. For example, when the film layer is made of polyethylene terephthalate, the degree of molecular orientation can be calculated using the following formula f c = 180-H/180 x 100, where H is the direction of the circumference of the can when the film is subjected to X-ray diffraction. and the degree of orientation (f c ) defined by is 25% or more, which represents the half-width obtained from the ring refraction intensity curve of crystal plane (100) interference obtained by irradiating X-rays parallel to the polyester coating surface. It is desirable that the According to the present invention, not only is it possible to easily obtain an internally coated drawn and ironed can with excellent film adhesion and corrosion resistance, but also rusting of the steel plate during and after forming is effectively prevented. There are many advantages, such as eliminating the trouble of treating the cans after molding to improve paint film adhesion or spray painting the inside of each can. The invention is illustrated by the following example. Example 1 One side (film-covered side) of a mild steel plate (thickness: 0.32 mm, temper: T-1) was coated with a chromium hydrated oxide layer (28 mg/m 2 as chromium) on the upper layer and a metallic chromium layer (157 mg on the lower layer). /m 2 ), and the other surface (non-film-coated surface) has a tin layer (1.5 g/m 2 ), a nickel layer (4.3 g/m 2 ), or an aluminum layer (2.5 g/m 2 ). 2 ) Three types of steel plates each having a plating layer of malleable metal were heated to a plate temperature of 310°C using high-frequency heating, and a biaxially stretched polyethylene terephthalate film (manufactured by Toray Industries, Ltd., Lumirror Type S), 50 μm) was immediately quenched by immersion in water to obtain the coated steel sheets shown in Figures 6-A, B, and C. The coated steel plate was drawn and ironed under the following forming conditions so that the inner surface of the can became the film-coated surface. As a result, as shown in Table 1, a drawn and ironed can with good coating adhesion was obtained. <Forming conditions> 1. Stretching temperature (resin temperature immediately before molding); 65°C 2. Blank diameter; 125 mm 3. Drawing conditions; 1st drawing ratio: 1.75, 2nd drawing ratio:
1.35 4 Ironing punch diameter: 52.65 mm 5 Total ironing rate: 68% Example 2 One side of the coated steel plate (the side not covered with the film) was plated with a tin layer or a nickel layer (tin: 0.8
-14.2 g/ m2 , Nickel: 2-18.3 g/ m2 ) The same coated steel sheet as in Example 1 was used, and drawing and ironing was performed under the forming conditions. As a result, as shown in Table 2, drawn and ironed cans with good coating adhesion were continuously obtained. Example 3 On one side (film-coated side) of the same mild steel plate as in Example 1, three levels of chromium hydrated oxide layers (8, 30, or 142 mg of chromium) were added to the top layer.
m 2 ), with a metallic chromium layer (150mg/
m 2 ), with a tin layer (0.5 g/m 2 ) below it, and a tin layer (1.8 g/m 2 ) on the other surface (non-film-coated surface). Using a steel plate,
A drawn and ironed can was obtained by drawing and ironing the coated steel plate under the same forming conditions as in Example 1. A storage test was conducted on the squeezed and ironed can under the following conditions. As a result, good results were obtained as shown in Table 3. <Storage test conditions> After degreasing and washing the squeezed iron can, dry it at 180℃ for 5 minutes, flange it, fill it with synthetic carbonated beverage (registered trademark: Sprite) to 90% of the can height, and apply epoxy phenol paint. Dry to a thickness of 10μ
Tighten the painted aluminum lid and leave it with the lid side down in an atmosphere at 50℃ for 2 months. Comparative Example 1 Using the same mild steel plate as in Example 1, one side (film-covered side) had the same plating layer as in Example 1, and the other side (non-film-coated side) had chromium hydrated oxide as an upper layer. (28 mg/m 2 as chromium), two types of steel plates with a plating layer of metallic chromium layer (157 mg/m 2 ) below, or a single metallic chromium layer (157 mg/m 2 ), and the same as Example 1. A mild steel plate is used, with a tin layer (1.5g/m 2 ) or a nickel layer (4.3g/m 2 ) on both sides.
m 2 ) or three types of steel plates having an aluminum layer (2.5 g/m 2 ), a total of five types of steel plates, and in the same manner as in Example 1, No. 6-D, E, F, G, A coated steel plate shown in H was obtained. The coated steel plate was drawn and ironed in the same manner as in Example 1. As a result, Table 1
As shown in Comparisons 1 to 5, it was impossible to form a can or the film adhesion was poor in all cases. Comparative Example 2 One side of the coated steel plate (the non-film coated side) is a tin layer (0.57 g/m 2 or 16.3 g/m 2 ) or a nickel layer (1.6 g/m 2 or 21.6 g/m 2 ). The drawing and ironing process was otherwise carried out under the same coated steel plate and forming conditions as in Example 2. As a result, as shown in Table 2, it was impossible to form cans in all cases, and the continuous productivity was extremely poor. Comparative Example 3 Drawn and ironed cans were obtained using the same coated steel sheets and forming conditions as in Example 3, except that the chromium hydrated oxide layer contained 5 mg/m 2 or 162 mg/m 2 of chromium. A storage test was conducted on the squeezed and ironed can in the same manner as in Example 3, and no satisfactory results were obtained in any case.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (注) クラツク発生はフランジ部の状態を肉眼観察
により評価した。
実施例 4 ポリエステル樹脂が表―4に示す樹脂である他
は実施例1の本発明1と同様の被覆鋼板、成形条
件にて絞りしごき加工を行い、実施例3と同様な
保存試験を行つた。その結果、表―4に示すよう
に、いずれも良好な結果が得られた。
[Table] (Note) Cracks were evaluated by visual observation of the condition of the flange.
Example 4 A coated steel plate was used in the same manner as in Invention 1 of Example 1, except that the polyester resin was the resin shown in Table 4. Drawing and ironing was performed under the forming conditions, and a storage test was conducted in the same manner as in Example 3. . As a result, as shown in Table 4, good results were obtained in all cases.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の被覆鋼板の一例の構成断面
図、第2図及び第3図は、本発明の被覆鋼板の他
の二例を示す構成断面図、第4―A図及び第4―
D図は加工前のポリエチレンテレフタレート被覆
鋼板の断面図、第4―B図及び第4―E図は夫々
第4―A図及び第4―D図の被覆鋼板を圧延処理
したものの断面図、第4―C図及び第4―F図は
夫々第4―A図及び第4―D図の被覆鋼板を罐胴
に絞りしごき加工したものの断面図、第5―A図
は剪断工程の説明図、第5―B図は絞り工程の説
明図、第5―C図は再絞り工程の説明図、第5―
D図はしごき工程の説明図、第6―A図、第6―
B図及び第6―C図は夫々実施例1における本発
明1、本発明2及び本発明3の被覆鋼板の構成断
面図、第6―D図、第6―E図、第6―F図、第
6―G図及び第6―H図は、比較例1における比
較1、比較2、比較3、比較4及び比較5の被覆
鋼板の構成断面図である。 引照数字はそれぞれ、1は被覆鋼板、2は鋼
板、3は熱可塑性樹脂層、4は鋼基質、5は展延
性金属のメツキ層、6は無機酸化物皮膜層、7は
金属メツキ層、8は接着剤層、9は無配向層、
9′は一軸或いは一軸一面配向層、10は二軸配
向層、11は絞りダイス、12はポンチ、13は
カツプ状成形物、14は再絞りダイス、15は再
絞りポンチ、16はカツプ状成形物、17はしご
きポンチ、18はしごきダイス、19は側壁部、
20はポリエチレンテレフタレート樹脂層、21
はクロム水和酸化物層、22は金属クロム層、2
3は軟鋼板、24はすず層、25はニツケル層、
26はアルミ層を示す。
FIG. 1 is a structural sectional view of one example of the coated steel sheet of the present invention, and FIGS. 2 and 3 are structural sectional views showing two other examples of the coated steel sheet of the present invention, and FIGS. 4-A and 4-
Figure D is a cross-sectional view of the polyethylene terephthalate-coated steel plate before processing, Figures 4-B and 4-E are cross-sectional views of the coated steel plate of Figures 4-A and 4-D after rolling treatment, respectively. Figures 4-C and 4-F are cross-sectional views of the coated steel plates shown in Figures 4-A and 4-D drawn and ironed into can bodies, respectively; Figure 5-A is an explanatory diagram of the shearing process; Figure 5-B is an explanatory diagram of the drawing process, Figure 5-C is an explanatory diagram of the re-drawing process, and Figure 5-C is an explanatory diagram of the re-drawing process.
Figure D: Explanatory diagram of the laddering process, Figure 6-A, Figure 6-
Figure B and Figure 6-C are structural sectional views of the coated steel plates of Invention 1, Invention 2, and Invention 3 in Example 1, Figure 6-D, Figure 6-E, and Figure 6-F, respectively. , 6-G, and 6-H are structural cross-sectional views of the coated steel plates of Comparative Example 1, Comparative 1, Comparative 2, Comparative 3, Comparative 4, and Comparative 5. The reference numbers are: 1 is a coated steel plate, 2 is a steel plate, 3 is a thermoplastic resin layer, 4 is a steel substrate, 5 is a malleable metal plating layer, 6 is an inorganic oxide film layer, 7 is a metal plating layer, 8 9 is an adhesive layer, 9 is a non-oriented layer,
9' is a uniaxial or uniaxial one-plane orientation layer, 10 is a biaxial orientation layer, 11 is a drawing die, 12 is a punch, 13 is a cup-shaped molded product, 14 is a re-drawing die, 15 is a re-drawing punch, and 16 is a cup-shaped molding. Object, 17 ladder punch, 18 ladder die, 19 side wall part,
20 is a polyethylene terephthalate resin layer, 21
is a chromium hydrated oxide layer, 22 is a metal chromium layer, 2
3 is a mild steel plate, 24 is a tin layer, 25 is a nickel layer,
26 indicates an aluminum layer.

Claims (1)

【特許請求の範囲】 1 絞りしごき罐としたとき内側となるべき最表
面に、配向可能な熱可塑性ポリエステル樹脂の被
覆層と該被覆層の下に密着下地として、6.5〜150
mg/m2(Cr換算)のクロム水和酸化物からなる
無機酸化物皮膜層を有し、且つ絞りしごき罐とし
たとき、外側となるべき面に0.7〜15g/m2のす
ず層、或いは1.8〜20g/m2のニツケルまたはア
ルミニウム層のいずれか一種あるいは二種の展延
性金属のメツキ層を有することを特徴とする絞り
しごき罐用被覆鋼板。 2 ポリエステル樹脂の一部を熱溶融して鋼板に
被覆してなる特許請求の範囲第1項記載の絞りし
ごき罐用被覆鋼板。
[Scope of Claims] 1. A coating layer of an orientable thermoplastic polyester resin on the outermost surface that should become the inner side when it is made into a drawing and ironing can, and a coating layer of 6.5 to 150
mg/m 2 (in terms of Cr) of an inorganic oxide film layer made of hydrated chromium oxide, and when it is made into a drawing and ironing can, a tin layer of 0.7 to 15 g/m 2 or A coated steel sheet for drawn and ironed cans, characterized in that it has a plating layer of 1.8 to 20 g/m 2 of nickel or aluminum or two types of malleable metal. 2. A coated steel plate for drawing and ironing cans according to claim 1, which is obtained by thermally melting a portion of polyester resin and coating the steel plate.
JP59024402A 1984-02-14 1984-02-14 Coated steel plate for drawing die can and drawing die can Granted JPS60168643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024402A JPS60168643A (en) 1984-02-14 1984-02-14 Coated steel plate for drawing die can and drawing die can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024402A JPS60168643A (en) 1984-02-14 1984-02-14 Coated steel plate for drawing die can and drawing die can

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1291238A Division JPH0332835A (en) 1989-11-10 1989-11-10 Drawn squeezed can

Publications (2)

Publication Number Publication Date
JPS60168643A JPS60168643A (en) 1985-09-02
JPH0225784B2 true JPH0225784B2 (en) 1990-06-05

Family

ID=12137167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024402A Granted JPS60168643A (en) 1984-02-14 1984-02-14 Coated steel plate for drawing die can and drawing die can

Country Status (1)

Country Link
JP (1) JPS60168643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110286U (en) * 1990-02-28 1991-11-12
US9212428B2 (en) 2010-06-29 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container and method of manufacturing the same
US9752222B2 (en) 2011-01-18 2017-09-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container having excellent organic film performance and process for producing the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356318A (en) * 1986-08-27 1988-03-10 Toyo Seikan Kaisha Ltd Manufacture of seamless can body
JPH01136738A (en) * 1987-11-25 1989-05-30 Nippon Steel Corp Laminated steel plate for can excellent in corrosion resistance
JPH07112724B2 (en) * 1987-12-01 1995-12-06 新日本製鐵株式会社 Composite steel sheet excellent in DI workability and method for producing the same
JPH085158B2 (en) * 1988-01-28 1996-01-24 新日本製鐵株式会社 Laminated steel sheet for cans with excellent workability and corrosion resistance
JPH085159B2 (en) * 1988-01-28 1996-01-24 新日本製鐵株式会社 Laminated steel sheet having a two-layer coating structure and method for producing the same
JPH01249331A (en) * 1988-03-31 1989-10-04 Toyo Kohan Co Ltd Manufacture of metallic sheet coated with polyester resin superior in processability
JP2515581B2 (en) * 1988-09-07 1996-07-10 東洋鋼鈑株式会社 Polyester resin coated metal plate for ironing can
JP2691756B2 (en) * 1988-12-07 1997-12-17 新日本製鐵株式会社 Method for producing resin-coated steel sheet with excellent resistance to cresting and ironing
JP2790647B2 (en) * 1989-04-05 1998-08-27 新日本製鐵株式会社 Composite coated steel sheet excellent in DI formability and method for producing the same
JPH07106394B2 (en) * 1989-05-17 1995-11-15 東洋製罐株式会社 Squeeze ironing can manufacturing method
GB2234704B (en) * 1989-07-28 1993-04-14 Toyo Kohan Co Ltd Method for producing steel sheet laminated with a polyester resin film
JPH06102464B2 (en) * 1989-09-11 1994-12-14 東洋製罐株式会社 Squeezing or squeezing from laminated material-ironing can and its manufacturing method
EP1134305A4 (en) * 1999-07-08 2008-07-23 Nippon Steel Corp Steel plate for laminated container, and method for producing can using the same and can
JP4628047B2 (en) * 2004-09-02 2011-02-09 東洋製罐株式会社 Method of squeezing and ironing resin-coated metal plate, and resin-coated squeezing and ironing can using the same
JP5672775B2 (en) 2009-06-04 2015-02-18 新日鐵住金株式会社 Steel plate for containers excellent in organic film performance and method for producing the same
EP2551377B1 (en) 2010-03-23 2017-09-13 Nippon Steel & Sumitomo Metal Corporation Method for producing a steel sheet for a container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582797A (en) * 1978-12-14 1980-06-21 Nippon Steel Corp Preparation of high anticorrosive d and i can

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582797A (en) * 1978-12-14 1980-06-21 Nippon Steel Corp Preparation of high anticorrosive d and i can

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110286U (en) * 1990-02-28 1991-11-12
US9212428B2 (en) 2010-06-29 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container and method of manufacturing the same
US9752222B2 (en) 2011-01-18 2017-09-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container having excellent organic film performance and process for producing the same

Also Published As

Publication number Publication date
JPS60168643A (en) 1985-09-02

Similar Documents

Publication Publication Date Title
JPH0225784B2 (en)
JPH0755552B2 (en) Deep drawing can manufacturing method
JPH085158B2 (en) Laminated steel sheet for cans with excellent workability and corrosion resistance
JPS5882717A (en) Manufacture of polyester resin film-coated metal plate
JPH0333506B2 (en)
JPH0155055B2 (en)
JP5920279B2 (en) LAMINATED METAL PLATE, METHOD FOR PRODUCING LAMINATED METAL PLATE, AND FOOD CANNED CONTAINER
JPS5825591B2 (en) Hifukukinzokuseikeihin no seizouhouhou
JP2803854B2 (en) Composite steel sheet excellent in formability of drawn and ironed cans
JPH0379252B2 (en)
JPH0598465A (en) Manufacture of thinned resin coated tinned steel sheet for deep drawing excellent in working corrosion resistance
JPH0631362A (en) Manufacture of multi-drawing can made of laminated steel sheet with high adhesion
JPH0387249A (en) Polyester resin coated metal plate excellent in processability and production thereof
JP2803837B2 (en) Manufacturing method of polyester resin film laminated steel sheet
JPH04118121A (en) Manufacture of coated seamless can
JP3858140B2 (en) Resin film for laminating metal plate, laminated metal plate and method for producing the same
JP4278272B2 (en) Film-coated two-piece can
JPH09287044A (en) Resin coated aluminum alloy sheet for drawn and ironed can
JPH0398844A (en) Contracted or contracted-stroked can of laminated material and manufacture thereof
JPH03212433A (en) Production of metal plate coated with polyester resin having excellent heat resistance
JPH01180336A (en) Preparation of composite steel excellent in di moldability
JPH09287045A (en) Resin coated aluminum alloy sheet for drawn and ironed can
GB2328179A (en) Method of manufacturing resin coated aluminum alloy plates for drawn and ironed cans
JPH02169246A (en) Composite steel plate for can and processed can
JP3858139B2 (en) Resin film for laminating metal plate, laminated metal plate and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term