JPH01289087A - Extreme infrared-ray generator - Google Patents

Extreme infrared-ray generator

Info

Publication number
JPH01289087A
JPH01289087A JP11768188A JP11768188A JPH01289087A JP H01289087 A JPH01289087 A JP H01289087A JP 11768188 A JP11768188 A JP 11768188A JP 11768188 A JP11768188 A JP 11768188A JP H01289087 A JPH01289087 A JP H01289087A
Authority
JP
Japan
Prior art keywords
heating element
heating
far
ray generator
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11768188A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ogawa
博靖 小川
Kazuhiro Sahashi
佐橋 和廣
Shigehiko Harada
茂彦 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP11768188A priority Critical patent/JPH01289087A/en
Publication of JPH01289087A publication Critical patent/JPH01289087A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an extreme infrared-ray generator of an excellent generation efficiency which can heat an inside substance evenly by composing the generator in a cylindrical or box form with the wall surface of a plane-form heater whose heating element is made of a carbon fiber. CONSTITUTION:An extreme infrared-ray generator main body 1 furnishes a coverage layer 2 at the outer surface, and a heating element 3 and an electric insulator 4 at the inside. From the coverage layer 2, electrodes 5 are picked up, a current is applied between the electrodes 5 to heat the heating element 3, the hollow 6 in the cylinder is made in a passage of a substance to heat, and a heating process can be carried out continuously. In a continuously drying device for fiber using such a generator, for example, a fiber 7 given a process agent is heated by extreme infrared rays from the generator 1, and since the heating is a direct heating without using a medium such as the air, the heating efficiency is high, and the heating process can be carried out in a short time.

Description

【発明の詳細な説明】 〔技術の利用分野〕 本発明は、炭素IpHafiを発熱素子とした面状発熱
体を用いた筒状又は箱状の遠赤外線発生装置に関するも
のである。本発明の遠赤外線発生装置は、加熱、乾燥、
保温等に利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of Technology] The present invention relates to a cylindrical or box-shaped far-infrared generating device using a planar heating element using carbon IpHafi as a heating element. The far infrared ray generator of the present invention can be heated, dried,
Can be used for heat retention, etc.

(従来技術及び問題点) 従来、遠赤外線発生用発熱素子として、セラミックバイ
ブの中に電熱線を埋設した棒状の発熱体が知られている
。このような棒状の発熱体を備えた遠赤外線tiRは、
発生した遠赤外線の利用効率が低いという問題点があっ
た。また、このものは、寸法的な制約があり、alli
でもあった。
(Prior Art and Problems) Conventionally, a rod-shaped heating element in which a heating wire is embedded in a ceramic vibrator is known as a heating element for generating far infrared rays. Far-infrared tiR equipped with such a rod-shaped heating element is
There was a problem in that the utilization efficiency of the generated far infrared rays was low. In addition, this item has dimensional restrictions, and alli
But there was.

〔発明の目的及び構成〕[Object and structure of the invention]

本発明は、上記したような問題点を解決した遠赤外線発
生装置を提供しようとするものである。
The present invention aims to provide a far-infrared ray generator that solves the above-mentioned problems.

本発明は下記のとおりである。The present invention is as follows.

(1)炭素繊維を発熱素子とした面状発熱体を壁面とし
た筒状又は箱状の遠赤外線発生装置。
(1) A cylindrical or box-shaped far-infrared generating device whose wall is a planar heating element made of carbon fiber as a heating element.

(2)発熱素子が炭素繊維の短繊維を抄紙した炭素繊維
紙からなる請求項(1)記載の遠赤外線発生装置。
(2) The far-infrared ray generator according to claim (1), wherein the heating element is made of carbon fiber paper made from short carbon fibers.

〈3〉その内表面がガラス繊維強化プラスチックス又は
アルミナ繊維強化プラスチックスからなる電気絶縁層で
覆われた請求項(1)記載の遠赤外線発生装置!。
<3> The far-infrared generating device according to claim (1), the inner surface of which is covered with an electrically insulating layer made of glass fiber reinforced plastics or alumina fiber reinforced plastics! .

本発明において、筒状とは、円形又は多角形の筒で、か
つ中央に通孔を有する形状をいう。
In the present invention, the term cylindrical refers to a circular or polygonal tube having a through hole in the center.

箱状とは、上記筒状の形状で、さらに底面を有する形状
をいう。
The box-like shape refers to the above-mentioned cylindrical shape, which further has a bottom surface.

本発明の装置は、炭*m維を発熱素子とした優れた遠赤
外線発生効率発熱面で壁面を構成し、また筒状又は筒状
であるため、その中は周囲から遠赤外線が放射されてお
り、遠赤外線の利用効率が高い。
The device of the present invention has a wall made of a heating surface with excellent far-infrared generation efficiency using carbon fiber as a heating element, and is cylindrical or cylindrical, so that far-infrared rays are emitted from the surroundings inside the device. It has high efficiency in using far infrared rays.

このものは、一般工業において様々な加熱、乾燥、保温
工業に利用できるが、例えば、繊維工業における糸の糊
付乾燥工程や、電気部品製造工業におけるコンデンサ塗
装乾燥工程等において、遠赤外線のふく射で加熱できる
ので、従来の熱風加熱方式と比べ、加熱効率が優れてお
り、短時間で処理が可能であり、製品の内部からも加熱
されるので仕上り状態が良好である。
This product can be used in various heating, drying, and heat-retaining industries in the general industry, but for example, it is used in the sizing and drying process of yarn in the textile industry, the capacitor painting and drying process in the electrical parts manufacturing industry, etc. Since it can be heated, it has superior heating efficiency compared to conventional hot air heating methods, can be processed in a short time, and can be heated from inside the product, resulting in a good finished product.

本発明において炭素繊維は、アクリロニトリル系繊維、
ビツヂ11雑、レーヨン繊維等を原料として既知の方法
で得られるところの、通常の炭素繊維の意味で用いられ
る。
In the present invention, carbon fibers include acrylonitrile fibers,
It is used in the sense of ordinary carbon fiber, which is obtained by known methods using Bituji 11 miscellaneous fibers, rayon fibers, etc. as raw materials.

特に本発明においては、炭素含有量が15〜91重量%
の炭素繊維が好適である。炭素含有mが75重麿%より
低いと遠赤外線の発生効率が劣り、97重量%より高い
と炭素繊維の比抵抗が低くなり発熱体として有効に働く
ことが困難となる。
In particular, in the present invention, the carbon content is 15 to 91% by weight.
carbon fibers are preferred. If the carbon content m is lower than 75% by weight, the far infrared ray generation efficiency will be poor, and if it is higher than 97% by weight, the specific resistance of the carbon fiber will become low and it will be difficult to work effectively as a heating element.

このような炭素繊維は、特に1〜50IllIIlのも
のを紙状にした発熱素子として使用するのがよい。
Such carbon fibers, especially those having a particle size of 1 to 50 IllIIl, are preferably used as paper-like heating elements.

発熱素子の面積対抗値は、使用温度、寸法形状により適
宜選択されるが、実用上1へ1ooooΩ/SQのもの
が好ましい。この範囲の面積抵抗の紙状の発熱素子を得
るために、前記の炭素繊維と他の繊維とを混抄する場合
もある。
The area ratio of the heating element is appropriately selected depending on the operating temperature and size and shape, but it is preferably 1 to 10ooΩ/SQ for practical purposes. In order to obtain a paper-like heating element having a sheet resistance within this range, the above-mentioned carbon fibers and other fibers may be mixed.

a抄する他繊維は、その用途に応じて選択されるが、1
00℃未満の4麿で使用される場合には、木材バルブ、
レーヨン糸、合成繊維等の使用も可能である。100℃
を超える高温域で使用する場合は、ガラス繊維等の非電
気伝導性の無myanや、アラミド繊維等の耐熱繊維を
用いるのが好ましい。
Other fibers to be papered are selected depending on their use, but 1
When used at temperatures below 00℃, wood valves,
It is also possible to use rayon yarn, synthetic fibers, etc. 100℃
When used in a high temperature range exceeding 1, it is preferable to use non-electrically conductive fibers such as glass fibers or heat-resistant fibers such as aramid fibers.

発熱体は、通常、発熱素子の両端に銅箔、銀ペースト等
の電極材を添看させ、ポリエステル樹脂、エポキシ樹脂
、フェノール樹脂、ポリイミド樹脂等の熱硬化性樹脂を
含浸させたものを成形型に張付け、加熱硬化させること
により成形される。
A heating element is usually made by attaching electrode material such as copper foil or silver paste to both ends of the heating element and impregnating it with thermosetting resin such as polyester resin, epoxy resin, phenol resin, or polyimide resin. It is molded by pasting it on the paper and heating it to harden it.

また、熱可塑性樹脂のフィルム、繊維や粉末を発熱素子
に熱融着させた柔軟性のあるシートを成形型に巻き付(
プ、加熱することにより賦形してもよい。
In addition, a flexible sheet made by heat-sealing thermoplastic resin film, fiber, or powder to a heating element is wrapped around a mold (
It may also be shaped by heating.

発熱体の表面は、安全性の観点から電気絶縁性を付与す
る必要があるが、少なくとも発熱体の内側の電気絶縁層
が、本発明の発熱素子の有する遠赤外線発生効率を阻害
するものであってはならない。本発明において、ガラス
JIII!又はアルミナW+HからなるFRPを絶縁層
に使用することにより、発熱素子の有する遠赤外線発生
効率を損なうことがなく、極めて効率の高い加熱装置が
19られる。
The surface of the heating element needs to be electrically insulated from the viewpoint of safety, but at least the electrically insulating layer inside the heating element must not impede the far-infrared generation efficiency of the heating element of the present invention. must not. In the present invention, Glass JIII! Alternatively, by using FRP made of alumina W+H for the insulating layer, an extremely highly efficient heating device can be obtained without impairing the far-infrared ray generation efficiency of the heating element.

これら絶縁層は、通常、発熱素子と一体にて成形される
が、成形した発熱体に張り合せてもよい。
These insulating layers are usually molded integrally with the heating element, but may also be laminated to the molded heating element.

本発明の遠赤外線発生装置の成形に際しては、従来知ら
れた成形方法が採用される。例えば、繊維長1〜50m
−の炭素繊維5〜80重量%とクラフトバルブ、セルロ
ースバルブ、セルロース系繊維、ガラス繊維、又はアル
ミナ繊維等との混抄紙に未硬化の熱硬化性樹脂、又は熱
可塑性樹脂を含浸させたプリプレグを用いる。熱硬化性
樹脂としては、例えばエポキシ樹脂、不飽和ポリエステ
ル樹脂、ポリイミド樹脂、ビニルエステル樹脂、フェノ
ール樹脂が採用される。熱可塑性樹脂としては、ポリア
ミド樹脂、ポリエステル樹脂に代表される汎用エンプラ
樹脂や、ポリフェニレンスルフィド、ポリスルフォン、
ポリイミド、ポリエーテルエーテルケトン(PEEK)
に代表される耐熱性の熱可塑性樹脂等が採用される。
When molding the far-infrared ray generator of the present invention, a conventionally known molding method is employed. For example, fiber length 1-50m
- A prepreg made by impregnating uncured thermosetting resin or thermoplastic resin into a mixed paper of 5 to 80% by weight of carbon fiber and kraft valve, cellulose valve, cellulose fiber, glass fiber, or alumina fiber, etc. use As the thermosetting resin, for example, epoxy resin, unsaturated polyester resin, polyimide resin, vinyl ester resin, and phenol resin are employed. Thermoplastic resins include general-purpose engineering plastic resins such as polyamide resin and polyester resin, polyphenylene sulfide, polysulfone,
Polyimide, polyetheretherketone (PEEK)
Heat-resistant thermoplastic resins such as typified by are used.

前記のプリプレグの製造は、樹脂溶液を含浸させる溶剤
法、樹脂を溶融させて含浸させるホットメルト法等既知
の方法が採用される。また、炭素繊維と混抄する繊維が
、例えばポリエチレン、ポリプロピレン、ナイロン、ポ
リエステル、PEEKの繊維のように熱溶融可能な有機
繊維の場合、有機IIN自体を溶融させてプリプレグに
したものを用いてもよい。
For manufacturing the prepreg, known methods such as a solvent method in which a resin solution is impregnated, a hot melt method in which a resin is melted and impregnated, and the like are employed. Furthermore, if the fiber to be mixed with the carbon fiber is an organic fiber that can be thermally melted, such as polyethylene, polypropylene, nylon, polyester, or PEEK fiber, a prepreg obtained by melting the organic IIN itself may be used. .

これらの樹脂を含浸したプリプレグに電極材を配し、必
要により絶縁層、ガラス繊維プリプレグ等の被覆層を配
し、所望形状の筒状又は箱状に成形する。
An electrode material is arranged on a prepreg impregnated with these resins, an insulating layer, a covering layer such as a glass fiber prepreg is arranged as necessary, and the prepreg is formed into a desired shape of a cylinder or a box.

本発明を図面によって説明する。The present invention will be explained with reference to the drawings.

第1図は本発明の遠赤外線発生装置の1態様である筒状
の遠赤外線発生装置の斜視図を示しめたものである。
FIG. 1 shows a perspective view of a cylindrical far-infrared ray generator, which is one embodiment of the far-infrared ray generator of the present invention.

第2図は、第1図装置の断面図を示したものである。第
1図及び第2図においては、1は遠赤外線発生装置本体
、2は被覆層、3は発熱素子、4は電気絶縁層、5は電
極をそれぞれ示したものである。電極5には電流を通し
、発熱素子3を発熱させる。筒の中孔部6を被加熱体の
通路とし、連続的に加熱処理をすることができる。
FIG. 2 shows a sectional view of the device shown in FIG. 1. In FIGS. 1 and 2, 1 is a far-infrared generator body, 2 is a coating layer, 3 is a heating element, 4 is an electrical insulating layer, and 5 is an electrode. A current is passed through the electrode 5 to cause the heating element 3 to generate heat. The inner hole 6 of the cylinder is used as a passage for the object to be heated, and heat treatment can be carried out continuously.

第3図は、この遠赤外線発生装置の使用した利用例(繊
維の連続乾燥処理装置)を示した概念図である。第3図
においては、1は遠赤外線発生装置、1は処理剤を付与
された繊維を示す。
FIG. 3 is a conceptual diagram showing an example of the use of this far-infrared ray generating device (a continuous drying processing device for fibers). In FIG. 3, 1 indicates a far-infrared ray generator, and 1 indicates a fiber to which a processing agent has been applied.

このような装置においては、繊維は遠赤外線発生装置中
央の通路を通る間に周囲から加熱される。加熱は遠赤外
線によって行われるため、空気等の媒介を必要とせず直
接加熱され、熱効率が高く、短時間に処理を行うことが
できる。
In such devices, the fibers are heated from the surroundings while passing through a central path of a far-infrared generator. Since heating is performed using far infrared rays, direct heating is performed without the need for a medium such as air, and the thermal efficiency is high, allowing processing to be carried out in a short time.

第4図は、多角筒状(4角形、箱状)の遠赤外線発生装
置の斜視図を示したものである。第4図における5は第
2図と同じ意味である。この第3図に示した装置は静置
形加熱に適する。
FIG. 4 shows a perspective view of a polygonal cylindrical (quadrilateral, box-shaped) far-infrared ray generator. 5 in FIG. 4 has the same meaning as in FIG. 2. The apparatus shown in FIG. 3 is suitable for stationary heating.

第5図は、別の形の筒状遠赤外線発生装置の斜視図を示
したものである。
FIG. 5 shows a perspective view of another type of cylindrical far-infrared ray generator.

(発明の効果〕 本発明に係る遠赤外線発生装置は、炭素繊維を発熱素子
としており、遠赤外線の発生効率に優れ、また形状とし
て筒状又は箱状であるので、内部にある被加熱体を均一
に且つ効率よく加熱できる。また、遠赤外線加熱の特徴
として、被加熱体の表面と内部の熱伝達時間の差が少な
いので、製品の仕上りが均一である。さらに、通常の熱
硬化性樹脂を使用したFRP成形法が利用できるので、
形状的にも寸法的にも自由度が高く、広範囲な用途に対
応が可能である。加えて、従来の空気の熱伝導による加
熱方式と比べ、本発明の装置では被加熱体をふく射によ
り加熱するので空気の温度上昇が少なくエネルギー効率
が高く、空気の対流による製品の汚染防止に効果的であ
る。
(Effects of the Invention) The far-infrared ray generator according to the present invention uses carbon fiber as a heating element, has excellent far-infrared ray generation efficiency, and has a cylindrical or box-like shape, so that it can heat the object to be heated inside. It can be heated evenly and efficiently.Also, as a feature of far infrared heating, there is little difference in heat transfer time between the surface and the inside of the heated object, so the finished product is uniform.Furthermore, it can be heated evenly and efficiently. Since the FRP molding method using
It has a high degree of freedom in terms of shape and size, and can be used in a wide range of applications. In addition, compared to the conventional heating method that uses heat conduction in air, the device of the present invention heats the heated object by radiation, resulting in less air temperature rise and higher energy efficiency, and is effective in preventing contamination of products due to air convection. It is true.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明遠赤外線発生装置の斜視図を示したも
のである。第2図は、第1図の本発明遠赤外線発生装置
の断面図を示づ。第3図は、第1図に示した装置の利用
例を示した概念図である。第4図は、箱状の遠赤外線発
生装置の斜視図を示しものである。第5図は、別の形の
筒状遠赤外線発生装置の斜視図を示したものである。 各図において、1〜7は下記の意味である。 1:遠赤外線発生装置、2:被覆層、3:発熱素子、4
:電気絶縁層、5:電極、6:中孔部、1:繊維 特許出願人  東邦レーヨ′/樟六会社代理人弁理士 
  土 居 三 部 第4図 第5図
FIG. 1 shows a perspective view of the far-infrared ray generator of the present invention. FIG. 2 shows a cross-sectional view of the far-infrared ray generator of the present invention shown in FIG. FIG. 3 is a conceptual diagram showing an example of the use of the apparatus shown in FIG. FIG. 4 shows a perspective view of a box-shaped far-infrared ray generator. FIG. 5 shows a perspective view of another type of cylindrical far-infrared ray generator. In each figure, 1 to 7 have the following meanings. 1: far-infrared generator, 2: coating layer, 3: heating element, 4
: Electrical insulation layer, 5: Electrode, 6: Hole, 1: Textile patent applicant Toho Rayo'/Shoroku Company representative patent attorney
Doi Part 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)炭素繊維を発熱素子とした面状発熱体を壁面とし
た筒状又は箱状の遠赤外線発生装置。
(1) A cylindrical or box-shaped far-infrared generating device whose wall is a planar heating element made of carbon fiber as a heating element.
(2)発熱素子が炭素繊維の短繊維を抄紙した炭素繊維
紙からなる請求項(1)記載の遠赤外線発生装置。
(2) The far-infrared ray generator according to claim (1), wherein the heating element is made of carbon fiber paper made from short carbon fibers.
(3)その内表面がガラス繊維強化プラスチックス又は
アルミナ繊維強化プラスチックスからなる電気絶縁層で
覆われた請求項(1)記載の遠赤外線発生装置。
(3) The far-infrared generating device according to claim (1), wherein the inner surface thereof is covered with an electrically insulating layer made of glass fiber reinforced plastics or alumina fiber reinforced plastics.
JP11768188A 1988-05-14 1988-05-14 Extreme infrared-ray generator Pending JPH01289087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11768188A JPH01289087A (en) 1988-05-14 1988-05-14 Extreme infrared-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11768188A JPH01289087A (en) 1988-05-14 1988-05-14 Extreme infrared-ray generator

Publications (1)

Publication Number Publication Date
JPH01289087A true JPH01289087A (en) 1989-11-21

Family

ID=14717654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11768188A Pending JPH01289087A (en) 1988-05-14 1988-05-14 Extreme infrared-ray generator

Country Status (1)

Country Link
JP (1) JPH01289087A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008655A1 (en) * 1989-11-28 1991-06-13 Mita Industrial Co., Ltd. Heat-treatment device and method of drying functional thin film using said device
JPH06347051A (en) * 1993-06-10 1994-12-20 Dairin Shoji:Kk Indoor heating method and indoor heating panel device
JPH0718107U (en) * 1993-08-11 1995-03-31 株式会社オーケープリント microwave
JP2008305672A (en) * 2007-06-07 2008-12-18 Alpha Oikos:Kk Plate heater
JP2010010133A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heater
JP2010182651A (en) * 2009-02-09 2010-08-19 Mitomi:Kk Heater material and heater material manufacturing method
US20140231409A1 (en) * 2007-10-10 2014-08-21 Hon Hai Precision Industry Co., Ltd. Method for heating object using sheet-shaped heat and light source
CN105246179A (en) * 2015-10-22 2016-01-13 山东大学 Carbon fiber heating body with adjustable flexibility and emission rate and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772291A (en) * 1980-10-21 1982-05-06 Riyouyuu Kogyo Kk Method of producing cylindrical heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772291A (en) * 1980-10-21 1982-05-06 Riyouyuu Kogyo Kk Method of producing cylindrical heater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008655A1 (en) * 1989-11-28 1991-06-13 Mita Industrial Co., Ltd. Heat-treatment device and method of drying functional thin film using said device
JPH06347051A (en) * 1993-06-10 1994-12-20 Dairin Shoji:Kk Indoor heating method and indoor heating panel device
JPH0718107U (en) * 1993-08-11 1995-03-31 株式会社オーケープリント microwave
JP2008305672A (en) * 2007-06-07 2008-12-18 Alpha Oikos:Kk Plate heater
US20140231409A1 (en) * 2007-10-10 2014-08-21 Hon Hai Precision Industry Co., Ltd. Method for heating object using sheet-shaped heat and light source
US9215759B2 (en) * 2007-10-10 2015-12-15 Tsinghua University Method for heating object using sheet-shaped heat and light source
JP2010010133A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heater
JP2010182651A (en) * 2009-02-09 2010-08-19 Mitomi:Kk Heater material and heater material manufacturing method
CN105246179A (en) * 2015-10-22 2016-01-13 山东大学 Carbon fiber heating body with adjustable flexibility and emission rate and preparation method thereof
CN105246179B (en) * 2015-10-22 2018-05-08 山东大学 A kind of flexible and adjustable carbon fiber exothermic part of emissivity and preparation method thereof

Similar Documents

Publication Publication Date Title
US11358310B2 (en) Method and device for producing a particle foam part
US10798783B2 (en) Additively manufactured composite heater
US5483043A (en) Induction heating of polymer matrix composites in a mold press
US2938992A (en) Heaters using conductive woven tapes
US6519835B1 (en) Method of formable thermoplastic laminate heated element assembly
US20040055699A1 (en) Method for accelerated bondline curing
JPH01289087A (en) Extreme infrared-ray generator
US4063069A (en) Electrically heatable floor carpet
US20020043525A1 (en) Formable thermoplastic laminate heating tray assembly suitable for heating frozen food
US3395058A (en) Encapsulation method
EP0207938B1 (en) Method and apparatus for producing fiber-reinforced plastics bodies
CA2740745A1 (en) Method for producing windings for a dry-type transformer
US8968835B2 (en) Method for heating a fiber-reinforced polymer article
US20180104891A1 (en) Fused deposition modeling process and apparatus
US3846204A (en) Heating methods
WO2002080619A1 (en) Formable thermoplastic laminate heating assembly useful in heating cheese and hot fudge
EP3460810B1 (en) Advanced high voltage capacitance graded bushing
CN108140453A (en) The method of electric conductor that electric conductor component and production are electrically insulated
RU2094957C1 (en) Multiple-layer heater
KR20190086616A (en) Manufacturing method of carbon paper type heating element
KR102111965B1 (en) Heating textiles
JPS6248352B2 (en)
JPH03177696A (en) Heated transfer pipe unit
JPS6367121A (en) Compression molding equipment
JPS61160229A (en) Welding process of conductive rubber plastic layer