JPH0128715Y2 - - Google Patents

Info

Publication number
JPH0128715Y2
JPH0128715Y2 JP1982134052U JP13405282U JPH0128715Y2 JP H0128715 Y2 JPH0128715 Y2 JP H0128715Y2 JP 1982134052 U JP1982134052 U JP 1982134052U JP 13405282 U JP13405282 U JP 13405282U JP H0128715 Y2 JPH0128715 Y2 JP H0128715Y2
Authority
JP
Japan
Prior art keywords
conductive
fibers
synthetic resin
sample
layer made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982134052U
Other languages
Japanese (ja)
Other versions
JPS5937792U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13405282U priority Critical patent/JPS5937792U/en
Publication of JPS5937792U publication Critical patent/JPS5937792U/en
Application granted granted Critical
Publication of JPH0128715Y2 publication Critical patent/JPH0128715Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

最近、世界的なコンピユーター、事務機、音響
機器、家電製品などの普及に伴い電子機器それ自
体の誤動作及び発信ノイズにより発生する電磁波
を遮蔽する電磁波シールド(Electro−Magnetic
Interference Shielding)の提供が要望されてい
る。発生した電磁波を遮蔽するためには、これら
機器をシールドしなければならず、アメリカ、西
ドイツなどで10KHz以上の周波数帯の電磁波ノイ
ズを遮蔽することが、義務づけられている。さら
にアメリカUL規格では、プラスチツク成形体表
面にコーテングした破片が機器の使用中に剥がれ
落ちて高電圧回路と接触短絡するなどして機器の
破損、感電または火災を引き起こす原因となるの
を防ぐため、安全面からコーテング材の密着強度
を規格化している。 本考案はこれら規制に適合する新規な電磁波遮
蔽シートに関するものである。 従来、電磁波遮蔽シートの製造法としては、亜
鉛溶射や導電性塗料などの表面コーテング法、プ
ラスチツクの中に導電性フイラーを添加する2つ
の方法がとられている。 表面コーテング法は、先づ成形を行ない、次に
表面処理を行なつた後、銅、ニツケル、クロムな
どのプラスチツクメツキや真空蒸着、または銀、
ニツケル、銅、グラフアイトなどの導電性粒子塗
料の塗布あるいはアルミニウムや亜鉛の溶射など
のコーテイングを行なうため、工業生産が困難で
あり、長時間使用の際にはプラスチツクと金属の
剥離による障害などの欠点がある。 金属粉やカーボン粉、金属フレークあるいは金
属繊維、炭素繊維やメタライズドガラス繊維など
の導電性フイラーをプラスチツクへ添加したもの
は、フイラーの分布の均一性を保つための品質管
理上の問題に加え、フイラーの添加量が少ないと
充分な品質が得られず、多量になるとプラスチツ
クの物性を損うなどのほか該成形品表面に導電性
フイラーが露出して感電するなどの欠点を有して
いる。 一方最近の電子機器の発達は、電磁波遮蔽に関
し、上記各種規制に示されるようなシールド効果
や複合添加導電材料の密着強度や剥離性などにつ
いて従来以上の性能が求められ、新規な電磁波遮
蔽シートの提供が強く要望せられていた。 本考案は上記要望に答えた新しい電磁波遮蔽シ
ートを提供するものである。 以下本考案を図面につき説明する。 第1図は本考案に係る電磁波遮蔽シートの断面
図を示す。図において1は導電性粉体が大部分を
占める中心導電層を示す。2は導電性繊維と合成
樹脂から成る導電層を示す。3は合成樹脂よりな
る外側絶縁層を示す。 図に示すように、本考案の構成の特色は導電層
として中心層とその周辺層との二層があることで
あり、合成樹脂が濃度の差こそあれ、連続相を形
成していることにある。またこの様な特殊な構成
が、極めて簡単な操作により、容易に得られるこ
との知見にもとづき本考案に至つたものである。 すなわち本構成を得るには、炭素繊維、金属繊
維またはメタライズド繊維などの導電性繊維に、
カーボンブラツク・黒鉛粉または金属粉などの導
電性粉体を、該粉体懸濁樹脂液浴の中に浸漬する
か、該懸濁液を刷毛塗りするか、またはスプレー
などの方法で付着せしめ、次いで電気絶縁性の合
成樹脂シートまたはこれら合成樹脂とガラス繊
維・ポリアラミド繊維・合成繊維などの電気絶縁
性繊維との複合材シートの間に挟み、加熱プレス
することにより容易に得られるものである。加熱
プレス温度は合成樹脂の融点以上の温度である。
加熱プレスを行うことにより、合成樹脂が導電性
繊維層に浸透するにつれて導電性繊維に付着した
導電性粉体は、溶融樹脂に押し流されて中心部に
密に集中して第1の中心導電層を形成し、導電性
繊維はその両側に並んで第2の導電層を形成し、
その外側に合成樹脂層が外側絶縁層として形成さ
れる。また合成樹脂の溶融により導電性粉体およ
び導電性繊維は密に固定されることになる。 本考案は図のような構成を示すために、表面処
理法の欠点である剥離や損傷による欠陥の生ずる
懼れは全くなく、また多量の導電性フイラーの混
入による価格上昇、品質低下のほか、導電性フイ
ラーの表面露出などの欠点をも完全に解決したも
のであり、その効果は極めて大きなものであつ
た。すなわち遮蔽効果を示す尺度としての体積固
有抵抗は10-1Ω−cmが容易に得られ、遮蔽効果も
従来品に比し改善は著るしいものが示された。 以下実施例につき説明する。 導電性繊維として、平均径15μm、平均長さ25
mmのピツチ系炭素短繊維(1000℃焼成品)を、触
媒および硬化剤を添加しないエポキシ樹脂をバイ
ンダーとしてマツト状に成形した炭素繊維目付量
50g/m2の炭素繊維ベールマツト(以下VE−50
と略記する)16重量部、導電性粉体として藤倉化
成(株)製ニツケル系導電性塗料(商品名ドータイ
ト、品番FN−101)40重量部をベールマツトの
片面に刷毛塗り付着せしめ、乾燥した後、2枚で
44重量部となるポリプロピレンシート(厚さ各
0.2mm)の2枚の間に挟み、200〜230℃で加熱プ
レスした。得られたシートの断面は第1図のよう
な本考案構成を明らかに示した。かくして得られ
たシートは体積固有抵抗値が1.4×10-1Ω−cmであ
つた。この数字は第1表に示すように、従来の導
電性プラスチツクスとして一般的な本実施例に用
いたVE−50の基材と同じ材質のピツチ系炭素短
繊維(呉羽化学(株)製、平均繊維径15μm、平均繊
維長0.7mm、品番M−107t)と、導電性粉体とし
て表面を特殊処理したカーボンブラツク(ライオ
ン社製、商品名ケツチエンブラツクEC)とを、
フイラーとして等重量、合成樹脂として本実施例
と同じポリプロピレンを混合した混合物全体100
重量部に対して各10重量部づつを添加して、射出
成型により得られた導電性シートに比し1/100
の抵抗値であつた。 因みに本実施例のベールマツト(VE−50)と
藤倉化成(株)製カーボン系導電性塗料(商品名ドー
タイト、品番XC−12)とを各10重量部付着せし
め、乾燥した後、80重量部のポリプロピレンシー
ト(厚さ0.2mm)の2枚の間に挟み、200〜230℃
で加熱プレスして得られたシートの導電層は体積
固有(電気)抵抗値が1.0Ω−cmを示し、上記従
来の射出成形品の1/14の値であつた。 なお、本考案での体積固有抵抗の測定は日本ゴ
ム協会標準規格SRIS2301−1969に準じて、シー
ト状試料の両端面に導電性塗料を塗り、両端面間
の電気抵抗を測定し、次式を用いて算出する方法
を用いた。 ρv=R・w・t/ こゝにρvは体積固有抵抗 (Ω−cm) R は試料の両端面間の抵抗 ( Ω ) は試料の両端面間の長さ ( cm ) w は試料端面の幅 ( cm ) t は試料導電層端面の厚さ ( cm ) である。
Recently, with the spread of computers, office machines, audio equipment, home appliances, etc. around the world, electromagnetic shielding (electromagnetic shielding), which blocks electromagnetic waves generated by malfunctions of electronic devices themselves and transmitted noise, has become popular.
Interference Shielding) is requested. In order to shield the generated electromagnetic waves, these devices must be shielded, and in countries such as the United States and West Germany, it is mandatory to shield electromagnetic noise in the frequency band of 10KHz or higher. Furthermore, according to the American UL standard, in order to prevent pieces of the coating on the surface of plastic molded objects from peeling off during use of the equipment and causing contact with high voltage circuits and short circuits, which could cause damage to the equipment, electric shock, or fire, For safety reasons, the adhesion strength of the coating material is standardized. The present invention relates to a new electromagnetic shielding sheet that complies with these regulations. Conventionally, two methods have been used to produce electromagnetic shielding sheets: surface coating methods such as zinc spraying or conductive paint, and methods in which conductive fillers are added to plastic. The surface coating method first involves forming, then surface treatment, and then plastic plating or vacuum deposition of copper, nickel, chrome, etc., or silver,
Industrial production is difficult because conductive particle paints such as nickel, copper, and graphite are applied or coatings are thermally sprayed with aluminum and zinc, and problems such as peeling of plastic and metal occur during long-term use. There are drawbacks. Adding conductive fillers such as metal powders, carbon powders, metal flakes or metal fibers, carbon fibers, and metallized glass fibers to plastics poses quality control problems in order to maintain uniformity of filler distribution. If the amount added is small, sufficient quality cannot be obtained, and if the amount is too large, the physical properties of the plastic will be impaired, and the conductive filler will be exposed on the surface of the molded product, resulting in electric shock. On the other hand, with the recent development of electronic devices, with regard to electromagnetic shielding, new electromagnetic shielding sheets are required to have better performance than ever in terms of the shielding effect as shown in the various regulations mentioned above, as well as the adhesion strength and releasability of composite additive conductive materials. The provision was strongly requested. The present invention provides a new electromagnetic wave shielding sheet that meets the above requirements. The present invention will be explained below with reference to the drawings. FIG. 1 shows a sectional view of an electromagnetic wave shielding sheet according to the present invention. In the figure, reference numeral 1 indicates a central conductive layer in which conductive powder occupies the majority. 2 shows a conductive layer made of conductive fibers and synthetic resin. 3 indicates an outer insulating layer made of synthetic resin. As shown in the figure, the feature of the structure of the present invention is that there are two conductive layers, a central layer and a surrounding layer, and the synthetic resin forms a continuous phase, although there are differences in concentration. be. The present invention was also developed based on the knowledge that such a special configuration can be easily obtained through extremely simple operations. In other words, to obtain this configuration, conductive fibers such as carbon fibers, metal fibers, or metallized fibers,
A conductive powder such as carbon black, graphite powder or metal powder is immersed in the powder suspension resin bath, or the suspension is applied by brushing or spraying, Then, it is easily obtained by sandwiching between electrically insulating synthetic resin sheets or composite sheets of these synthetic resins and electrically insulating fibers such as glass fibers, polyaramid fibers, synthetic fibers, etc. and hot pressing. The hot pressing temperature is a temperature higher than the melting point of the synthetic resin.
By performing hot pressing, as the synthetic resin permeates into the conductive fiber layer, the conductive powder adhering to the conductive fibers is swept away by the molten resin and concentrated in the center, forming the first central conductive layer. the conductive fibers are arranged on both sides to form a second conductive layer;
A synthetic resin layer is formed on the outside thereof as an outer insulating layer. Furthermore, the conductive powder and conductive fibers are tightly fixed by melting the synthetic resin. Since the present invention has a configuration as shown in the figure, there is no fear of defects caused by peeling or damage, which are the disadvantages of surface treatment methods, and there is no risk of increase in price or deterioration of quality due to the inclusion of a large amount of conductive filler. The drawbacks such as the surface exposure of the conductive filler were completely solved, and the effect was extremely large. In other words, a volume resistivity of 10 -1 Ω-cm, which is a measure of the shielding effect, was easily obtained, and the shielding effect was significantly improved compared to the conventional product. Examples will be explained below. As a conductive fiber, average diameter 15μm, average length 25
Carbon fiber fabricated by molding mm pitch short carbon fibers (calcined at 1000°C) into a mat shape using epoxy resin as a binder without adding catalyst or curing agent.
50g/ m2 carbon fiber veil mat (hereinafter referred to as VE-50)
) and 40 parts by weight of nickel-based conductive paint (product name Dotite, product number FN-101) manufactured by Fujikura Kasei Co., Ltd. as a conductive powder was applied by brushing onto one side of the veil mat, and after drying. , with 2 pieces
44 parts by weight polypropylene sheet (each thickness
0.2 mm) and heated and pressed at 200 to 230°C. The cross section of the obtained sheet clearly showed the structure of the present invention as shown in FIG. The sheet thus obtained had a volume resistivity of 1.4×10 −1 Ω−cm. As shown in Table 1, this number is based on pitch carbon short fibers (manufactured by Kureha Chemical Co., Ltd.) made of the same material as the base material of VE-50 used in this example, which is a common conventional conductive plastic. average fiber diameter 15 μm, average fiber length 0.7 mm, product number M-107t) and carbon black (manufactured by Lion Corporation, product name: Ketsutien Black EC) whose surface has been specially treated as a conductive powder.
A total of 100% of the mixture was prepared by mixing the same weight of polypropylene as the filler and the same weight as the synthetic resin in this example.
By adding 10 parts by weight to each part by weight, it is 1/100 compared to the conductive sheet obtained by injection molding.
The resistance value was . Incidentally, 10 parts by weight of each of the Beermat (VE-50) of this example and carbon-based conductive paint manufactured by Fujikura Kasei Co., Ltd. (trade name: Dotite, product number: Sandwiched between two polypropylene sheets (thickness 0.2 mm) and heated at 200 to 230℃.
The conductive layer of the sheet obtained by hot pressing showed a volume specific (electrical) resistance value of 1.0 Ω-cm, which was 1/14 of the value of the conventional injection molded product. In addition, the measurement of volume resistivity in this invention is carried out in accordance with the Japan Rubber Association standard SRIS2301-1969, by applying conductive paint to both end surfaces of a sheet sample, measuring the electrical resistance between both end surfaces, and using the following formula. We used a method of calculating using ρv=R・w・t/ Here, ρv is the volume resistivity (Ω-cm), R is the resistance between both end faces of the sample (Ω), is the length between both end faces of the sample (cm), and w is the resistance of the end face of the sample. The width (cm) t is the thickness (cm) of the end face of the sample conductive layer.

【表】 また次のような測定方法により、第1表の各試
料について1〜7MHzにおける電磁波の減衰率を
電磁波の遮蔽効果の代用特性として測定した。 結果は第2表に示した。 電波の強さの減衰率の測定方法は、第2図に示
す測定装置を用いて、次の操作手順により、各試
料を透過する特定周波数の電波の強さを電圧計で
測定することによつて求められる。 (i) 発信器5(TRIO Model SG−2 RF
Signal Geuerator)、受信器7(National
Proceed RF−2000)および受信メーター8
(National Volt Meter VP−9630A)の各ス
イツチを入れる。 (ii) 発信器5と受信器7の周波数を同じに合わせ
る。 (iii) まづ試料のない状態での電波の強さを測定す
る。この時の受信メーター8の電圧をAボルト
とする。 (iv) 次に試料11(縦100mm、横120mm)を試料固
定台10(開口部縦80mm、横100mm)にセツト
した状態での電波の強さを測定する。この時の
受信メーターの電圧をBボルトとする。 (v) ついで発信器のスイツチを切り、この状態で
の電波の強さを測定する。この時の受信メータ
ーの電圧をCボルトする。 (vi) 以上の測定で得られた電圧測定値から、次式
により試料の特定周波数の電波に対する減衰率
を求める。 減衰率(%)=(1−B−C/A−C)×100 第2表の結果から1〜7MHzにおける本考案の
電磁波の遮蔽効果は従来の射出成型品に比し格段
の効果が認められた。
[Table] In addition, the attenuation rate of electromagnetic waves at 1 to 7 MHz was measured as a substitute characteristic for the shielding effect of electromagnetic waves for each sample in Table 1 using the following measurement method. The results are shown in Table 2. The method for measuring the attenuation rate of radio wave strength is to use the measuring device shown in Figure 2 and measure the strength of radio waves of a specific frequency that passes through each sample with a voltmeter according to the following operating procedure. It is required. (i) Transmitter 5 (TRIO Model SG-2 RF
signal generator), receiver 7 (National
Proceed RF-2000) and reception meter 8
(National Volt Meter VP-9630A). (ii) Adjust the frequencies of the transmitter 5 and receiver 7 to be the same. (iii) First, measure the strength of the radio waves without a sample. The voltage of the receiving meter 8 at this time is assumed to be A volt. (iv) Next, measure the strength of the radio waves with the sample 11 (100 mm long and 120 mm wide) set on the sample fixing table 10 (opening 80 mm long and 100 mm wide). The voltage of the receiving meter at this time is assumed to be B volts. (v) Next, turn off the transmitter and measure the strength of the radio waves in this state. The voltage on the receiving meter at this time is C volts. (vi) From the voltage measurement values obtained in the above measurements, calculate the attenuation rate of the sample for radio waves at a specific frequency using the following formula. Attenuation rate (%) = (1-B-C/A-C) x 100 From the results in Table 2, it is recognized that the electromagnetic wave shielding effect of this invention in the range of 1 to 7 MHz is significantly more effective than conventional injection molded products. It was done.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案電磁波遮蔽シートの断面図を示
す。1は導電性粉体が大部分を占める中心導電層
2は導電性繊維と合成樹脂よりなる導電層、3は
合成樹脂よりなる外側絶縁層をそれぞれ示す。第
2図は実施例で用いられた電磁波遮蔽効果判定用
測定装置の説明図である。 図の4はフイルター、5は発信器、6はアンテ
ナ、7は受信器、8はメーター、9は銅箱、10
は試料固定台、11は試料をそれぞれ示す。
FIG. 1 shows a sectional view of the electromagnetic wave shielding sheet of the present invention. Reference numeral 1 indicates a central conductive layer 2 mostly made of conductive powder, a conductive layer made of conductive fibers and synthetic resin, and reference numeral 3 an outer insulating layer made of synthetic resin. FIG. 2 is an explanatory diagram of a measuring device for determining the electromagnetic shielding effect used in the example. In the figure, 4 is a filter, 5 is a transmitter, 6 is an antenna, 7 is a receiver, 8 is a meter, 9 is a copper box, 10
11 indicates a sample fixing table, and 11 indicates a sample.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導電性粉体が大部分を占める導電性繊維と合成
樹脂からなる中心導電層と、その外側の導電性繊
維と合成樹脂からなる導電層と、合成樹脂からな
る外側絶縁層とからなることを特徴とする電磁波
遮蔽シート。
It is characterized by consisting of a central conductive layer made of conductive fibers and synthetic resin, the majority of which is made of conductive powder, an outer conductive layer made of conductive fibers and synthetic resin, and an outer insulating layer made of synthetic resin. Electromagnetic wave shielding sheet.
JP13405282U 1982-09-03 1982-09-03 Electromagnetic wave shielding sheet Granted JPS5937792U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13405282U JPS5937792U (en) 1982-09-03 1982-09-03 Electromagnetic wave shielding sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13405282U JPS5937792U (en) 1982-09-03 1982-09-03 Electromagnetic wave shielding sheet

Publications (2)

Publication Number Publication Date
JPS5937792U JPS5937792U (en) 1984-03-09
JPH0128715Y2 true JPH0128715Y2 (en) 1989-08-31

Family

ID=30302169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13405282U Granted JPS5937792U (en) 1982-09-03 1982-09-03 Electromagnetic wave shielding sheet

Country Status (1)

Country Link
JP (1) JPS5937792U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682947B2 (en) * 1984-11-26 1994-10-19 日本精線株式会社 Method for producing conductive composite
JPH023554U (en) * 1988-06-20 1990-01-10

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326718A (en) * 1976-08-26 1978-03-13 Toshiba Corp Copper alloy for decorative purposes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326718A (en) * 1976-08-26 1978-03-13 Toshiba Corp Copper alloy for decorative purposes

Also Published As

Publication number Publication date
JPS5937792U (en) 1984-03-09

Similar Documents

Publication Publication Date Title
Bigg et al. Plastic composites for electromagnetic interference shielding applications
CN106793727A (en) A kind of electromagnetic shielding film and preparation method thereof
KR20040078002A (en) Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
JPH0128715Y2 (en)
Matsumoto et al. Polymer absorbers containing magnetic particles: effect of polymer permittivity on wave absorption in the quasi-microwave band
KR950010192B1 (en) Electromagnetic interference shielding element and method of making
JP2007091859A (en) Conductive paint
JPH0245359B2 (en)
Bigg et al. Conductive polymeric composites from short conductive fibers
KR20030019527A (en) Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof
KR100466134B1 (en) Electromagnetic Shielding Resin Composition
WO1984004428A3 (en) Coaxial cables and couplings therefor
JPS6129083B2 (en)
Geetha et al. Conducting fabric-reinforced polyaniline film using p-chlorophenol as secondary dopant for the control of electromagnetic radiations
KR101820942B1 (en) Magentic shielding material for extremely low frequency and the preparing method thereof
JPS6117281A (en) Magnetic recording use magnetic disk jacket having electromagnetic wave noise shielding property
JP2005281357A (en) Conductive coating
JPH044516A (en) Shielded cable with drain wire
JPH0251465B2 (en)
JPS60121796A (en) Electromagnetic shielding plastic housing material and method of producing same
JPS6116942A (en) Electromagnetic wave shielding material
JPS5945336A (en) Synthetic resin molding material for shielding electromagnetic wave
JPS6135599A (en) Electromagnetic shielding material
Rudolph et al. Thin Metallic Coatings on Carbon Fiber for Enhanced mm-Wave Absorption
JPS60257234A (en) Electromagnetic wave shielding film and manufacture thereof