JPH01286252A - Cell using silver oxide as active material - Google Patents

Cell using silver oxide as active material

Info

Publication number
JPH01286252A
JPH01286252A JP63115791A JP11579188A JPH01286252A JP H01286252 A JPH01286252 A JP H01286252A JP 63115791 A JP63115791 A JP 63115791A JP 11579188 A JP11579188 A JP 11579188A JP H01286252 A JPH01286252 A JP H01286252A
Authority
JP
Japan
Prior art keywords
silver oxide
positive electrode
carbon material
powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63115791A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nitta
芳明 新田
Akira Ota
璋 太田
Shigeo Kobayashi
茂雄 小林
Akira Miura
三浦 晃
Koji Yoshizawa
浩司 芳澤
Sachiko Suetsugu
末次 佐知子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63115791A priority Critical patent/JPH01286252A/en
Publication of JPH01286252A publication Critical patent/JPH01286252A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To realize a cell with a large capacity by constituting it with silver oxide and a carbon material as a main material, limiting the respective average grain size ratio within a specific range, and improving the positive electrode utilization factor. CONSTITUTION:Silver oxide and a carbon material are used as a main constituting material, the ratio of the average grain size of carbon powder 1B against the average grain size of silver oxide powder 1B is limited within the range of 10<-3>-10<-1>. Positive electrode black mix fixed with carbon powder 1B on silver oxide grains 1A is used. In this positive electrode black mix, carbon grains 1B are satisfactorily dispersed and fixed on silver oxide grains 1B. The specific conductivity of the positive electrode black mix in the dry state of the inert atmosphere is improved, the positive electrode utilization factor is improved when the constant-resistance continuous discharge test is performed with high resistance, e.g., 7.5KOMEGA. The wt.% of the carbon material in the positive electrode black mix is reduced. As a result, a silver oxide cell with a high capacity can be realized when the positive electrode black mix with the above constitution is used.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極として酸化銀と炭素材を主構成材料とす
る電池の、特に正極合剤の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a battery whose main constituent materials are silver oxide and a carbon material as a positive electrode, particularly to improvements in the positive electrode mixture.

従来の技術 従来より酸化銀電池は、活物質として酸化銀粉末、場合
によっては微量の二酸化マンガン、そして導電材として
炭素粉末を混合したものが正極合剤として用いられてい
る。導電材が必要な理由は、酸化銀単独では比導電率が
10−3〜1O−2S/nのオーダーで非常に低い値を
示すからである。従って個々の酸化銀に電子導電性を与
えて充分な還元反応を促進させるには、正極合剤の比導
電率を10°〜10’S/αのオーダーにする必要があ
る。
BACKGROUND OF THE INVENTION Conventionally, in silver oxide batteries, a mixture of silver oxide powder as an active material, in some cases a trace amount of manganese dioxide, and carbon powder as a conductive material has been used as a positive electrode mixture. The reason why a conductive material is necessary is that silver oxide alone exhibits a very low specific conductivity on the order of 10-3 to 1O-2S/n. Therefore, in order to impart electronic conductivity to individual silver oxides and promote a sufficient reduction reaction, the specific conductivity of the positive electrode mixture must be on the order of 10° to 10'S/α.

そこで従来では、酸化銀に対し導電材の含有量を2〜7
重量%とし、混合機で混合撹拌していた。
Therefore, in the past, the content of conductive material was set at 2 to 7% relative to silver oxide.
% by weight, and mixed and stirred using a mixer.

発明が解決しようとする課題 しかしながら、このように異なる二種の粉体を単に混合
したとしても両者を均一に分散させることは困難であり
、酸化銀粉末と炭素材粉末間で互いの接触が充分に得ら
れない。これらの接触頻度が低下すると、電子が充分に
酸化銀に供給されない部分が発生し、結果的に未友応の
まま残存する活物質が生じる。これは酸化銀の利用率が
低下する原因の一つとなる。もっとも、酸化銀電極の場
合、酸化銀の還元の進行とともに良導電性である銀に変
化していくので、放電末期ではほとんど問題ない。しか
し放電初期や特に強負荷放電では上記の利用率低下が問
題となってくる。
Problems to be Solved by the Invention However, even if these two different types of powder are simply mixed, it is difficult to uniformly disperse them, and it is difficult to ensure sufficient contact between the silver oxide powder and the carbon material powder. I can't get it. When the frequency of these contacts decreases, there will be areas where electrons are not sufficiently supplied to the silver oxide, resulting in the active material remaining unattached. This is one of the reasons why the utilization rate of silver oxide decreases. However, in the case of a silver oxide electrode, as the reduction of silver oxide progresses, it changes to silver, which has good conductivity, so there is almost no problem at the end of discharge. However, at the early stage of discharge and especially during heavy load discharge, the above-mentioned decrease in utilization rate becomes a problem.

このように酸化銀と炭素材の粒子間で充分な接触が得ら
れない理由は、第一に各々の粉体の中で二次粒子を形成
しているからである。
The reason why sufficient contact cannot be obtained between the particles of silver oxide and carbon material is firstly that secondary particles are formed within each powder.

粉体はその平均粒径が数十ミクロンや数ミクロンになる
と、二次粒子を形成しやすくなる性質がある。−旦、こ
のような二次粒子が形成されてしまうと単粒子にするこ
とが極めて困難となシ・それ故、両粉体間での混合分散
は難しくなる。
Powder tends to form secondary particles when its average particle size becomes several tens of microns or several microns. - Once such secondary particles are formed, it is extremely difficult to form them into single particles. Therefore, it becomes difficult to mix and disperse the two powders.

第二に、従来の粉体混合法で代表されるような遠心拡散
型混合機、スピードミキサー、あるいはV字型ミキサー
等は、異なる比重を有する粉体をみかけ上、均一に混合
することができるが、混合回転数が低いことや、回転配
向性の点から粒子間同志による衝突や接触の頻度が少な
くなり接触摩擦による帯電吸着作用が損なわれ、分散性
が低下してしまう。
Second, conventional powder mixing methods such as centrifugal diffusion mixers, speed mixers, or V-shaped mixers can apparently uniformly mix powders with different specific gravities. However, due to the low mixing rotational speed and rotational orientation, the frequency of collisions and contact between particles decreases, and the charge adsorption effect due to contact friction is impaired, resulting in a decrease in dispersibility.

このような理由で、従来の方法では二種の粉体を混合す
る上で巨視的に均一混合化されたとしても、微視的には
充分な分散が成立しているとはいい難く、酸化銀と炭素
材を良好に分散させなければならないという課題があっ
た。
For this reason, in conventional methods, even if two types of powders are mixed uniformly macroscopically, it is difficult to say that sufficient dispersion is achieved microscopically, and oxidation The problem was that the silver and carbon material had to be well dispersed.

本発明はこのような課題を解決するもので、正極活物質
の利用率を向上させ、炭素材の重量分率を低減させるこ
とにより高容量の酸化銀電池を提供することを目的とす
るものである。
The present invention is intended to solve these problems, and aims to provide a high-capacity silver oxide battery by improving the utilization rate of the positive electrode active material and reducing the weight fraction of the carbon material. be.

課題を解決するだめの手段 この発明は、上述した従来技術の課題を解決するもので
、酸化銀と炭素材を主構成材料とする酸化銀電極におい
て、炭素粉末の平均粒径が酸化銀粉末の平均粒径に対し
て10−1〜10−3を満足するとともに、これが酸化
銀粒子表面に固定化された正極合剤を用いるものである
Means for Solving the Problems This invention solves the problems of the prior art described above.In a silver oxide electrode whose main constituent materials are silver oxide and a carbon material, the average particle size of the carbon powder is smaller than that of the silver oxide powder. A positive electrode mixture that satisfies the average particle diameter of 10-1 to 10-3 and is immobilized on the surface of silver oxide particles is used.

作用 この構成によシ、酸化銀粒子と炭素材粒子は良好に固定
化されておシ、例えば不活性雰囲気の乾燥状態で正極合
剤の比導電率を測定すると10’S々のオーダーを示し
た。
Function: Due to this structure, the silver oxide particles and the carbon material particles are well fixed. For example, when the specific conductivity of the positive electrode mixture is measured in a dry state in an inert atmosphere, it shows an order of 10'S. Ta.

まだ、この正極合剤を用いて5R44の酸化銀電池を構
成したところ、1kH2の交流インピーダンスの測定結
果あるいは開路電圧の測定結果では従来例で得られたも
のとほぼ同様の結果であったが、7.5にΩの定抵抗連
続放電試験を行うと利用率は改善され、従来の電池よシ
放電持続時間に置き換えると約10%向上した。また正
極合剤中て占める炭素材の重量分率も低減することがで
き、従来の混合法で得られる炭素材重量分率よりも約3
%低減が可能となった。
However, when a 5R44 silver oxide battery was constructed using this positive electrode mixture, the measurement results of 1 kHz AC impedance or open circuit voltage were almost the same as those obtained with the conventional example. When a constant resistance continuous discharge test of 7.5Ω was conducted, the utilization rate improved, and when replaced with the conventional battery discharge duration, it improved by about 10%. It is also possible to reduce the weight fraction of carbon material in the positive electrode mixture, which is approximately 3% lower than the weight fraction of carbon material obtained by conventional mixing methods.
% reduction was possible.

このような効果が得られるのは、炭素材粒子が酸化銀粒
子上で良好に分散かつ固定化されていることによる。炭
素材の固定化が良好であれば個々の酸化銀粒子間をめぐ
る電子伝導ネットワークがより密に形成されることにな
シ、放電に伴う酸化銀の還元がよシスムーズに行えるよ
うになる。また同時に、電子伝導ネットワークがうまく
形成されることにより、本来電子伝導に関与しなかった
二次粒子の炭素材も不必要となり、結果的には炭素材の
利用効率化が図られる。これにより炭素材の充填量を減
らすことが可能になる。
This effect is achieved because the carbon material particles are well dispersed and immobilized on the silver oxide particles. If the carbon material is well fixed, the electron conduction network between individual silver oxide particles will be formed more densely, and the reduction of silver oxide caused by discharge can be carried out more smoothly. At the same time, due to the successful formation of the electron conduction network, the secondary particle carbon material, which originally did not participate in electron conduction, becomes unnecessary, and as a result, the carbon material can be used more efficiently. This makes it possible to reduce the amount of carbon material filled.

本発明は、このような事実に基づいて提案されたもので
あり、以下その実施例について説明する。
The present invention has been proposed based on such facts, and examples thereof will be described below.

実施例 本発明で得られる正極合剤は、まず酸化銀と炭素材を気
相分散させ、互いの粒子間の衝突や摩擦によシ生じる帯
電、即ち摩擦帯電の吸着作用で酸化銀粒子表面上に炭素
材を秩序よく吸着させる。
EXAMPLE The positive electrode mixture obtained in the present invention is prepared by first dispersing silver oxide and a carbon material in a gas phase, and then using the adsorption effect of triboelectric charging, which is caused by collisions and friction between particles, to form a layer on the surface of silver oxide particles. The carbon material is adsorbed in an orderly manner.

次いでこれを再び気相中で分散させながら機械的に回転
体を1〜2万rpmで高速回転させることにより、各々
の粉体は互いに強い衝突と接触摩擦を受けることになり
、酸化銀粒子表面に秩序よく並んでいた炭素材はその表
面に打ち込み固定化され強固な接着状態が実現できる。
Next, by mechanically rotating the rotating body at a high speed of 10,000 to 20,000 rpm while dispersing this in the gas phase again, each powder is subjected to strong collisions and contact friction with each other, and the surface of the silver oxide particles is The carbon materials arranged in an orderly manner are implanted into the surface and fixed, creating a strong bond.

このようにして得られた炭素材が固定された酸化銀は、
例えばベレット成形時のように外力が加わっても容易に
剥離することはない。
The silver oxide with fixed carbon material obtained in this way is
For example, it will not easily peel off even if an external force is applied during pellet molding.

以上のような条件で得られる正極合剤のうち、例えば平
均粒径10μmの酸化銀粉末、平均粒径1μmの炭素材
粉末を用いた場合について次に示す。
Among the positive electrode mixtures obtained under the above conditions, the case where, for example, silver oxide powder with an average particle size of 10 μm and carbon material powder with an average particle size of 1 μm are used will be described below.

まず、酸化銀と炭素材を回転数150o rpmで回転
する気相分散用混合機に投入して3分間運転し、次いで
これを別の高速回転が可能な気相分散用混合機に一定量
投入し、回転体を800Orpmで3分間運転し、正極
合剤を得た。これによシ得られた炭素材が固定された酸
化銀粒子の概念を明確化するため、その断面モデルを第
1図に示す。
First, silver oxide and carbon material were put into a gas phase dispersion mixer rotating at a rotation speed of 150 rpm and operated for 3 minutes, and then a fixed amount was put into another gas phase dispersion mixer capable of high speed rotation. Then, the rotating body was operated at 800 rpm for 3 minutes to obtain a positive electrode mixture. In order to clarify the concept of the silver oxide particles with fixed carbon material thus obtained, a cross-sectional model thereof is shown in FIG.

第1図において1人は酸化銀粒子、1Bは炭素材粉末で
ある。第1図のように炭素材粉末は酸化銀粒子上で適度
な隙間をおいて固定化されている。
In FIG. 1, 1 is a silver oxide particle and 1B is a carbon material powder. As shown in FIG. 1, the carbon material powder is fixed on the silver oxide particles with appropriate gaps.

次に得られた正極合剤を用いて5R44型電池を構成し
、7.5にΩの定抵抗連続放電試験を行い、放電持続時
間を検討した。
Next, a 5R44 type battery was constructed using the obtained positive electrode mixture, and a constant resistance continuous discharge test of 7.5 Ω was conducted to examine the discharge duration.

表1には炭素材料の重量分率(百分率)を2〜7%に変
化させた時の7.5にΩ連続放電試験の放電持続時間の
結果を示す。
Table 1 shows the results of the discharge duration of the 7.5Ω continuous discharge test when the weight fraction (percentage) of the carbon material was varied from 2 to 7%.

表1 表1かられかるように、炭素材の重量分率が3チ以上の
正極合剤を用いれば持続時間は780時間以上保持する
ことが可能となる。なお、従来の混合法で得た正極合剤
、例えば炭素材を重量分率で6%充填した場合、持続時
間は765時間であったことから、本発明の正極合剤は
持続時間を最大で約10チ向上させることができる。
Table 1 As shown in Table 1, if a positive electrode mixture with a weight fraction of carbon material of 3 or more is used, the duration can be maintained for 780 hours or more. In addition, when a positive electrode mixture obtained by a conventional mixing method, for example, filled with 6% carbon material by weight, the duration was 765 hours, so the positive electrode mixture of the present invention has a maximum duration of 765 hours. It can be improved by about 10 inches.

一方従来と同一放電持続時間を確保する電池の設計を行
なう場合は、炭素材の充填量を従来の6チから約3%減
量できる。又放電の経時変化に対する維持電圧はどれも
ほぼ同様であった。
On the other hand, when designing a battery that ensures the same discharge duration as the conventional one, the amount of carbon material filled can be reduced by about 3% from the conventional 6 inches. In addition, the maintenance voltages with respect to the time-dependent changes in discharge were almost the same in all cases.

なお、ここで用いる炭素材は、細分化された状態が好ま
しいが、例えば炭素材の平均粒径が1o−4pmオーダ
ー以下のような超微粉末では凝集による二次粒子化が顕
著にみられるようになシ、分散力は著しく低下する。従
って正極合剤を構成する導電材としては凝集を避けるた
めに炭素材の平均粒径は少なくとも10−4μm以上の
ものを用いることが好ましい。
Note that the carbon material used here is preferably in a finely divided state, but for example, in the case of ultrafine powder where the average particle size of the carbon material is on the order of 10-4 pm or less, secondary particles due to agglomeration may be noticeable. Otherwise, the dispersion power will be significantly reduced. Therefore, as the conductive material constituting the positive electrode mixture, it is preferable to use a carbon material having an average particle size of at least 10<-4> .mu.m or more in order to avoid agglomeration.

また、反対に平均粒径が100μm以上のような炭素材
を用いると実験的に摩擦帯電による吸着作用が得にくい
ため、酸化銀粒子への固定化が困難であった。
On the other hand, when a carbon material with an average particle diameter of 100 μm or more is used, it is difficult to obtain an adsorption effect due to triboelectrification experimentally, so it is difficult to immobilize it on silver oxide particles.

従って炭素材としては酸化銀の平均粒径に対し1o−1
〜1o−3の平均粒径をもつ材料を用いれば分散性の良
好な正極合剤を得ることができる。
Therefore, as a carbon material, it is 1o-1 to the average particle size of silver oxide.
A positive electrode mixture with good dispersibility can be obtained by using a material having an average particle size of ~1o-3.

発明の詳細 な説明したように、本発明による正極合剤を扇いれば、
正極利用率の高い電池を提供できるとともに、炭素材の
重量分率を低減させ得ることから、高容量の酸化銀電池
を実現できるという効果かえられる。
As described in detail of the invention, when the positive electrode mixture according to the present invention is used,
Since it is possible to provide a battery with a high positive electrode utilization rate and to reduce the weight fraction of the carbon material, it is possible to realize a silver oxide battery with a high capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、酸化銀粒子表面に炭素粉末を固定化した粒子
を模式的に示した断面モデル図である。 1人・・・・・酸化銀粒子、1B・・・・・炭素材粉末
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1A
−゛−酸化#L肢子
FIG. 1 is a cross-sectional model diagram schematically showing particles in which carbon powder is immobilized on the surface of silver oxide particles. 1 person: Silver oxide particles, 1B: Carbon material powder. Name of agent: Patent attorney Toshio Nakao and 1 other person 1A
-゛-oxidation #L limbs

Claims (1)

【特許請求の範囲】[Claims] 酸化銀と炭素材を主構成材料とし、前記炭素材粉末の平
均粒径が酸化銀粉末の平均粒径に対して10^−^1〜
10^−^3を満足するとともに、これが酸化銀粒子表
面に固定化されている酸化銀を活物質とする電池。
The main constituent materials are silver oxide and carbon material, and the average particle size of the carbon material powder is 10^-^1 to 10% of the average particle diameter of the silver oxide powder.
A battery that satisfies the conditions 10^-^3 and uses silver oxide as an active material, which is immobilized on the surface of silver oxide particles.
JP63115791A 1988-05-12 1988-05-12 Cell using silver oxide as active material Pending JPH01286252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63115791A JPH01286252A (en) 1988-05-12 1988-05-12 Cell using silver oxide as active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63115791A JPH01286252A (en) 1988-05-12 1988-05-12 Cell using silver oxide as active material

Publications (1)

Publication Number Publication Date
JPH01286252A true JPH01286252A (en) 1989-11-17

Family

ID=14671158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63115791A Pending JPH01286252A (en) 1988-05-12 1988-05-12 Cell using silver oxide as active material

Country Status (1)

Country Link
JP (1) JPH01286252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030925A (en) * 2018-08-22 2020-02-27 マクセルホールディングス株式会社 Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030925A (en) * 2018-08-22 2020-02-27 マクセルホールディングス株式会社 Alkaline battery

Similar Documents

Publication Publication Date Title
JP2007080652A (en) Slurry for forming lithium ion battery electrode and lithium ion battery
JP3525710B2 (en) Secondary battery and its positive electrode active material
JPH01286252A (en) Cell using silver oxide as active material
JP2006092881A (en) Battery positive electrode material containing sulfur and/or sulfur compound having s-s bonding, and its manufacturing method
JPH10144302A (en) Manufacture of electrode for non-aqueous electrolytic battery and non-aqueous electrolytic battery employing this electrode
JPS63187570A (en) Battery
JP4452595B2 (en) Composite material containing sulfur and / or sulfur compound and method for producing the same
JPH07211320A (en) Positive mix and battery using the same
JPS6269463A (en) Alkaline battery
JPH02262243A (en) Positive electrode for lithium secondary battery and manufacture thereof
CN112563475B (en) Soft carbon negative electrode material and preparation method and application thereof
JPH01143146A (en) Cell using manganese dioxide as active material
JPH0636767A (en) Nonaqueous electrolyte battery and manufacture of its active material
JPH0256857A (en) Alkaline manganese battery
JPS62254367A (en) Solid electrolyte secondary cell
JPS63195962A (en) Battery
US20230246159A1 (en) Electrode for Energy Storage Device
JPH04328253A (en) Manufacture of cadmium negative electrode for alkaline storage battery
JP3351329B2 (en) Alkaline storage battery and method for producing positive electrode active material thereof
JP3087275B2 (en) Sealed lead-acid battery
JPH07169464A (en) Manufacture of negative electrode paste for lead-acid battery
JPH0256858A (en) Lead-acid battery
SATO et al. The Particle Size Effect of Metal Hydrides on the Discharge Capacity of a Nickel hydrogen Battery
JP2023069525A (en) Manufacturing method for electrode material, electrode material, and secondary battery
JPH0315154A (en) Manufacture of cadmium negative electrode for alkaline storage battery