JPH0315154A - Manufacture of cadmium negative electrode for alkaline storage battery - Google Patents

Manufacture of cadmium negative electrode for alkaline storage battery

Info

Publication number
JPH0315154A
JPH0315154A JP1148956A JP14895689A JPH0315154A JP H0315154 A JPH0315154 A JP H0315154A JP 1148956 A JP1148956 A JP 1148956A JP 14895689 A JP14895689 A JP 14895689A JP H0315154 A JPH0315154 A JP H0315154A
Authority
JP
Japan
Prior art keywords
negative electrode
cadmium
powder
active material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1148956A
Other languages
Japanese (ja)
Inventor
Katsumi Yamashita
勝己 山下
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1148956A priority Critical patent/JPH0315154A/en
Publication of JPH0315154A publication Critical patent/JPH0315154A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To form a negative electrode of a high capacity and a high density by adding a small amount of carbon material, dispersing the materials in a high speed air flow, and giving a mechanical and thermal energy to them so as to fix a fiber-form or a powder carbon on a cadmium oxide active substance. CONSTITUTION:A carbon material is fixed to a cadmium active substance by a shock process in a high speed air flow. For example, an acetylene black of the mean particle diameter about 0.1mum and a cadmium oxide powder of the mean particle diameter about 1mum are put in a container at the wt. ratio 1:99, and rotated. Both the materials are mixed evenly by the movement of particles and a weak shearing force by the rotation of stirring blades. The mixed particles are dispersed in a high speed air flow, and a mechanical and a thermal energy mainly of shock actions is given to them. As a result, the acetylene black being a fiber form or a powder carbon is fixed to the cadmium oxide making an extremely even dispersion condition, the conductibility is improved even though a small amount of carbon material is added, and a high capacity and a high density of negative electrode can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アノレカリ蓄電池用カドミウム負極の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a cadmium negative electrode for an anolekali storage battery.

従来の技術 従来、アノレカリ蓄電池用カドミウム負極として、酸化
カドミウム活物質を導電材,結着剤とともに?合し、導
電性支持体に塗布するペースト式負極が、製造工程が簡
単であり、製造コストが安く、かつ高エネルギー密度が
得られるという点で、広く採用されている。
Conventional technology Previously, cadmium oxide active material was used along with conductive material and binder as cadmium negative electrode for anolekali storage battery? Paste-type negative electrodes, in which the electrodes are combined and coated on a conductive support, have been widely adopted because the manufacturing process is simple, the manufacturing cost is low, and high energy density can be obtained.

このようなペースト式カド■ウム負極は、高エネルギー
密度が得られる等の利点を有する反面、電子伝導性に劣
るため、カドミウム活物質の充放電反応に釦ける利用率
が低くなるという欠点を有していた。
Although such paste-type cadmium negative electrodes have advantages such as high energy density, they have the disadvantage of poor electron conductivity, which reduces the utilization rate of the cadmium active material for charge/discharge reactions. Was.

一般に、カドミウム負極は満充電となった後、過充電を
行なうと水素発生電位に到達し、水素を発生し始める。
Generally, when a cadmium negative electrode is overcharged after being fully charged, it reaches a hydrogen generation potential and begins to generate hydrogen.

すなわち、これは水の電解であって次式の反応が起こっ
ている。
In other words, this is water electrolysis, and the following reaction occurs.

2H20+2e→20H − + H 2↑こうして発
生する水素は酸素と異なり電池内で消費することができ
ないものであり、電池内に蓄積されて電池特性の劣下に
つながる。
2H20+2e→20H − + H 2↑ Unlike oxygen, the hydrogen thus generated cannot be consumed within the battery, and is accumulated within the battery, leading to deterioration of battery characteristics.

このため水素ガス発生を抑えるために、一般に負極容量
を正極容量より大きく設定して電池を構成して、負極が
満充電にならないようにしている。
Therefore, in order to suppress the generation of hydrogen gas, a battery is generally constructed with a negative electrode capacity set larger than a positive electrode capacity to prevent the negative electrode from becoming fully charged.

ところが、ペースト式負極を、例えばo℃のように非常
に低い温度で充電をした場合には、負極が満充電になる
以前に水素ガスを発生する。これは、ペースト式負極が
、活物質層の導電性が低く充電時の電流分布が不均一と
なり、特KO℃という低温では、負極の充電反応に遅れ
が生じて、充電反応がスムーズに進行しなくなるためと
考えられる。
However, when a paste-type negative electrode is charged at a very low temperature, such as 0° C., hydrogen gas is generated before the negative electrode is fully charged. This is because the conductivity of the paste-type negative electrode is low in the active material layer, resulting in uneven current distribution during charging, and especially at low temperatures of KO°C, there is a delay in the charging reaction of the negative electrode, making it difficult for the charging reaction to proceed smoothly. This is thought to be because it disappears.

そこで、導電性の向上のため導電材が添加され、中でも
導電材として二ッケ〃粉末が多く用いられるが、ニッケ
ルは水素過電圧を低下させるため、電子伝導性は向上す
るものの水素発生を十分に抑えることはできない。また
、特公昭46−17544号では水素過電圧の大きい炭
素粉末を活物質中に添加することが提案されているが、
炭素粉末をカドミウム活物質と練合する際に、炭素粉末
粒子が分散媒の表面張力により凝集してし筐い、均一な
分散を得ることが難しく、さらに炭素粉末の密度が低い
ため十分な導電性を得るためには、カドミウム負極の容
量密度が著しく低下してしまい、ペースト式負極の長所
である高エネノレギー密度が得られないという欠点を有
していた。
Therefore, conductive materials are added to improve conductivity, and nickel powder is often used as a conductive material, but nickel reduces hydrogen overvoltage, so although it improves electronic conductivity, it does not sufficiently suppress hydrogen generation. It cannot be suppressed. Furthermore, in Japanese Patent Publication No. 17544/1984, it is proposed to add carbon powder with a large hydrogen overvoltage to the active material.
When kneading carbon powder with cadmium active material, the carbon powder particles aggregate due to the surface tension of the dispersion medium, making it difficult to obtain uniform dispersion.Furthermore, the low density of carbon powder makes it difficult to obtain sufficient conductivity. However, in order to obtain the desired performance, the capacity density of the cadmium negative electrode is significantly lowered, and the disadvantage is that the high energy density, which is the advantage of a paste-type negative electrode, cannot be obtained.

発明が解決しようとする課題 本発明は、アルカリ蓄電池用カドミウム負極にふ・ける
低温充電時の水素ガス発生を抑制すると共に、高容量密
度のカドミウム負極を得ることを目的とする。
Problems to be Solved by the Invention An object of the present invention is to suppress the generation of hydrogen gas during low-temperature charging of a cadmium negative electrode for an alkaline storage battery, and to obtain a cadmium negative electrode with a high capacity density.

課題を解決するための手段 本発明は、容器内で酸化カドミウム活物質粉末と繊維状
もしくは微粉末状炭素を高速の気流中に分散させ、衝撃
力を主体とした機械的,熱的エネノレギーを与え、繊維
状もしくは微粉末状炭素を活物質粉末中の一部もしくは
全部の酸化カドミウム粒子に固定化した後、前記活物質
粉末をペースト状もしくは7−ト状として導電性支持体
に塗布1たぱ充填することにより高性能のアルカリ蓄電
池用カドミウム負極の製造法を提供するものである。
Means for Solving the Problems The present invention disperses cadmium oxide active material powder and fibrous or finely powdered carbon in a high-speed airflow in a container to provide mechanical and thermal energy mainly based on impact force. After fixing fibrous or finely powdered carbon to some or all of the cadmium oxide particles in the active material powder, the active material powder is applied in the form of a paste or a 7-sheet onto a conductive support in one coat. The present invention provides a method for producing a high-performance cadmium negative electrode for alkaline storage batteries by filling.

作   用 アノレカリ蓄電池用ペースト式カドミウム負極は、先に
も述べたように高エネルギー密度を有するものの、活物
質層の導電性が低いため、低温にあ・い?充電時に水素
発生をしやすいという欠点を有する。そこで、導電材と
して、水素過電圧の高い炭素粉末を活物質中に添加する
ことにより活物質層の導電性が向上し、充電時の電流分
布が均一になり、さらに炭素粉末の存在により充電反応
点が多くできることにより、充電時の分極が小さくなり
、水素発生の抑制が可能となる。ところが、炭素材料は
密度が活物質である酸化カドミウム粉末と比較して著し
く小さいこと、さらに活物質粉末との練合時、炭素粉末
粒子同志が凝集して2次粒子となり均一な分散性が得ら
れにくいことから、十分な特性を得るためには、炭素粉
末の添加量を多くする必要があり、カドミウム負極の容
量密度を著しく低下させてし壕うという欠点があった。
Function Although the paste-type cadmium negative electrode for anolekali storage batteries has a high energy density as mentioned above, it cannot be used at low temperatures because the conductivity of the active material layer is low. The disadvantage is that hydrogen is easily generated during charging. Therefore, by adding carbon powder with a high hydrogen overvoltage to the active material as a conductive material, the conductivity of the active material layer is improved, the current distribution during charging becomes uniform, and the presence of the carbon powder increases the charging reaction point. By increasing the amount of hydrogen, polarization during charging becomes smaller, making it possible to suppress hydrogen generation. However, the density of carbon materials is significantly lower than that of cadmium oxide powder, which is the active material, and furthermore, when kneaded with active material powder, carbon powder particles agglomerate together and become secondary particles, resulting in uniform dispersibility. Therefore, in order to obtain sufficient characteristics, it is necessary to increase the amount of carbon powder added, which has the disadvantage of significantly lowering the capacity density of the cadmium negative electrode.

従って、十分な導電性の確保と高容量密度を維持するた
めには、炭素材料とカド■ウム活物質粉末との極めて均
一な分散が必要となる。
Therefore, in order to ensure sufficient conductivity and maintain high capacity density, it is necessary to extremely uniformly disperse the carbon material and the cadmium active material powder.

そこで、本発明では、容器内で酸化カドミウム活物質粉
末と繊維状もしくは微粉末状炭素を高速の気流中に分散
させ、衝撃力を主体とした機械的.?的エネルギーを与
えることにより、同一粉末は摩擦帯電作用で反発し合い
、異種粉末が静電吸着し、さらに前記高速気流中の衝撃
力により、静電吸着した粉末粒子同志を機械的に固定化
できる作用を用い、繊維状もしくは微粉末状炭素を酸化
カド■ウム活物質粉末に分散固定化する。一般に、所■
記のような粉末の改質方法は高速気流中衝撃法と呼ばれ
、各種粉末の改質方法の一つとして採用されている。こ
のように酸化カドミウム粉末に固定化された炭素材料を
含む活物質粉末を練合しても、炭素材料が固定されてい
るため、凝集して2次粒子になることもなく、カドミウ
ム活物質と炭素材料が極めて均一に分散した状態のカド
ミウム負極を得ることができる。その結果、炭素材料を
粉末で添加するよりも極めて少ない添加量にて活物質層
の導電性の確保が可能となり、カドミウム負極の容量密
度の低下も極めて少ない。
Therefore, in the present invention, cadmium oxide active material powder and fibrous or finely powdered carbon are dispersed in a high-speed airflow in a container, and a mechanical force mainly based on impact force is generated. ? By applying energy, identical powders repel each other due to triboelectric charging, different powders are electrostatically attracted to each other, and further, the electrostatically adsorbed powder particles can be mechanically immobilized by the impact force in the high-speed airflow. Using this method, fibrous or finely powdered carbon is dispersed and fixed in cadmium oxide active material powder. In general, place■
The method for modifying powders as described above is called the high-speed air impact method, and has been adopted as one of the methods for modifying various powders. Even if active material powder containing carbon material fixed to cadmium oxide powder is kneaded in this way, since the carbon material is fixed, it will not aggregate into secondary particles, and the cadmium active material will not aggregate. A cadmium negative electrode in which carbon material is extremely uniformly dispersed can be obtained. As a result, it is possible to ensure the conductivity of the active material layer with an extremely smaller amount than when adding a carbon material in the form of powder, and the decrease in the capacity density of the cadmium negative electrode is also extremely small.

すなわち本発明によれば、少量の炭素材料の添加で導電
性の向上により低温に釦ける充電時の水素発生を抑制し
た、しかも高容量密度のアルカリ蓄電池用カドミウム負
極を得ることが可能となった。
That is, according to the present invention, it has become possible to obtain a cadmium negative electrode for alkaline storage batteries that suppresses hydrogen generation during charging at low temperatures by adding a small amount of carbon material, and has a high capacity density. .

実施例 以下本発明の実施例を説明する。Example Examples of the present invention will be described below.

ここで用いた市販の高速気流中衝撃法による表面改質装
置は、混合能力をもつ部分と、エネルギー供給部分を別
々に有し、それらをシステムとして一体化した装置であ
る。混合部分は、撹拌羽根の回転による粒子の運動と、
弱いせん断力により均一な混合物を調整する。そして、
エネルギー供給部分では、混合した微粒子を高速の気流
中に分散させ、衝撃力を主体とした機械的,熱的エネル
ギーを与えるものである。
The commercially available surface modification device using a high-speed air impact method used here has a mixing section and an energy supply section separately, and is an apparatus that integrates them into a system. The mixing part consists of the movement of particles due to the rotation of stirring blades,
A homogeneous mixture is prepared by gentle shearing force. and,
The energy supply section disperses the mixed particles in a high-speed airflow and applies mechanical and thermal energy mainly based on impact force.

容器中に炭素材料として平均粒径約0.1μmのアセチ
レンブラックと平均粒径約1μmの酸化カドミウム粉末
を重量比で1:99の割合で投入し、通常の回転数にて
約20分間処理を行ない、アセチレンブラックを酸化カ
ドミウム粉末に固定化処理をした活物質粉末を得た。次
に前記活物質粉末と金属カドミウム粉末を重量比で80
 : 200割合で混合し、次いで糊料剤としてのポリ
ビニpアノレコーノレ,補強材としてのナイロン繊維及
ヒ分散媒としての水を加えて混練した後、導電性支持体
である開札鋼板に塗着,乾燥して本発明極板を得た。こ
の負極をaとする。
Acetylene black with an average particle size of about 0.1 μm and cadmium oxide powder with an average particle size of about 1 μm were put into a container as carbon materials at a weight ratio of 1:99, and the mixture was treated at a normal rotation speed for about 20 minutes. An active material powder in which acetylene black was immobilized on cadmium oxide powder was obtained. Next, the active material powder and metal cadmium powder were mixed in a weight ratio of 80.
: Mixed at a ratio of 200%, then mixed with polyvinyl resin as a sizing agent, nylon fiber as a reinforcing material, and water as a dispersion medium, and then applied to an openable steel plate as a conductive support and dried. An electrode plate of the present invention was obtained. Let this negative electrode be a.

捷た、アセチレンブラノクを酸化カドミウム粉末に固定
化処理しないで、活物質粉末と混合のみを行ない、後は
本発明極板と同じ条件で作製した負極をbとした。
A negative electrode prepared under the same conditions as the electrode plate of the present invention was designated as b, in which the shredded acetylene blank was not fixed in the cadmium oxide powder, but only mixed with the active material powder.

さらに比較のため、アセチレンブラックを添加しないカ
ドミウム負極をCとした。
Furthermore, for comparison, C was a cadmium negative electrode to which no acetylene black was added.

上記3種類のカドミウム負極a , b及びCをそれぞ
れを焼結式ニッケル正極と組み合わせて、密閉形ニッケ
ル,カドミウム蓄電池A,B及びCを試作し、0℃に釦
いて3Acml5.相当の電流で24時間充電を行ない
、充電時の電池内部圧力と充電終了後の電池内部の水素
分圧を測定した。この結果を次表に示す。
Sealed nickel, cadmium storage batteries A, B and C were prototyped by combining the three types of cadmium negative electrodes a, b and C with sintered nickel positive electrodes, heated to 0°C and heated to 3Acml5. Charging was carried out for 24 hours with a corresponding current, and the internal pressure of the battery during charging and the hydrogen partial pressure inside the battery after charging was completed were measured. The results are shown in the table below.

?より明らかなように本発明によるカドミウム負極を用
いた電池Aは、比較例の負極b,cを用いた電池B,C
に比較して、電池内部圧力及び水素分圧共に低〈抑えら
れていることがわかる。これは、本発明によるカド■ウ
ム負極では少量のアセチレンブラノクの添加に釦いても
、その分散性が優れているために、活物質層の導電性が
向上し、充電時のカドミウム負極の分極が小さく、水素
発生が抑制されることによるものである。さらに導電性
の向上により、酸素ガスの電気化学的な吸収反応が進行
しやす〈なり、電池内部圧力も低下する。これに対して
、アセチレンブラックを粉末状態で混合のみを行なった
比較例bの負極では、アセチレンブラックの分散が均一
でないために活物質層の導電性があまり向上せず充電時
のカドミウム負極の分極が大となり、水素発生が大とな
る。
? As is clearer, battery A using the cadmium negative electrode according to the present invention is different from batteries B and C using negative electrodes b and c of the comparative example.
It can be seen that both the battery internal pressure and hydrogen partial pressure are kept low compared to the above. This is because the cadmium negative electrode according to the present invention has excellent dispersibility even if a small amount of acetylene is added, which improves the conductivity of the active material layer and polarizes the cadmium negative electrode during charging. This is because hydrogen generation is suppressed. Furthermore, due to the improved conductivity, the electrochemical absorption reaction of oxygen gas progresses more easily, and the internal pressure of the battery also decreases. On the other hand, in the negative electrode of Comparative Example b in which acetylene black was only mixed in powder form, the conductivity of the active material layer did not improve much because the dispersion of acetylene black was not uniform, and the polarization of the cadmium negative electrode during charging becomes large, and hydrogen generation becomes large.

ただし、添加量をさらに増していくと、次第に水素発生
量は低丁してい〈が、カドミウム活物質の充填容量密度
が次第に低下していき、ついには正極容量とのバランス
がとれなくなり、少ない正極容量でも著しい水素発生も
生じてし1う。従って、電池として高容量密度化に対し
て不利となってし壕い有効ではない。
However, as the amount of addition is further increased, the amount of hydrogen generated gradually decreases, but the filling capacity density of the cadmium active material gradually decreases, and eventually it becomes unbalanced with the positive electrode capacity, and the amount of positive electrode decreases. Significant hydrogen generation may also occur regardless of the capacity. Therefore, it is disadvantageous to achieving high capacity density as a battery and is not very effective.

なか、本実施例では、平均粒径約0.1μmのアセチレ
ンブラックを用いたが、他の微粉末状の人造黒鉛やケソ
チェンブラソク、さらに繊維状の黒鉛,炭素繊維でも同
様の分散固定化処理により、同様の効果が得られる。
In this example, acetylene black with an average particle size of about 0.1 μm was used, but other fine powdered artificial graphite, kerosene black, fibrous graphite, and carbon fiber can also be similarly dispersed and fixed. Similar effects can be obtained by treatment.

発明の効果 以上のように、本発明によれば導電性の向上により低温
にかける充電時の水素発生を抑制し、しかも高容量密度
のアルカリ蓄電池用カドミウム負極の製造が可能になる
Effects of the Invention As described above, according to the present invention, improved conductivity suppresses hydrogen generation during charging at low temperatures, and also makes it possible to manufacture a cadmium negative electrode for alkaline storage batteries with high capacity density.

Claims (1)

【特許請求の範囲】[Claims] 容器内で酸化カドミウム活物質粉末と繊維状もしくは微
粉末状炭素を高速の気流中に分散させるとともに、これ
らに衝撃力を主体とした機械的、熱的エネルギーを与え
、繊維状もしくは微粉末状炭素を活物質粉末中の一部も
しくは全部の酸化カドミウム粒子に固定化した後、前記
活物質粉末をペースト状もしくはシート状として導電性
支持体に塗布または充填することを特徴とするアルカリ
蓄電池用カドミウム負極の製造法。
In a container, cadmium oxide active material powder and fibrous or finely powdered carbon are dispersed in a high-speed air stream, and mechanical and thermal energy, mainly impact force, is applied to them to create fibrous or finely powdered carbon. is immobilized on some or all of the cadmium oxide particles in an active material powder, and then the active material powder is applied or filled in a paste or sheet form onto a conductive support. manufacturing method.
JP1148956A 1989-06-12 1989-06-12 Manufacture of cadmium negative electrode for alkaline storage battery Pending JPH0315154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148956A JPH0315154A (en) 1989-06-12 1989-06-12 Manufacture of cadmium negative electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148956A JPH0315154A (en) 1989-06-12 1989-06-12 Manufacture of cadmium negative electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0315154A true JPH0315154A (en) 1991-01-23

Family

ID=15464421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148956A Pending JPH0315154A (en) 1989-06-12 1989-06-12 Manufacture of cadmium negative electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0315154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357146A (en) * 2019-07-26 2019-10-22 南京理工大学 A kind of batch preparation of nanometer of cadmium hydroxide or nano oxygen cadmium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357146A (en) * 2019-07-26 2019-10-22 南京理工大学 A kind of batch preparation of nanometer of cadmium hydroxide or nano oxygen cadmium

Similar Documents

Publication Publication Date Title
CN110400927B (en) Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof
CN108461723A (en) A kind of silicon based composite material and preparation method thereof for lithium ion battery
CN111653738B (en) Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof
CN107305941B (en) Lithium-carbon composite material, preparation method and application thereof, and lithium compensation method
CN108390049A (en) A kind of silicon@silicon carbide@carbon composite material of core-shell structure and preparation method thereof
WO2021077586A1 (en) Silicon-oxygen particle for electrode material, preparation method therefor and use thereof
CN104425802B (en) Silicon based composite material, preparation method, using and its lithium ion battery obtained
CN101459238A (en) Manufacturing method for high capacity composite electrode of lithium ionic cell
US3849198A (en) Iron electrode paste for alkaline battery plates
CN109461921A (en) A kind of preparation method based on modified lithium ion battery silicon-base alloy composite negative pole material
CN109216683A (en) A kind of synthetic method of lithium ion battery high-capacity cathode material
CN109755510B (en) Silicon-carbon lithium battery electrode material and preparation method thereof
CN110600684A (en) Silicon-carbon negative electrode material for lithium ion battery and preparation method thereof
CN108598343A (en) A kind of composite diaphragm and its preparation method and application of red phosphorus modification
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
JPH0315154A (en) Manufacture of cadmium negative electrode for alkaline storage battery
CN115881903A (en) Silicon-carbon composite material for lithium ion battery cathode and preparation method thereof
CN109728281B (en) Preparation method of surface modified SiOx electrode material
JPH01143146A (en) Cell using manganese dioxide as active material
CN110034292A (en) A kind of 3-D ordered multiporous polypyrrole/zinc oxide lithium ion battery negative material and preparation method
JP4179648B2 (en) Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion
JP3040760B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
JP3066021B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
CN115036467B (en) Lithium ion battery cathode homogenate process
WO2023213122A1 (en) Negative electrode plate for lithium battery, and lithium-ion secondary battery comprising same