JP2007080652A - Slurry for forming lithium ion battery electrode and lithium ion battery - Google Patents

Slurry for forming lithium ion battery electrode and lithium ion battery Download PDF

Info

Publication number
JP2007080652A
JP2007080652A JP2005266492A JP2005266492A JP2007080652A JP 2007080652 A JP2007080652 A JP 2007080652A JP 2005266492 A JP2005266492 A JP 2005266492A JP 2005266492 A JP2005266492 A JP 2005266492A JP 2007080652 A JP2007080652 A JP 2007080652A
Authority
JP
Japan
Prior art keywords
particles
electrode
lithium ion
ion battery
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005266492A
Other languages
Japanese (ja)
Inventor
Mitsumasa Saito
光正 斉藤
Atsushi Honda
敦 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2005266492A priority Critical patent/JP2007080652A/en
Publication of JP2007080652A publication Critical patent/JP2007080652A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide slurry for forming lithium ion battery electrode and a lithium ion battery with high discharging capacity at a high speed charging/discharging rate of 10 C or more and sufficient charge/discharge rate property. <P>SOLUTION: The slurry for forming the lithium ion battery electrode contains electrode activator, conductive assistant, a binder and polarized solvent. The conductive assistant is composed of two or more types of particles with different particle diameters or shapes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池に関し、特に、粒径または形状の異なる2種以上の粒子からなる導電助剤を用いることで、高速充放電特性に優れたリチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池に関するものである。   TECHNICAL FIELD The present invention relates to a slurry for forming an electrode of a lithium ion battery and a lithium ion battery, and in particular, a lithium ion having excellent high-speed charge / discharge characteristics by using a conductive additive composed of two or more kinds of particles having different particle sizes or shapes. The present invention relates to a slurry for battery electrode formation and a lithium ion battery.

近年、小型、軽量、高容量の電池として、リチウムイオン電池などの非水電解液系の二次電池が提案され、実用に供されている。このリチウムイオン電池は、リチウムイオンを可逆的に脱挿入可能な性質を有する正極および負極と、非水系の電解質より構成されている。
リチウムイオン電池の負極は、負極活物質として、一般に炭素系材料またはチタン酸リチウム(LiTi12)などのリチウムイオンを可逆的に脱挿入可能な性質を有するLi含有金属酸化物が用いられている。
一方、リチウムイオン電池の正極は、正極活物質といわれるリチウムイオンを可逆的に脱挿入可能な性能を有するLi含有金属酸化物、導電助剤およびバインダーより構成され、これらを分散・溶解したスラリーを集電体と呼ばれる金属箔の表面に塗布することにより正極としている。
In recent years, non-aqueous electrolyte secondary batteries such as lithium ion batteries have been proposed and put into practical use as small, light, and high capacity batteries. This lithium ion battery is composed of a positive electrode and a negative electrode having a property capable of reversibly inserting and removing lithium ions, and a non-aqueous electrolyte.
The negative electrode of a lithium ion battery generally uses a Li-containing metal oxide having a property capable of reversibly removing and inserting lithium ions such as a carbon-based material or lithium titanate (Li 4 Ti 5 O 12 ) as a negative electrode active material. It has been.
On the other hand, the positive electrode of a lithium ion battery is composed of a Li-containing metal oxide having a capability of reversibly removing and inserting lithium ions, which is called a positive electrode active material, a conductive additive, and a binder. The positive electrode is formed by applying it to the surface of a metal foil called a current collector.

このリチウムイオン電池の正極活物質としては、通常、コバルト酸リチウム(LiCoO)が用いられているが、その他に、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、鉄リン酸リチウム(LiFePO)などのリチウム(Li)化合物が用いられている。 As the positive electrode active material of this lithium ion battery, lithium cobaltate (LiCoO 2 ) is usually used, but in addition, lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium iron phosphate Lithium (Li) compounds such as (LiFePO 4 ) are used.

このようなリチウムイオン電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池などの二次電池に比べて、軽量かつ小型で高エネルギーを有しているので、携帯電話、ノート型パーソナルコンピュータなどの携帯用電子機器の電源として用いられているが、近年、電気自動車、ハイブリッド自動車、電動工具などの高出力電源としても検討されている。   Such lithium-ion batteries are lighter, smaller, and have higher energy than secondary batteries such as conventional lead batteries, nickel cadmium batteries, and nickel metal hydride batteries, so mobile phones, notebook personal computers, etc. In recent years, it has been studied as a high-output power source for electric vehicles, hybrid vehicles, electric tools, and the like.

これらの高出力電源として用いられる電池の電極活物質としては、高速の充放電特性が求められるが、リチウムイオンを可逆的に脱挿入可能な性質を有するLi含有金属酸化物は電子導電性が低い。そこで、電極活物質の電子導電性を向上させる方法として、一般に、電極活物質に導電助剤を添加する方法がとられている(非特許文献1参照)。これら電極活物質と導電助剤を混合する方法としては、電極活物質と導電助剤を、ボールミルやプラネタリミキサなどの撹拌翼型混合機などで混合する方法がとられている。導電助剤としては、アセチレンブラック、カーボンブラック、ケッチェンブラック、天然黒鉛、人造黒鉛などの炭素系導電助剤が一般に用いられている。
松田好晴 竹原善一郎他編、「電池便覧第3版」、丸善株式会社、平成13年2月20日発行、p.267
As an electrode active material for batteries used as these high-output power supplies, high-speed charge / discharge characteristics are required, but Li-containing metal oxides having the property of reversibly removing and inserting lithium ions have low electronic conductivity. . Therefore, as a method for improving the electronic conductivity of the electrode active material, a method of adding a conductive additive to the electrode active material is generally employed (see Non-Patent Document 1). As a method of mixing the electrode active material and the conductive auxiliary, a method of mixing the electrode active material and the conductive auxiliary with a stirring blade type mixer such as a ball mill or a planetary mixer is employed. As the conductive assistant, carbon-based conductive assistants such as acetylene black, carbon black, ketjen black, natural graphite, and artificial graphite are generally used.
Yoshiharu Matsuda, Zenichiro Takehara et al., “Battery Handbook 3rd Edition”, Maruzen Co., Ltd., issued February 20, 2001, p. 267

しかしながら、従来の電極活物質に導電助剤を添加する方法では、電極活物質と導電助剤の混合にボールミル、撹拌翼型混合機などの混合機を用いてきたが、これらの混合機では、導電助剤の分散が十分ではなく、電極活物質の導電性の改善が不十分なため、電池の高速充放電時の容量低下を引き起こすという問題点があった。   However, in the conventional method of adding a conductive aid to an electrode active material, a mixer such as a ball mill or a stirring blade type mixer has been used to mix the electrode active material and the conductive aid. In these mixers, There is a problem in that the dispersion of the conductive assistant is not sufficient and the conductivity of the electrode active material is insufficiently improved, resulting in a decrease in capacity during high-speed charge / discharge of the battery.

この問題点を解決するために、本発明者等は、特願2005−127655において、リチウムイオンおよび電子の授受により充放電が行われる電極活物質と導電助剤と電解液の界面(三相界面=活性点)の数を増やすことが効果的であり、そのためには、導電助剤をより微細に分散させることが有効であることを見出し、また、導電助剤を微細に分散させるためには、分散剤を用いることが有効であることを見出し、さらに、電極活物質、導電助剤、バインダーおよび極性溶媒を、媒体粒子と共に撹拌・分散させてスラリーとする際に、媒体粒子の個数を限定することが有効であることを見出し、リチウムイオン電池の電極形成用スラリーおよびその製造方法並びにリチウムイオン電池を提案した。
しかしながら、特願2005−127655により、導電助剤をナノメーターオーダーに高度に分散した場合、充放電レートが2C以上かつ10C未満では、放電容量の低下を十分に抑えることができるものの、充放電レートが10C以上では、放電容量の低下を十分に抑えることができなかった。
In order to solve this problem, in the Japanese Patent Application No. 2005-127655, the present inventors have developed an interface (three-phase interface) between an electrode active material, a conductive assistant, and an electrolytic solution that are charged and discharged by the exchange of lithium ions and electrons. = Active point) is effective to increase the number, and for that purpose, it has been found that it is effective to finely disperse the conductive aid, and in order to finely disperse the conductive aid The use of a dispersant is found to be effective, and the number of medium particles is limited when the electrode active material, conductive additive, binder and polar solvent are stirred and dispersed together with the medium particles to form a slurry. It has been found that this is effective, and a slurry for forming an electrode of a lithium ion battery, a manufacturing method thereof, and a lithium ion battery have been proposed.
However, according to Japanese Patent Application No. 2005-127655, when the conductive additive is highly dispersed on the nanometer order, if the charge / discharge rate is 2C or more and less than 10C, the decrease in the discharge capacity can be sufficiently suppressed, but the charge / discharge rate However, when the temperature is 10C or more, the decrease in discharge capacity could not be sufficiently suppressed.

本発明は、上記課題を解決するためになされたものであって、10C以上の高速充放電レートにおける放電容量が高く、十分な充放電レート性能を有するリチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and has a high discharge capacity at a high-speed charge / discharge rate of 10 C or higher and a slurry for forming an electrode of a lithium ion battery having sufficient charge / discharge rate performance, and lithium ion An object is to provide a battery.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、特願2005−127655のリチウムイオン電池の電極形成用スラリーを用いた電極の表面と、この電極の裏面(集電体側)とを電子顕微鏡により詳細に観察したところ、電極の表面では導電助剤が高濃度に存在する一方、電極の裏面では導電助剤がほとんど存在しないことを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that the surface of the electrode using the slurry for forming an electrode of the lithium ion battery of Japanese Patent Application No. 2005-127655, and the back surface of this electrode (the collector side) ) Was observed in detail with an electron microscope. As a result, it was found that the conductive auxiliary agent was present at a high concentration on the surface of the electrode, while the conductive auxiliary agent was hardly present on the back surface of the electrode.

また、従来の電極活物質に導電助剤を添加する方法を用いてリチウムイオン電池の電極を製造すると、このように導電助剤が偏在するのは、以下のような現象に起因することを見出した。すなわち、従来のリチウムイオン電池の電極の製造方法では、図4(a)に示すように、電極活物質31と導電助剤32を電解液33にナノメーターオーダーで高度に分散して電極形成用スラリー34を調製し、この電極形成用スラリー34を集電体35に塗布するため、電極形成用スラリー34が乾燥する前(図4(a)参照)から、電極形成用スラリー34が乾燥して電極塗膜36をなす(図4(b)参照)までに、電極塗膜36内に生じる濃度差や表面張力差による対流(マランゴニ対流)、および、電極塗膜36の表面と裏面との温度差による対流(ベナール対流)により、電極活物質31よりも細かく、かつ軽い導電助剤32が、電極塗膜36の表面に浮き上がってしまう。その結果、集電体35と電極塗膜36との界面近傍における導電助剤32の濃度が低下して、電極塗膜36は、導電経路が途切れてしまうことも見出した。   In addition, when manufacturing an electrode of a lithium ion battery using a conventional method of adding a conductive additive to an electrode active material, it is found that the conductive additive is unevenly distributed due to the following phenomenon. It was. That is, in the conventional method for manufacturing an electrode of a lithium ion battery, as shown in FIG. 4A, the electrode active material 31 and the conductive additive 32 are highly dispersed in the electrolyte solution 33 on the order of nanometers to form an electrode. In order to prepare the slurry 34 and apply the electrode forming slurry 34 to the current collector 35, the electrode forming slurry 34 is dried before the electrode forming slurry 34 is dried (see FIG. 4A). By forming the electrode coating film 36 (see FIG. 4B), the convection (Marangoni convection) due to the difference in concentration and surface tension generated in the electrode coating film 36, and the temperature between the front surface and the back surface of the electrode coating film 36 Due to the convection due to the difference (Benard convection), the conductive auxiliary agent 32 that is finer and lighter than the electrode active material 31 floats on the surface of the electrode coating film 36. As a result, it has also been found that the concentration of the conductive auxiliary agent 32 in the vicinity of the interface between the current collector 35 and the electrode coating film 36 is lowered, and the conductive path of the electrode coating film 36 is interrupted.

さらに、マランゴニ対流やベナール対流による導電助剤の偏在の問題を解決するには、電極形成用スラリーを高粘度化する方法や、電極塗膜を薄くする方法などが考えられるが、電極形成用スラリーを高粘度化すると塗工が困難となり、また、電極塗膜を薄くすると電池を高容量化することができなくなるという問題がある。
そこで、本発明者等は、電極塗膜内に十分な導電経路を確保する方法として、電極形成用スラリーが乾燥して電極塗膜をなすまでの間に、電極塗膜内に生じる対流によって流動し難い大きさまたは形状の導電助剤を用いることにより、導電助剤が均一に分散することを見出し、本発明を完成するに至った。
Furthermore, in order to solve the problem of uneven distribution of the conductive auxiliary agent due to Marangoni convection or Benard convection, a method of increasing the viscosity of the electrode forming slurry or a method of thinning the electrode coating film can be considered. If the viscosity is increased, coating becomes difficult, and if the electrode coating is made thinner, the battery cannot be increased in capacity.
Therefore, the present inventors, as a method of ensuring a sufficient conductive path in the electrode coating film, flows by convection generated in the electrode coating film until the electrode forming slurry is dried to form the electrode coating film. It has been found that the conductive auxiliary agent is uniformly dispersed by using a conductive auxiliary agent having a size or shape which is difficult to form, and the present invention has been completed.

すなわち、本発明のリチウムイオン電池の電極形成用スラリーは、電極活物質、導電助剤、バインダーおよび極性溶媒を含有してなるリチウムイオン電池の電極形成用スラリーであって、前記導電助剤は、粒径または形状の異なる2種以上の粒子からなることを特徴とする。   That is, the electrode forming slurry of the lithium ion battery of the present invention is a slurry for forming an electrode of a lithium ion battery containing an electrode active material, a conductive assistant, a binder and a polar solvent, and the conductive assistant is It consists of 2 or more types of particle | grains from which a particle size or a shape differs.

本発明のリチウムイオン電池の電極形成用スラリーは、前記粒子の少なくとも1種は粒径が50nm未満であって、他の種の粒子は粒径が50nm以上であることが好ましい。   In the slurry for forming an electrode of the lithium ion battery of the present invention, it is preferable that at least one of the particles has a particle size of less than 50 nm, and the other types of particles have a particle size of 50 nm or more.

本発明のリチウムイオン電池の電極形成用スラリーは、前記粒子の少なくとも1種はアスペクト比が3以上であることが好ましい。   In the slurry for forming an electrode of the lithium ion battery of the present invention, it is preferable that at least one of the particles has an aspect ratio of 3 or more.

本発明のリチウムイオン電池の電極形成用スラリーは、前記粒子の少なくとも1種は一次粒子が集合してなる二次粒子であることが好ましい。   In the electrode-forming slurry of the lithium ion battery of the present invention, it is preferable that at least one of the particles is a secondary particle formed by aggregating primary particles.

本発明のリチウムイオン電池は、本発明のリチウムイオン電池の電極形成用スラリーを用いた正極を備えてなることを特徴とする。   The lithium ion battery of the present invention comprises a positive electrode using the slurry for electrode formation of the lithium ion battery of the present invention.

本発明のリチウムイオン電池の電極形成用スラリーによれば、電極活物質、導電助剤、バインダーおよび極性溶媒を含有してなるリチウムイオン電池の電極形成用スラリーであって、前記導電助剤は、粒径または形状の異なる2種以上の粒子からなるので、電極活物質の表面に十分な活性点を形成することができる上に、電極活物質間、および、電極活物質と集電体との間の導電経路を十分に形成することができるから、10C以上の高速充放電レートにおける放電容量の低下を改善し、十分な充放電レート性能を有するリチウムイオン電池を実現することができる。   According to the slurry for forming an electrode of a lithium ion battery of the present invention, it is a slurry for forming an electrode of a lithium ion battery containing an electrode active material, a conductive additive, a binder and a polar solvent, Since it consists of two or more kinds of particles having different particle sizes or shapes, sufficient active sites can be formed on the surface of the electrode active material, and between the electrode active materials and between the electrode active material and the current collector. Therefore, a reduction in discharge capacity at a high-speed charge / discharge rate of 10 C or higher can be improved, and a lithium ion battery having sufficient charge / discharge rate performance can be realized.

本発明のリチウムイオン電池によれば、本発明のリチウムイオン電池の電極用スラリーを用いた電極を備えたので、電極の充放電容量(特に、放電容量)を向上させることができ、充放電サイクルを安定化することができ、出力を高めることができる。したがって、高出力のリチウムイオン電池を提供することができる。   According to the lithium ion battery of the present invention, since the electrode using the slurry for the electrode of the lithium ion battery of the present invention is provided, the charge / discharge capacity (particularly, discharge capacity) of the electrode can be improved, and the charge / discharge cycle Can be stabilized and the output can be increased. Therefore, a high output lithium ion battery can be provided.

本発明のリチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池の最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of a slurry for forming an electrode of a lithium ion battery and a lithium ion battery of the present invention will be described.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

本発明のリチウムイオン電池の電極形成用スラリーは、電極活物質、導電助剤、バインダーおよび極性溶媒を含有してなるリチウムイオン電池の電極形成用スラリーであり、導電助剤は、粒径または形状の異なる2種以上の粒子からなる。
また、導電助剤を構成する粒子の少なくとも1種は粒径が50nm未満であって、他の種の粒子は粒径が50nm以上である。
また、導電助剤を構成する粒子の少なくとも1種はアスペクト比が3以上である。
さらに、導電助剤を構成する粒子の少なくとも1種は一次粒子が集合してなる二次粒子である。
The slurry for forming an electrode of the lithium ion battery of the present invention is a slurry for forming an electrode of a lithium ion battery containing an electrode active material, a conductive assistant, a binder and a polar solvent, and the conductive assistant has a particle size or a shape. It consists of two or more kinds of particles having different.
In addition, at least one of the particles constituting the conductive additive has a particle size of less than 50 nm, and the other types of particles have a particle size of 50 nm or more.
Further, at least one of the particles constituting the conductive assistant has an aspect ratio of 3 or more.
Furthermore, at least one of the particles constituting the conductive assistant is a secondary particle formed by aggregating primary particles.

ここで、粒径とは、透過型電子顕微鏡、反射型電子顕微鏡、光学顕微鏡などを用いて、画像解析法などで測定される平均粒径のことであり、具体的には、1個の粒子において最小部と最大部の平均値で表される大きさのことである。
アスペクト比が3以上の粒子とは、長径/短径比が3以上の粒子のことである。
Here, the particle size is an average particle size measured by an image analysis method using a transmission electron microscope, a reflection electron microscope, an optical microscope, or the like, and specifically, one particle. Is the size represented by the average value of the minimum and maximum portions.
The particles having an aspect ratio of 3 or more are particles having a major axis / minor axis ratio of 3 or more.

電極活物質としては、リチウムイオンを可逆的に脱挿入可能な性能を有するLi含有金属酸化物であればよい。正極用の電極活物質としては、例えば、鉄リン酸リチウム(LiFePO)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)などが好適に用いられる。負極用の電極活物質としては、例えば、チタン酸リチウム(LiTi12)などが好適に用いられる。
これらの電極活物質としては、固相法、液相法、気相法などの従来の方法により製造したものが用いられる。
The electrode active material may be any Li-containing metal oxide having a capability of reversibly removing and inserting lithium ions. As the electrode active material for the positive electrode, for example, lithium iron phosphate (LiFePO 4 ), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ) and the like are preferably used. As the electrode active material for the negative electrode, for example, lithium titanate (Li 4 Ti 5 O 12 ) or the like is preferably used.
As these electrode active materials, those produced by conventional methods such as a solid phase method, a liquid phase method, and a gas phase method are used.

また、電極活物質の形状や大きさに特に制限はないが、10C以上の高速充放電レートで使用するためには、電極活物質の平均粒径は5μm以下が好ましく、2μm以下がより好ましい。電極活物質の平均粒径が5μmを超えると、10C以上の高速充放電レートで使用する場合、電池の放電容量の低下が著しくなるおそれがある。   Further, the shape and size of the electrode active material are not particularly limited, but in order to use the electrode active material at a high-speed charge / discharge rate of 10 C or more, the average particle size of the electrode active material is preferably 5 μm or less, and more preferably 2 μm or less. When the average particle diameter of the electrode active material exceeds 5 μm, when used at a high-speed charge / discharge rate of 10 C or more, the battery discharge capacity may be significantly reduced.

ここで平均粒径とは、透過法または散乱法などを用いた各種粒度分布測定装置により測定される数平均粒径のことであり、具体的には、レーザー回折散乱法などの光学的測定方法、あるいは電子顕微鏡の画像解析法などで測定される平均粒径のことである。   Here, the average particle diameter is a number average particle diameter measured by various particle size distribution measuring apparatuses using a transmission method or a scattering method, and specifically, an optical measurement method such as a laser diffraction scattering method. Or the average particle diameter measured by an image analysis method of an electron microscope or the like.

導電助剤は、リチウムイオン電池を高出力化するために用いられるもので、炭素系導電助剤が好適に用いられる。
この導電助剤を構成する粒径が50nm未満の粒子および粒径が50nm以上の粒子としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、天然黒鉛、人造黒鉛などが好適に用いられる。これらの粒径が50nm未満の粒子と粒径が50nm以上の粒子は、異なる2種類の導電助剤を用いることもできる。また、粒径が50nm未満の粒子のみを用い、これを分散、凝集させることにより、粒径が50nm未満の粒子と、粒径が50nm以上の粒子とに作り分けたものも好適に用いられる。
The conductive auxiliary agent is used to increase the output of the lithium ion battery, and a carbon-based conductive auxiliary agent is preferably used.
For example, carbon black, acetylene black, ketjen black, natural graphite, artificial graphite and the like are preferably used as the particles having a particle size of less than 50 nm and the particles having a particle size of 50 nm or more. For these particles having a particle size of less than 50 nm and particles having a particle size of 50 nm or more, two different types of conductive assistants can be used. In addition, by using only particles having a particle size of less than 50 nm, and dispersing and aggregating the particles, particles having a particle size of less than 50 nm and particles having a particle size of 50 nm or more are preferably used.

また、導電助剤を構成するアスペクト比が3以上の粒子としては、例えば、カーボンナノチューブ、カーボンファイバーなどが好適に用いられる。   Moreover, as a particle | grain with an aspect ratio of 3 or more which comprises a conductive support agent, a carbon nanotube, carbon fiber, etc. are used suitably, for example.

導電助剤を構成する粒径が50nm未満の粒子は、電極活物質の表面に吸着し、電極活物質と電解液との間で活性点(三相界面)を形成し、リチウムイオンおよび電子の授受を行う。高速充放電レートでリチウムイオンおよび電子を授受するためには、この活性点を多数存在させることが有効である。したがって、導電助剤を粒径が50nm未満の粒子とすれば、この活性点を多数形成することができる。   Particles having a particle size of less than 50 nm constituting the conductive auxiliary agent are adsorbed on the surface of the electrode active material, forming an active point (three-phase interface) between the electrode active material and the electrolytic solution, and lithium ions and electrons. Give and receive. In order to exchange lithium ions and electrons at a high speed charge / discharge rate, it is effective to have a large number of active sites. Therefore, if the conductive auxiliary agent is a particle having a particle size of less than 50 nm, a large number of active points can be formed.

導電助剤を構成する粒径が50nm以上の粒子またはアスペクト比が3以上の粒子は、電極活物質間、および、電極活物質と集電体との間に導電経路を形成する。   Particles having a particle diameter of 50 nm or more or particles having an aspect ratio of 3 or more constituting the conductive auxiliary agent form a conductive path between the electrode active materials and between the electrode active material and the current collector.

粒径が50nm未満の粒子の電極活物質に対する含有量は、上記の活性点を十分に形成するように適宜調整されるが、電極活物質100重量部に対して、粒径が50nm未満の粒子が2重量部以上かつ30重量部以下の割合で含まれることが好ましく、5重量部以上かつ15重量部以下の割合で含まれることがより好ましい。電極活物質100重量部に対する粒径が50nm未満の粒子の含有量を2重量部以上かつ30重量部以下とした理由は、粒径が50nm未満の粒子の含有量が2重量部未満では、高速充電に十分な活性点を形成することができない。一方、粒径が50nm未満の粒子の含有量が30重量部を超えると、電極活物質の比率が小さくなるため、容量の小さな電池となってしまう。   The content of particles having a particle size of less than 50 nm with respect to the electrode active material is appropriately adjusted so as to sufficiently form the above active sites, but the particles having a particle size of less than 50 nm with respect to 100 parts by weight of the electrode active material. Is preferably contained in a proportion of 2 parts by weight or more and 30 parts by weight or less, and more preferably 5 parts by weight or more and 15 parts by weight or less. The reason why the content of particles having a particle diameter of less than 50 nm with respect to 100 parts by weight of the electrode active material is 2 parts by weight or more and 30 parts by weight or less is that the content of particles having a particle diameter of less than 50 nm is less than 2 parts by weight. An active point sufficient for charging cannot be formed. On the other hand, when the content of particles having a particle size of less than 50 nm exceeds 30 parts by weight, the ratio of the electrode active material becomes small, so that the battery has a small capacity.

粒径が50nm以上の粒子の電極活物質に対する含有量は、上記の導電経路を十分に形成するように適宜調整されるが、電極活物質100重量部に対して、粒径が50nm以上の粒子が1重量部以上かつ30重量部以下の割合で含まれることが好ましく、1重量部以上かつ15重量部以下の割合で含まれることがより好ましい。電極活物質100重量部に対する粒径が50nm以上の粒子の含有量を1重量部以上かつ30重量部以下とした理由は、粒径が50nm以上の粒子の含有量が1重量部未満では、高速充電に十分な導電経路を形成することができない。一方、粒径が50nm以上の粒子の含有量が30重量部を超えると、電極活物質の比率が小さくなるため、容量の小さな電池となってしまう。   The content of the particles having a particle size of 50 nm or more with respect to the electrode active material is appropriately adjusted so as to sufficiently form the above-described conductive path, but the particles having a particle size of 50 nm or more with respect to 100 parts by weight of the electrode active material. Is preferably contained in a proportion of 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less. The reason why the content of particles having a particle size of 50 nm or more with respect to 100 parts by weight of the electrode active material is 1 part by weight or more and 30 parts by weight or less is that the content of particles having a particle size of 50 nm or more is less than 1 part by weight. A conductive path sufficient for charging cannot be formed. On the other hand, when the content of particles having a particle size of 50 nm or more exceeds 30 parts by weight, the ratio of the electrode active material becomes small, resulting in a battery having a small capacity.

アスペクト比が3以上の粒子の電極活物質に対する含有量は、上記の導電経路を十分に形成するように適宜調整されるが、電極活物質100重量部に対して、アスペクト比が3以上の粒子が1重量部以上かつ30重量部以下の割合で含まれることが好ましく、1重量部以上かつ15重量部以下の割合で含まれることがより好ましい。電極活物質100重量部に対するアスペクト比が3以上の粒子の含有量を1重量部以上かつ30重量部以下とした理由は、アスペクト比が3以上の粒子の含有量が1重量部未満では、高速充電に十分な導電経路を形成することができない。一方、アスペクト比が3以上の粒子の含有量が30重量部を超えると、電極活物質の比率が小さくなるため、容量の小さな電池となってしまう。   The content of the particles having an aspect ratio of 3 or more with respect to the electrode active material is appropriately adjusted so as to sufficiently form the above conductive path. However, the particles having an aspect ratio of 3 or more with respect to 100 parts by weight of the electrode active material. Is preferably contained in a proportion of 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less. The reason why the content of particles having an aspect ratio of 3 or more with respect to 100 parts by weight of the electrode active material is 1 part by weight or more and 30 parts by weight or less is that the content of particles having an aspect ratio of 3 or more is less than 1 part by weight. A conductive path sufficient for charging cannot be formed. On the other hand, when the content of particles having an aspect ratio of 3 or more exceeds 30 parts by weight, the ratio of the electrode active material becomes small, so that a battery with a small capacity is obtained.

粒径が50nm未満の粒子と、粒径が50nm以上の粒子および/またはアスペクト比が3以上の粒子との配合比は、粒径が50nm未満の粒子:粒径が50nm以上の粒子および/またはアスペクト比が3以上の粒子=5重量%:95重量%以上かつ95重量%:5重量%以下が好ましく、粒径が50nm未満の粒子:粒径が50nm以上の粒子および/またはアスペクト比が3以上の粒子=15重量%:85重量%以上かつ95重量%:5重量%以下がより好ましい。粒径が50nm未満の粒子と、粒径が50nm以上の粒子および/またはアスペクト比が3以上の粒子との配合比を5重量%:95重量%以上かつ95重量%:5重量%以下とした理由は、粒径が50nm未満の粒子の配合比が5重量%未満では、十分な活性点を形成するだけの導電助剤が存在しないため、10C以上の充放電レートでの容量の低下を抑制することができない。一方、粒径が50nm未満の粒子の配合比が95重量%を超えると、導電経路を形成するため粒子が少なくなり、10C以上の充放電レートでの容量の低下を改善することができない。   The compounding ratio of particles having a particle size of less than 50 nm to particles having a particle size of 50 nm or more and / or particles having an aspect ratio of 3 or more is a particle having a particle size of less than 50 nm: particles having a particle size of 50 nm or more and / or Particles with an aspect ratio of 3 or more = 5% by weight: 95% by weight or more and 95% by weight: 5% by weight or less, particles having a particle size of less than 50 nm: particles having a particle size of 50 nm or more and / or an aspect ratio of 3 The above particles = 15 wt%: 85 wt% or more and 95 wt%: 5 wt% or less are more preferable. The blending ratio of particles having a particle size of less than 50 nm, particles having a particle size of 50 nm or more and / or particles having an aspect ratio of 3 or more was set to 5 wt%: 95 wt% or more and 95 wt%: 5 wt% or less. The reason is that when the blending ratio of the particles having a particle size of less than 50 nm is less than 5% by weight, there is no conductive auxiliary agent that can form a sufficient active site, so that the decrease in capacity at a charge / discharge rate of 10 C or more is suppressed. Can not do it. On the other hand, when the blending ratio of particles having a particle size of less than 50 nm exceeds 95% by weight, the number of particles is reduced because a conductive path is formed, and the reduction in capacity at a charge / discharge rate of 10 C or more cannot be improved.

また、粒径が50nm以上の粒子とアスペクト比が3以上の粒子の配合比は、粒径が50nm以上の粒子:アスペクト比が3以上の粒子=0重量%:100重量%〜100重量%:0重量%の範囲で、粒子の粒径やアスペクト比を考慮して、上記の導電経路を十分に形成するように適宜調整される。   The compounding ratio of the particles having a particle size of 50 nm or more and the particles having an aspect ratio of 3 or more is: particles having a particle size of 50 nm or more: particles having an aspect ratio of 3 or more = 0 wt%: 100 wt% to 100 wt%: In the range of 0% by weight, the above-mentioned conductive path is appropriately adjusted in consideration of the particle size and aspect ratio of the particles.

ここで、導電助剤を構成する粒子の少なくとも1種を粒径が50nm未満の粒子とした理由は、粒径が50nmを超える粒子は、10C以上の充放電レートで充放電するために十分な数の活性点を、電極活物質の表面に形成することができないからである。   Here, the reason why at least one of the particles constituting the conductive additive is a particle having a particle size of less than 50 nm is that the particles having a particle size of more than 50 nm are sufficient for charging and discharging at a charge / discharge rate of 10 C or more. This is because a number of active points cannot be formed on the surface of the electrode active material.

また、導電助剤を構成する粒子のうち、粒径が50nm未満の粒子以外の粒子は、粒径が50nm以上の粒子および/またはアスペクト比が3以上の粒子とした理由は、粒径が50nm未満の粒子またはアスペクト比が3未満の粒子は、電極形成用スラリーが乾燥して電極塗膜をなすまでの間に、電極塗膜内に生じる対流により、電極塗膜の表面に浮き上がってしまい、電極塗膜内で導電助剤が偏在し、導電経路が遮断されてしまうからである。   In addition, among the particles constituting the conductive assistant, the particles other than the particles having a particle size of less than 50 nm are particles having a particle size of 50 nm or more and / or particles having an aspect ratio of 3 or more. The particles having an aspect ratio of less than 3 float on the surface of the electrode coating film due to convection generated in the electrode coating film until the electrode forming slurry is dried to form the electrode coating film. This is because the conductive auxiliary agent is unevenly distributed in the electrode coating film and the conductive path is interrupted.

バインダーとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などの有機バインダーが好適に用いられる。   As the binder, organic binders such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC) are suitable. Used for.

バインダーの電極活物質に対する含有量は、所望の電極塗膜の強度などに応じて適宜調整されるが、電極活物質100重量部に対して、バインダーが1重量部以上かつ20重量部以下の割合で含まれることが好ましく、3重量部以上かつ15重量部以下の割合で含まれることがより好ましい。電極活物質100重量部に対するバインダーの含有量を1重量部以上かつ20重量部以下とした理由は、バインダーの含有量が1重量部未満では、集電体への電極塗膜の接着が困難となる。一方、バインダーの含有量が20重量部を超えると、電極活物質の比率が下がるため、容量の小さな電極となるばかりでなく、バインダーが絶縁性であるため、電極の抵抗が大きくなり、電池として動作しなくなるおそれがある。   The content of the binder with respect to the electrode active material is appropriately adjusted according to the strength of the desired electrode coating film, but the ratio of the binder is 1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the electrode active material. Preferably, it is contained in a proportion of 3 parts by weight or more and 15 parts by weight or less. The reason why the binder content relative to 100 parts by weight of the electrode active material is 1 part by weight or more and 20 parts by weight or less is that when the binder content is less than 1 part by weight, it is difficult to adhere the electrode coating to the current collector. Become. On the other hand, if the content of the binder exceeds 20 parts by weight, the ratio of the electrode active material is decreased, so that not only the electrode has a small capacity but also the binder is insulative, so that the resistance of the electrode is increased and the battery is May not work.

極性溶媒としては、電極活物質、導電助剤およびバインダーを溶解、分散させることができる有機溶媒、例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、トリメチルフォスフェート、メチルエチルケトン、テトラヒドロフランなどが挙げられる。   Examples of the polar solvent include organic solvents that can dissolve and disperse the electrode active material, the conductive additive, and the binder, such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, trimethyl phosphate, methyl ethyl ketone, and tetrahydrofuran.

極性溶媒の電極活物質、導電助剤およびバインダーの総量に対する含有量は、所望のリチウムイオン電池の電極形成用スラリーの粘度などに応じて適宜調整されるが、電極活物質、導電助剤およびバインダーの総量100重量部に対して、極性溶媒が20重量部以上かつ80重量部以下の割合で配合されることが好ましく、30重量部以上かつ70重量部以下の割合で含有していることがより好ましい。電極活物質、導電助剤およびバインダーの総量100重量部に対する極性溶媒の含有量を20重量部以上かつ80重量部以下とした理由は、極性溶媒の含有量が20重量部未満では、固形分の比率が高すぎて、電極形成用スラリーの粘度が高くなり、電極形成用スラリーを集電体に塗布することが困難となる。一方、極性溶媒の含有量が80重量部を超えると、固形分の比率が低すぎて、十分な厚みの電極塗膜を形成することが困難となる。   The content of the polar solvent with respect to the total amount of the electrode active material, conductive additive and binder is appropriately adjusted according to the viscosity of the electrode forming slurry of the desired lithium ion battery, but the electrode active material, conductive aid and binder It is preferable that the polar solvent is blended in a proportion of 20 parts by weight or more and 80 parts by weight or less, more preferably 30 parts by weight or more and 70 parts by weight or less, with respect to 100 parts by weight of the total amount. preferable. The reason for setting the content of the polar solvent to 20 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the total amount of the electrode active material, the conductive additive and the binder is that if the content of the polar solvent is less than 20 parts by weight, If the ratio is too high, the viscosity of the electrode forming slurry becomes high, and it becomes difficult to apply the electrode forming slurry to the current collector. On the other hand, when the content of the polar solvent exceeds 80 parts by weight, the ratio of the solid content is too low, and it becomes difficult to form an electrode coating film having a sufficient thickness.

本発明のリチウムイオン電池の電極形成用スラリーを作製する場合、通常の分散、混合方法を用いることもできるが、媒体撹拌型分散装置の容器に、電極活物質、導電助剤、バインダーおよび極性溶媒を、媒体粒子と共に投入する際に、媒体粒子のスラリー1ml中の個数が3500個以上となるように、電極活物質、導電助剤、バインダー、極性溶媒、媒体粒子それぞれの量を調製し、その後、撹拌・分散させる方法を用いることが望ましい。   When preparing the slurry for electrode formation of the lithium ion battery of the present invention, a normal dispersion and mixing method can be used, but an electrode active material, a conductive additive, a binder, and a polar solvent are placed in a container of a medium stirring type dispersion device. , The amount of electrode active material, conductive additive, binder, polar solvent, and medium particles are adjusted so that the number of medium particles in 1 ml of slurry is 3500 or more. It is desirable to use a method of stirring and dispersing.

通常、電極形成用スラリーを作製するには、電極活物質、導電助剤、バインダーおよび極性溶媒を、ボールミル、攪拌型混合機などを用いて混合する。しかしながら、この方法では、電極活物質および導電助剤に大きな剪断応力が加わらないため、導電助剤の分散が十分ではなく、導電助剤を構成する粒径が50nm未満の粒子を十分に分散することが難しい。そこで本発明では、導電助剤の分散に顔料分散装置としてよく用いられる媒体攪拌型分散装置を用いることが望ましい。   Usually, in order to prepare the slurry for electrode formation, an electrode active material, a conductive support agent, a binder, and a polar solvent are mixed using a ball mill, a stirring mixer, or the like. However, in this method, since a large shear stress is not applied to the electrode active material and the conductive auxiliary agent, the conductive auxiliary agent is not sufficiently dispersed, and particles having a particle diameter of less than 50 nm constituting the conductive auxiliary agent are sufficiently dispersed. It is difficult. Therefore, in the present invention, it is desirable to use a medium stirring type dispersing device that is often used as a pigment dispersing device for dispersing the conductive additive.

この媒体攪拌型分散装置は、電極活物質、導電助剤、バインダーおよび極性溶媒(これらを被分散材と総称する)と、多数の媒体粒子を容器内に投入し、被分散材料および媒体粒子を高速で撹拌することにより、媒体粒子を高速で流動させ、媒体粒子同士が衝突する際に媒体粒子間に電極活物質、導電助剤が捕捉され、衝突による衝撃、剪断作用を受けることにより分散するものである。媒体攪拌型分散装置としては、サンドミル、ペイントシェーカー、アトライタ、遊星ボールミル、振動ボールミルなどが挙げられるが、中でも媒体粒子を高速で攪拌できるサンドミルが好適である。   This medium agitating type dispersing apparatus is composed of an electrode active material, a conductive additive, a binder and a polar solvent (these are collectively referred to as a material to be dispersed) and a large number of medium particles in a container. By stirring at a high speed, the medium particles flow at a high speed, and when the medium particles collide with each other, the electrode active material and the conductive auxiliary agent are trapped between the medium particles, and are dispersed by receiving impact and shearing action due to the collision. Is. Examples of the medium stirring type dispersing device include a sand mill, a paint shaker, an attritor, a planetary ball mill, and a vibration ball mill. Among these, a sand mill capable of stirring medium particles at high speed is preferable.

この媒体攪拌型分散装置では、到達分散粒径および分散時間は、被分散材からなるスラリー体積あたりの媒体粒子数Nに依存する。
ここで、媒体粒子数Nは、下記の式(1)により算出することができる。
In this medium stirring type dispersing apparatus, the ultimate dispersed particle diameter and the dispersion time depend on the number N of medium particles per slurry volume made of the material to be dispersed.
Here, the number N of medium particles can be calculated by the following equation (1).

Figure 2007080652
Figure 2007080652

ただし、式(1)において、Vmは媒体粒子の見掛けの体積(cm)、Dmは媒体粒子の直径(cm)、Vsは被分散材スラリーの体積(ml)、をそれぞれ表す。 However, in Formula (1), Vm represents the apparent volume (cm 3 ) of the medium particles, Dm represents the diameter (cm) of the medium particles, and Vs represents the volume (ml) of the slurry to be dispersed.

媒体粒子としては、ガラスビーズ、アルミナビーズ、ジルコニアビーズ、ジルコンビーズ、チタニアビーズなどを挙げることができる。媒体粒子の径は上記の電極形成用スラリーの単位体積あたりの媒体個数を得ることができれば特に制限はなく、媒体粒子の径が小さければ、より少ない媒体粒子の使用量で多くの媒体粒子数となるので、媒体粒子径は小さいほどよい。   Examples of the medium particles include glass beads, alumina beads, zirconia beads, zircon beads, and titania beads. The diameter of the medium particles is not particularly limited as long as the number of media per unit volume of the electrode forming slurry can be obtained. If the diameter of the medium particles is small, the number of medium particles can be increased with a smaller amount of medium particles used. Therefore, the smaller the particle diameter of the medium, the better.

しかしながら、媒体粒子径が小さ過ぎると、媒体粒子の表面積の大きさを無視できなくなり、流動性が低下する。そこで、所望の流動性を得るためには、極性溶媒の量を増加させる必要があるが、相対的に固形分である被分散材の量が少なくなるため、生産効率が悪くなるという問題が生じる。また、媒体粒子1個の質量が軽くなるため、衝撃、剪断力が小さくなり、分散力が低下するという問題が生じる。したがって、媒体粒子の径としては、10μm以上かつ1mm以下とすることが好ましい。   However, if the medium particle diameter is too small, the size of the surface area of the medium particles cannot be ignored, and the fluidity decreases. Therefore, in order to obtain the desired fluidity, it is necessary to increase the amount of the polar solvent, but since the amount of the material to be dispersed, which is relatively solid, decreases, there arises a problem that the production efficiency deteriorates. . Moreover, since the mass of one medium particle becomes light, the impact and shear force become small and the problem that a dispersion force falls arises. Accordingly, the diameter of the medium particles is preferably 10 μm or more and 1 mm or less.

この媒体攪拌型分散装置によりリチウムイオン電池の電極形成用スラリーを製造する方法としては、通常、電極活物質、導電助剤、バインダーおよび極性溶媒をあらかじめ混合した後、媒体攪拌分散装置により分散処理するが、電極活物質と導電助剤は別個に所定粒度になるまで分散した後混合してもよい。   As a method for producing a slurry for forming an electrode of a lithium ion battery using this medium stirring type dispersing device, usually, an electrode active material, a conductive additive, a binder, and a polar solvent are mixed in advance and then dispersed using a medium stirring and dispersing device. However, the electrode active material and the conductive additive may be separately dispersed until a predetermined particle size is obtained, and then mixed.

また、上記の媒体攪拌型分散装置を用いた分散方法により、導電助剤を構成する粒径が50nm未満の粒子と、粒径が50nm以上の粒子および/またはアスペクト比が3以上の粒子とを、同時に分散してもよいが、粒径が50nm未満の粒子のみ上記の媒体攪拌型分散装置を用いた分散方法により分散し、粒径が50nm以上の粒子および/またはアスペクト比が3以上の粒子を従来の分散方法により分散してもよい。   Further, by a dispersion method using the above-mentioned medium agitation type dispersion device, particles having a particle size of less than 50 nm and particles having a particle size of 50 nm or more and / or particles having an aspect ratio of 3 or more constituting the conductive auxiliary agent. However, only particles having a particle size of less than 50 nm may be dispersed by the dispersion method using the above-mentioned medium stirring type dispersing device, and particles having a particle size of 50 nm or more and / or particles having an aspect ratio of 3 or more. May be dispersed by a conventional dispersion method.

また、本発明のリチウムイオン電池の電極形成用スラリーを、ロールコーター、ダイコーター、バーコーター、アプリケーターなどの通常のコーティング方法により、集電体に塗布した後、乾燥して電極塗膜を形成すれば、リチウムイオン電池の電極が得られる。一般的に、銅の集電体を用いれば負電極が得られ、また、アルミニウムの集電体を用いれば正電極が得られる。
ここで、図1は、電極活物質1、粒径が50nm未満の導電助剤2および粒径が50nm以上の導電助剤3を含有してなるリチウムイオン電池の電極形成用スラリーを集電体4に塗布した後、乾燥して形成した電極塗膜を示す概念図である。
また、図2は、電極活物質1、粒径が50nm未満の導電助剤2およびアスペクト比が3以上の導電助剤5を含有してなるリチウムイオン電池の電極形成用スラリーを集電体4に塗布した後、乾燥して形成した電極塗膜を示す概念図である。
In addition, the slurry for electrode formation of the lithium ion battery of the present invention is applied to a current collector by a usual coating method such as a roll coater, a die coater, a bar coater, an applicator, and then dried to form an electrode coating film. Thus, an electrode of a lithium ion battery can be obtained. In general, a negative electrode is obtained if a copper current collector is used, and a positive electrode is obtained if an aluminum current collector is used.
Here, FIG. 1 shows a slurry for forming an electrode of a lithium ion battery comprising an electrode active material 1, a conductive assistant 2 having a particle size of less than 50 nm, and a conductive assistant 3 having a particle size of 50 nm or more. It is a conceptual diagram which shows the electrode coating film formed by drying after apply | coating to 4. FIG.
FIG. 2 also shows a slurry for forming an electrode for a lithium ion battery comprising an electrode active material 1, a conductive assistant 2 having a particle size of less than 50 nm, and a conductive assistant 5 having an aspect ratio of 3 or more. It is a conceptual diagram which shows the electrode coating film formed by drying after apply | coating to.

この負電極および正電極の両方、あるいは、負電極または正電極のいずれか一方を用いることにより、本発明のリチウムイオン電池が得られる。
このリチウム電池は、電解質、セパレータおよび電池形状などは特に限定されるものではない。
このリチウム電池は、負電極および正電極の両方、あるいは、負電極または正電極のいずれか一方が、高い充填性、高純度であり、電極活物質の表面に十分な活性点を有する上に、電極活物質間、および、電極活物質と集電体との間に十分な導電経路を有する本発明によって得られる電極材料によって形成されたものであるから、温度環境に依存し難く、かつ高い充放電容量、安定した充放電サイクル性能を備えたものであり、高出力化が達成されたものである。
By using both the negative electrode and the positive electrode, or either the negative electrode or the positive electrode, the lithium ion battery of the present invention can be obtained.
The lithium battery is not particularly limited in terms of electrolyte, separator, and battery shape.
In this lithium battery, both the negative electrode and the positive electrode, or either the negative electrode or the positive electrode has high filling property and high purity, and has a sufficient active point on the surface of the electrode active material. Since it is formed by the electrode material obtained by the present invention having a sufficient conductive path between the electrode active materials and between the electrode active material and the current collector, it does not depend on the temperature environment and is highly charged. It has a discharge capacity and stable charge / discharge cycle performance, and achieves high output.

以下、実施例1〜3および比較例1、2により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
例えば、本実施例では、電極活物質として、LiFePOのみを用いたが、本発明はこれに限定されるものではなく、電極活物質として、他の正極活物質、負極活物質を用いてもよい。
また、本実施例では、電極材料自体の挙動をデータに反映させるため、負極に金属Liを用いたが、炭素材料、Li合金、LiTi12などの負極材料を用いてもかまわない。また電解液とセパレータの代わりに固体電解質を用いてもよい。
EXAMPLES Hereinafter, although this invention is demonstrated concretely by Examples 1-3 and Comparative Examples 1 and 2, this invention is not limited by these Examples.
For example, in this example, only LiFePO 4 was used as the electrode active material, but the present invention is not limited to this, and other positive electrode active materials and negative electrode active materials may be used as the electrode active material. Good.
In this example, in order to reflect the behavior of the electrode material itself in the data, metal Li was used for the negative electrode. However, a negative electrode material such as a carbon material, a Li alloy, or Li 4 Ti 5 O 12 may be used. . A solid electrolyte may be used instead of the electrolytic solution and the separator.

「実施例1」
正極活物質としてLiFePO(超微粒子LiFePO、NP−1、住友大阪セメント社製)85重量部、平均一次粒径11nmのカーボンブラック(デグサ社製)5重量部、ポリフッ化ビニリデン(PVdF、呉羽化学社製)5重量部、1−メチル2−ピロリドン(NMP)71.25重量部を混合し、混合物を得た。
この混合物に対して、媒体粒子として直径が0.25mmのジルコニアビーズを使用し、サンドミルを用いてディスク回転周速10m/秒の速さで1時間、分散を行った。
次いで、この混合物に平均一次粒径35nmのアセチレンブラック(デンカブラック、電気化学工業社製)5重量部を混合し、ディスク回転周速6m/秒の速さで30分間、混合を行い、正極活物質スラリーを得た。
その後、得られた正極活物質スラリーを走査電子顕微鏡(SEM)にて観察したところ、平均一次粒径11nmのカーボンブラックのほとんどは、平均粒径が約20nmの粒子として分散されていた。また、平均一次粒径35nmのアセチレンブラックのほとんどは、平均粒径が約120nmの粒子として分散されていた。
"Example 1"
As a positive electrode active material, 85 parts by weight of LiFePO 4 (ultrafine particle LiFePO 4 , NP-1, manufactured by Sumitomo Osaka Cement), 5 parts by weight of carbon black (manufactured by Degussa) with an average primary particle size of 11 nm, polyvinylidene fluoride (PVdF, Kureha) 5 parts by weight of Chemical Co., Ltd. and 71.25 parts by weight of 1-methyl-2-pyrrolidone (NMP) were mixed to obtain a mixture.
The mixture was dispersed for 1 hour using a zirconia bead having a diameter of 0.25 mm as a medium particle and using a sand mill at a disc rotating peripheral speed of 10 m / sec.
Next, 5 parts by weight of acetylene black (DENKA BLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average primary particle size of 35 nm is mixed with this mixture and mixed for 30 minutes at a disk rotational peripheral speed of 6 m / sec. A material slurry was obtained.
Thereafter, when the obtained positive electrode active material slurry was observed with a scanning electron microscope (SEM), most of the carbon black having an average primary particle size of 11 nm was dispersed as particles having an average particle size of about 20 nm. Most of acetylene black having an average primary particle size of 35 nm was dispersed as particles having an average particle size of about 120 nm.

「実施例2」
平均一次粒径35nmのアセチレンブラック5重量部に代えて、短径5nm、長径1500nm、アスペクト比300のシングルウォールカーボンナノチューブ(Carbon Nanotechnologies Inc.製)5重量部を用いた以外は実施例1と同様にして、正極活物質スラリーを得た。
その後、得られた正極活物質スラリーを走査電子顕微鏡(SEM)にて観察したところ、平均一次粒径11nmのカーボンブラックのほとんどは、平均粒径が約20nmの粒子として分散されていた。
"Example 2"
The same as Example 1 except that 5 parts by weight of single wall carbon nanotubes (manufactured by Carbon Nanotechnologies Inc.) having a minor axis of 5 nm, a major axis of 1500 nm, and an aspect ratio of 300 were used instead of 5 parts by weight of acetylene black having an average primary particle size of 35 nm. Thus, a positive electrode active material slurry was obtained.
Thereafter, when the obtained positive electrode active material slurry was observed with a scanning electron microscope (SEM), most of the carbon black having an average primary particle size of 11 nm was dispersed as particles having an average particle size of about 20 nm.

「実施例3」
平均一次粒径35nmのアセチレンブラック5重量部に代えて、短径15nm、長径150nm、アスペクト比10のカーボンファイバー(VG−CF、昭和電工社製)5重量部を用いた以外は実施例1と同様にして、正極活物質スラリーを得た。
その後、得られた正極活物質スラリーを走査電子顕微鏡(SEM)にて観察したところ、平均一次粒径11nmのカーボンブラックのほとんどは、平均粒径が約20nmの粒子として分散されていた。
"Example 3"
Example 1 except that 5 parts by weight of carbon fiber (VG-CF, Showa Denko KK) having a minor axis of 15 nm, a major axis of 150 nm, and an aspect ratio of 10 was used instead of 5 parts by weight of acetylene black having an average primary particle size of 35 nm. Similarly, a positive electrode active material slurry was obtained.
Thereafter, when the obtained positive electrode active material slurry was observed with a scanning electron microscope (SEM), most of the carbon black having an average primary particle size of 11 nm was dispersed as particles having an average particle size of about 20 nm.

「実施例4」
平均一次粒径35nmのアセチレンブラック5重量部に代えて、平均一次粒径35nmのアセチレンブラック2.5重量部と、短径5nm、長径1500nm、アスペクト比のシングルウォールカーボンナノチューブ(Carbon Nanotechnologies Inc.製)2.5重量部とを用いた以外は実施例1と同様にして、正極活物質スラリーを得た。
その後、得られた正極活物質スラリーを走査電子顕微鏡(SEM)にて観察したところ、平均一次粒径11nmのカーボンブラックのほとんどは、平均粒径が約20nmの粒子として分散されていた。また、平均一次粒径35nmのアセチレンブラックのほとんどは、平均粒径が約120nmの粒子として分散されていた。
Example 4
Instead of 5 parts by weight of acetylene black having an average primary particle size of 35 nm, 2.5 parts by weight of acetylene black having an average primary particle size of 35 nm, single wall carbon nanotubes having a short diameter of 5 nm, a long diameter of 1500 nm and an aspect ratio (manufactured by Carbon Nanotechnologies Inc.). ) A positive electrode active material slurry was obtained in the same manner as in Example 1 except that 2.5 parts by weight were used.
Thereafter, when the obtained positive electrode active material slurry was observed with a scanning electron microscope (SEM), most of the carbon black having an average primary particle size of 11 nm was dispersed as particles having an average particle size of about 20 nm. Most of acetylene black having an average primary particle size of 35 nm was dispersed as particles having an average particle size of about 120 nm.

「比較例1」
正極活物質としてLiFePO(超微粒子LiFePO、NP−1、住友大阪セメント社製)85重量部、平均一次粒径11nmのカーボンブラック(デグサ社製)10重量部、ポリフッ化ビニリデン(PVdF、呉羽化学社製)5重量部、1−メチル2−ピロリドン(NMP)71.25重量部を混合し、混合物を得た。
この混合物に対して、媒体粒子として直径が0.25mmのジルコニアビーズを使用し、サンドミルを用いてディスク回転周速10m/秒の速さで1時間、分散を行い、正極活物質スラリーを得た。
その後、得られた正極活物質スラリーを走査電子顕微鏡(SEM)にて観察したところ、平均一次粒径11nmのカーボンブラックのほとんどは、平均粒径が約20nmの粒子として分散されていた。
“Comparative Example 1”
As a positive electrode active material, 85 parts by weight of LiFePO 4 (ultrafine particle LiFePO 4 , NP-1, manufactured by Sumitomo Osaka Cement), 10 parts by weight of carbon black (manufactured by Degussa) with an average primary particle size of 11 nm, polyvinylidene fluoride (PVdF, Kureha) 5 parts by weight of Chemical Co., Ltd. and 71.25 parts by weight of 1-methyl-2-pyrrolidone (NMP) were mixed to obtain a mixture.
For this mixture, zirconia beads having a diameter of 0.25 mm were used as medium particles, and dispersion was performed for 1 hour at a disk rotating peripheral speed of 10 m / sec using a sand mill, to obtain a positive electrode active material slurry. .
Thereafter, when the obtained positive electrode active material slurry was observed with a scanning electron microscope (SEM), most of the carbon black having an average primary particle size of 11 nm was dispersed as particles having an average particle size of about 20 nm.

「比較例2」
カーボンブラック10重量部に代えて、平均一次粒径35nmのアセチレンブラック(デンカブラック、電気化学工業社製)10重量部を用いた以外は比較例1と同様にして、正極活物質スラリーを得た。
その後、得られた正極活物質スラリーを走査電子顕微鏡(SEM)にて観察したところ、平均一次粒径35nmのアセチレンブラックのほとんどは、平均粒径が約120nmの粒子として分散されていた。
"Comparative Example 2"
A positive electrode active material slurry was obtained in the same manner as in Comparative Example 1 except that 10 parts by weight of acetylene black (Denka Black, Denki Kagaku Kogyo Co., Ltd.) having an average primary particle size of 35 nm was used instead of 10 parts by weight of carbon black. .
Thereafter, when the obtained positive electrode active material slurry was observed with a scanning electron microscope (SEM), most of the acetylene black having an average primary particle size of 35 nm was dispersed as particles having an average particle size of about 120 nm.

「リチウムイオン電池の作製」
実施例1にて得られた正極活物質スラリーを、厚みが30μmのアルミニウム(Al)箔上に塗布し、その後、真空乾燥機を用いて真空乾燥し、その後、圧着し、正極(正の電極)とした。
次いで、乾燥Ar雰囲気下にてステンレススチール(SUS)製の2016コイン型セルを用いて、実施例1のリチウムイオン電池を作製した。
なお、負極には金属Liを、セパレータには多孔質ボリプロピレン膜を、電解質溶液には1mol/LのLiPF溶液を、それぞれ用いた。このLiPF溶液の溶媒としては、炭酸エチレンと炭酸ジエチルとの比が1:1のものを用いた。
“Production of lithium-ion batteries”
The positive electrode active material slurry obtained in Example 1 was applied onto an aluminum (Al) foil having a thickness of 30 μm, then vacuum-dried using a vacuum dryer, and then pressure-bonded to form a positive electrode (positive electrode ).
Subsequently, the lithium ion battery of Example 1 was produced using the 2016 coin type cell made from stainless steel (SUS) in dry Ar atmosphere.
Metal Li was used for the negative electrode, a porous polypropylene film was used for the separator, and a 1 mol / L LiPF 6 solution was used for the electrolyte solution. As a solvent for this LiPF 6 solution, a solvent having a ratio of ethylene carbonate to diethyl carbonate of 1: 1 was used.

また、実施例2〜4および比較例1、2それぞれの正極活物質スラリーを用い、実施例1のリチウムイオン電池と全く同様にして実施例2〜4および比較例1、2それぞれのリチウムイオン電池を作製した。   Further, each of the positive electrode active material slurries of Examples 2 to 4 and Comparative Examples 1 and 2 was used, and the lithium ion batteries of Examples 2 to 4 and Comparative Examples 1 and 2 were exactly the same as the lithium ion battery of Example 1. Was made.

「電池充放電試験」
実施例1〜4および比較例1、2各々のリチウムイオン電池の充放電試験を行った。
ここでは、カットオフ電圧を2〜4.5V、充放電レートを0.1Cから50Cの範囲で変化させ、試験の環境温度は、25℃(室温)とした。
実施例1〜4および比較例1、2各々のリチウムイオン電池の充放電試験結果を、表1および図3に示す。
なお、ここでは、30Cにおける放電容量の1Cにおける放電容量に対する比を、出力性能とした。
"Battery charge / discharge test"
The charge / discharge test of each lithium ion battery in Examples 1 to 4 and Comparative Examples 1 and 2 was performed.
Here, the cut-off voltage was changed from 2 to 4.5 V, the charge / discharge rate was changed in the range of 0.1 C to 50 C, and the environmental temperature of the test was 25 ° C. (room temperature).
The charge / discharge test results of the lithium ion batteries of Examples 1 to 4 and Comparative Examples 1 and 2 are shown in Table 1 and FIG.
Here, the ratio of the discharge capacity at 30 C to the discharge capacity at 1 C was defined as output performance.

Figure 2007080652
Figure 2007080652

以上の結果によれば、実施例1〜4のリチウムイオン電池では、比較例1、2のリチウムイオン電池と比べて、0.1Cという低速充放電レートから50Cという高速充放電レートの範囲にわたって、放電容量、出力性能共に優れており、高エネルギー密度を維持しつつ高出力化を達成することができることが分かった。特に、10C以上の高速充放電レートにおいても放電容量の低下が少ないことが分かった。   According to the above results, in the lithium ion batteries of Examples 1 to 4, compared with the lithium ion batteries of Comparative Examples 1 and 2, over the range of the low speed charge / discharge rate of 0.1C to the high speed charge / discharge rate of 50C, It was found that both the discharge capacity and the output performance are excellent, and it is possible to achieve a high output while maintaining a high energy density. In particular, it has been found that there is little reduction in discharge capacity even at a high-speed charge / discharge rate of 10 C or higher.

本発明のリチウムイオン電池の電極形成用スラリーは、電極活物質、導電助剤、バインダーおよび極性溶媒を含有し、導電助剤は粒径または形状の異なる2種以上の粒子からなるから、10C以上の高速充放電レートにおいても放電容量の低下が少ないリチウムイオン電池を作製することができ、リチウムイオン電池の特徴である高エネルギー密度を維持しつつ高出力化を達成することができるのはもちろんのこと、高出力が要求される電気自動車、ハイブリッド自動車などの移動体用電源、電動工具などの電源、あるいは発電設備の負荷平準化用途などの分野に対しても適用することが可能であり、その効果は非常に大きなものである。   Since the slurry for electrode formation of the lithium ion battery of the present invention contains an electrode active material, a conductive assistant, a binder and a polar solvent, and the conductive assistant is composed of two or more kinds of particles having different particle sizes or shapes, the slurry is 10C or more. It is possible to produce a lithium-ion battery with little reduction in discharge capacity even at a high-speed charge / discharge rate, and it is possible to achieve high output while maintaining the high energy density that is characteristic of lithium-ion batteries. In addition, it can also be applied to fields such as power sources for mobile bodies such as electric vehicles and hybrid vehicles that require high output, power sources such as electric tools, and load leveling applications for power generation facilities. The effect is very large.

本発明のリチウムイオン電池の電極形成用スラリーを用いて形成した電極塗膜の一例を示す概念図である。It is a conceptual diagram which shows an example of the electrode coating film formed using the slurry for electrode formation of the lithium ion battery of this invention. 本発明のリチウムイオン電池の電極形成用スラリーを用いて形成した電極塗膜の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the electrode coating film formed using the slurry for electrode formation of the lithium ion battery of this invention. リチウムイオン電池の充放電試験結果を示すグラフである。It is a graph which shows the charging / discharging test result of a lithium ion battery. 従来のリチウムイオン電池の電極形成用スラリーを用いて形成した電極塗膜の一例を示す概念図である。It is a conceptual diagram which shows an example of the electrode coating film formed using the slurry for electrode formation of the conventional lithium ion battery.

符号の説明Explanation of symbols

1 電極活物質
2 粒径が50nm未満の導電助剤
3 粒径が50nm以上の導電助剤
4 集電体
5 アスペクト比が3以上の導電助剤
DESCRIPTION OF SYMBOLS 1 Electrode active material 2 Conductive auxiliary agent with a particle size of less than 50 nm 3 Conductive auxiliary agent with a particle size of 50 nm or more 4 Current collector 5 Conductive auxiliary agent with an aspect ratio of 3 or more

Claims (5)

電極活物質、導電助剤、バインダーおよび極性溶媒を含有してなるリチウムイオン電池の電極形成用スラリーであって、
前記導電助剤は、粒径または形状の異なる2種以上の粒子からなることを特徴とするリチウムイオン電池の電極形成用スラリー。
A slurry for forming an electrode of a lithium ion battery comprising an electrode active material, a conductive additive, a binder and a polar solvent,
2. The electrode forming slurry for a lithium ion battery, wherein the conductive auxiliary agent comprises two or more kinds of particles having different particle sizes or shapes.
前記粒子の少なくとも1種は粒径が50nm未満であって、他の種の粒子は粒径が50nm以上であることを特徴とする請求項1に記載のリチウムイオン電池の電極形成用スラリー。   2. The slurry for forming an electrode of a lithium ion battery according to claim 1, wherein at least one of the particles has a particle size of less than 50 nm, and the other particles have a particle size of 50 nm or more. 前記粒子の少なくとも1種はアスペクト比が3以上であることを特徴とする請求項1に記載のリチウムイオン電池の電極形成用スラリー。   The slurry for forming an electrode of a lithium ion battery according to claim 1, wherein at least one of the particles has an aspect ratio of 3 or more. 前記粒子の少なくとも1種は一次粒子が集合してなる二次粒子であることを特徴とする請求項1ないし3のいずれかに記載のリチウムイオン電池の電極形成用スラリー。   The slurry for forming an electrode of a lithium ion battery according to any one of claims 1 to 3, wherein at least one of the particles is a secondary particle formed by aggregating primary particles. 請求項1ないし4に記載のリチウムイオン電池の電極形成用スラリーを用いた電極を備えてなることを特徴とするリチウムイオン電池。

A lithium ion battery comprising an electrode using the slurry for forming an electrode for a lithium ion battery according to claim 1.

JP2005266492A 2005-09-14 2005-09-14 Slurry for forming lithium ion battery electrode and lithium ion battery Pending JP2007080652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266492A JP2007080652A (en) 2005-09-14 2005-09-14 Slurry for forming lithium ion battery electrode and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266492A JP2007080652A (en) 2005-09-14 2005-09-14 Slurry for forming lithium ion battery electrode and lithium ion battery

Publications (1)

Publication Number Publication Date
JP2007080652A true JP2007080652A (en) 2007-03-29

Family

ID=37940730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266492A Pending JP2007080652A (en) 2005-09-14 2005-09-14 Slurry for forming lithium ion battery electrode and lithium ion battery

Country Status (1)

Country Link
JP (1) JP2007080652A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181850A (en) * 2006-10-19 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008243529A (en) * 2007-03-27 2008-10-09 Hitachi Vehicle Energy Ltd Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2009158396A (en) * 2007-12-27 2009-07-16 Toshiba Corp Nonaqueous electrolyte battery
WO2009093504A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Electrode and method for producing electrode
WO2011016574A1 (en) * 2009-08-04 2011-02-10 住友化学株式会社 Powder material and positive electrode mix
WO2011062019A1 (en) 2009-11-18 2011-05-26 電気化学工業株式会社 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
CN102569751A (en) * 2010-12-08 2012-07-11 比亚迪股份有限公司 Alkaline manganese battery positive electrode material and alkaline manganese battery
WO2013073562A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
WO2013073561A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
WO2013179909A1 (en) * 2012-05-31 2013-12-05 三菱マテリアル株式会社 Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
CN103531814A (en) * 2013-10-28 2014-01-22 深圳格林德能源有限公司 Composite conductive agent, dispersion method thereof, positive plate and lithium ion battery
JPWO2012132958A1 (en) * 2011-03-31 2014-07-28 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
WO2015147234A1 (en) * 2014-03-28 2015-10-01 帝人株式会社 Fibrous carbon-containing electrode mixture layer for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries comprising same, and nonaqueous electrolyte secondary battery
US20160072120A1 (en) * 2014-09-10 2016-03-10 Toyota Jidosha Kabushiki Kaisha Cathode mixture, cathode, solid battery and method for producing cathode mixture, cathode and solid battery
KR20170009097A (en) * 2015-07-15 2017-01-25 주식회사 엘지화학 Cathode improved conductivity and electrochemical device including the same
KR101761524B1 (en) * 2015-12-09 2017-07-25 주식회사 엘지화학 Positive electrode material slurry for a lithium secondary battery comprising at least two conductive material and lithium secondary battery using same
JP2018120845A (en) * 2017-01-25 2018-08-02 住友金属鉱山株式会社 Positive electrode mixture paste for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
WO2019073830A1 (en) 2017-10-10 2019-04-18 デンカ株式会社 Positive electrode composition for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
WO2019216275A1 (en) 2018-05-08 2019-11-14 デンカ株式会社 Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
CN110581256A (en) * 2019-10-17 2019-12-17 朱虎 Preparation method of lithium iron phosphate anode
WO2020111201A1 (en) 2018-11-28 2020-06-04 デンカ株式会社 Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
JP2022100812A (en) * 2020-12-24 2022-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181850A (en) * 2006-10-19 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008243529A (en) * 2007-03-27 2008-10-09 Hitachi Vehicle Energy Ltd Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US8431273B2 (en) 2007-12-27 2013-04-30 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery
JP2009158396A (en) * 2007-12-27 2009-07-16 Toshiba Corp Nonaqueous electrolyte battery
US20100297497A1 (en) * 2008-01-23 2010-11-25 Koji Takahata Electrode and method for producing electrode
KR101174572B1 (en) 2008-01-23 2012-08-16 도요타지도샤가부시키가이샤 Electrode and method for producing electrode
US8753780B2 (en) 2008-01-23 2014-06-17 Toyota Jidosha Kabushiki Kaisha Electrode including barrier layer containing two conductive powders with different particle diameters and method for producing the same
WO2009093504A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Electrode and method for producing electrode
WO2011016574A1 (en) * 2009-08-04 2011-02-10 住友化学株式会社 Powder material and positive electrode mix
CN102473899A (en) * 2009-08-04 2012-05-23 住友化学株式会社 Powder material and positive electrode mix
WO2011062019A1 (en) 2009-11-18 2011-05-26 電気化学工業株式会社 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
KR20120093874A (en) 2009-11-18 2012-08-23 덴키 가가쿠 고교 가부시기가이샤 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
US8597835B2 (en) 2009-11-18 2013-12-03 Denki Kagaku Kogyo Kabushiki Kaisha Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
CN102569751A (en) * 2010-12-08 2012-07-11 比亚迪股份有限公司 Alkaline manganese battery positive electrode material and alkaline manganese battery
JP6049611B2 (en) * 2011-03-31 2016-12-21 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JPWO2012132958A1 (en) * 2011-03-31 2014-07-28 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
WO2013073562A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
WO2013073561A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
KR20140096120A (en) 2011-11-15 2014-08-04 덴키 가가쿠 고교 가부시기가이샤 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
KR20140103117A (en) 2011-11-15 2014-08-25 덴키 가가쿠 고교 가부시기가이샤 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
US10873073B2 (en) 2011-11-15 2020-12-22 Denka Company Limited Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
WO2013179909A1 (en) * 2012-05-31 2013-12-05 三菱マテリアル株式会社 Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
CN103531814A (en) * 2013-10-28 2014-01-22 深圳格林德能源有限公司 Composite conductive agent, dispersion method thereof, positive plate and lithium ion battery
WO2015147234A1 (en) * 2014-03-28 2015-10-01 帝人株式会社 Fibrous carbon-containing electrode mixture layer for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries comprising same, and nonaqueous electrolyte secondary battery
JPWO2015147234A1 (en) * 2014-03-28 2017-04-13 帝人株式会社 Electrode mixture layer for non-aqueous electrolyte secondary battery containing fibrous carbon, electrode for non-aqueous electrolyte secondary battery including the same, and non-aqueous electrolyte secondary battery
US11205773B2 (en) 2014-03-28 2021-12-21 Teijin Limited Fibrous carbon-containing electrode mixture layer for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries comprising same, and nonaqueous electrolyte secondary battery
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US9780360B2 (en) * 2014-09-10 2017-10-03 Toyota Jidosha Kabushiki Kaisha Cathode mixture, cathode, solid battery and method for producing cathode mixture, cathode and solid battery
CN105406033A (en) * 2014-09-10 2016-03-16 丰田自动车株式会社 Cathode Mixture, Cathode, Solid Battery And Method For Producing Cathode Mixture, Cathode And Solid Battery
US20160072120A1 (en) * 2014-09-10 2016-03-10 Toyota Jidosha Kabushiki Kaisha Cathode mixture, cathode, solid battery and method for producing cathode mixture, cathode and solid battery
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
KR20170009097A (en) * 2015-07-15 2017-01-25 주식회사 엘지화학 Cathode improved conductivity and electrochemical device including the same
KR101761524B1 (en) * 2015-12-09 2017-07-25 주식회사 엘지화학 Positive electrode material slurry for a lithium secondary battery comprising at least two conductive material and lithium secondary battery using same
US10128508B2 (en) 2015-12-09 2018-11-13 Lg Chem, Ltd. Positive electrode material slurry for lithium secondary battery including at least two conductive materials and lithium secondary battery using the same
JP2018501602A (en) * 2015-12-09 2018-01-18 エルジー・ケム・リミテッド Positive electrode slurry for a lithium secondary battery containing at least two kinds of conductive materials, and a lithium secondary battery using the same
EP3203560A4 (en) * 2015-12-09 2017-11-08 LG Chem, Ltd. Lithium secondary battery positive electrode material slurry comprising at least two types of conductive materials, and lithium secondary battery using same
JP2018120845A (en) * 2017-01-25 2018-08-02 住友金属鉱山株式会社 Positive electrode mixture paste for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP7238253B2 (en) 2017-01-25 2023-03-14 住友金属鉱山株式会社 Positive electrode mixture paste for non-aqueous electrolyte secondary battery and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
KR20200073241A (en) 2017-10-10 2020-06-23 덴카 주식회사 Anode composition for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
WO2019073830A1 (en) 2017-10-10 2019-04-18 デンカ株式会社 Positive electrode composition for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2019216275A1 (en) 2018-05-08 2019-11-14 デンカ株式会社 Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
KR20210006377A (en) 2018-05-08 2021-01-18 덴카 주식회사 Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2020111201A1 (en) 2018-11-28 2020-06-04 デンカ株式会社 Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
KR20210094055A (en) 2018-11-28 2021-07-28 덴카 주식회사 The positive electrode composition for lithium ion secondary batteries, the positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery
CN110581256A (en) * 2019-10-17 2019-12-17 朱虎 Preparation method of lithium iron phosphate anode
JP2022100812A (en) * 2020-12-24 2022-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
JP7237055B2 (en) 2020-12-24 2023-03-10 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2007080652A (en) Slurry for forming lithium ion battery electrode and lithium ion battery
CN109923705B (en) Method for preparing battery anode slurry
JP5561559B2 (en) Method for manufacturing lithium secondary battery
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
US20070190422A1 (en) Carbon nanotube lithium metal powder battery
JP2006309958A (en) Slurry for forming lithium ion battery electrode, manufacturing method of the same, and lithium ion battery
JP2009048921A (en) Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
WO2017031943A1 (en) Method for preparing negative electrode paste for high-capacity silica-powder-doped lithium battery
Jantke et al. Silicon-dominant anodes based on microscale silicon particles under partial lithiation with high capacity and cycle stability
JP2006202724A (en) Positive electrode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP2000021407A (en) Lithium secondary battery
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
JP2011014457A (en) Positive electrode composition for nonaqueous secondary battery
CN105047857B (en) The positive pole and its manufacture method of rechargeable nonaqueous electrolytic battery
CN115020696A (en) Positive electrode active material, electrochemical device, and electronic device
JP5239153B2 (en) Electrode material composite method, electrode and lithium ion battery
JPH11213989A (en) Manufacture of positive electrode material for lithium secondary battery
JP5557619B2 (en) Nonaqueous electrolyte secondary battery
JP2009252398A (en) Inspection method of composition for forming negative electrode active material layer of lithium secondary battery, and manufacturing method of the battery
JP4452595B2 (en) Composite material containing sulfur and / or sulfur compound and method for producing the same
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
JP2015176744A (en) Method of manufacturing secondary battery
JP2014235856A (en) Nonaqueous electrolyte secondary battery
JP2016126900A (en) Manufacturing method for secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105