JPH01283813A - Epitaxial growth device - Google Patents

Epitaxial growth device

Info

Publication number
JPH01283813A
JPH01283813A JP11314088A JP11314088A JPH01283813A JP H01283813 A JPH01283813 A JP H01283813A JP 11314088 A JP11314088 A JP 11314088A JP 11314088 A JP11314088 A JP 11314088A JP H01283813 A JPH01283813 A JP H01283813A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
susceptor
silicon epitaxial
substrate
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11314088A
Other languages
Japanese (ja)
Inventor
Yoichi Tsukuyama
筑山 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP11314088A priority Critical patent/JPH01283813A/en
Publication of JPH01283813A publication Critical patent/JPH01283813A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To seek to restrain the generation of slipping dislocation, and dispersion of resistivity and thickness of silicon epitaxial layer, by providing a recessed pocket equal to or larger than a semiconductor substrate 1, whose bottom face is compound shape of spherical surface and flat surface, at the main surface of a susceptor. CONSTITUTION:It is constituted such that a recessed pocket having the size equal to or larger than a semiconductor substrate 1, whose bottom face is a compound shape of spherical surface and flat surface, is provided at the main surface of a susceptor 2. When the semiconductor substrate 1 is heated by the use of this susceptor 2, a warp arises in the semiconductor substrate 1 by the temperature difference between the obverse and the reverse of the semiconductor substrate 1. But the pocket applied to the susceptor 2 is so made that the periphery and the center of the semiconductor substrate 1 may contact with the susceptor when the semiconductor substrate 1 is warped, so the temperature inside the surface of the semiconductor substrate 1 becomes uniform, and the warp caused by the temperature inside said substrate surface is softened. Hereby, it can restrain generation of slip dislocation of the semiconductor substrate 1, dispersion in resistivity and thickness of silicon epitaxial layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、単結晶シリコン層を成長させるエピタキシャ
ル成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an epitaxial growth apparatus for growing single crystal silicon layers.

従来の技術 シリコンエピタキシャル成長技術は、とくに埋込みコレ
クタ層を有するブレーナ型バイポーラデバイスでは必要
不可欠なものとなっている。
BACKGROUND OF THE INVENTION Silicon epitaxial growth techniques have become indispensable, especially in Brehner-type bipolar devices with buried collector layers.

ところが、シリコンエピタキシャル成長時に発生するす
べり転位は、前記シリコンエピタキシャル成長層上に形
成される半導体装置の特性を著しく劣化させ、ひいては
半導体装置の歩留りを低下させる。
However, slip dislocations generated during silicon epitaxial growth significantly deteriorate the characteristics of a semiconductor device formed on the silicon epitaxial growth layer, and further reduce the yield of the semiconductor device.

また、シリコンエピタキシャル成長層の比抵抗、および
成長層厚みのばらつきも半導体装置の特性、歩留りへの
影響が大きい。
Furthermore, variations in the specific resistance of the silicon epitaxially grown layer and the thickness of the grown layer have a large influence on the characteristics and yield of the semiconductor device.

以下に高周波誘導加熱を用いたシリコンエピタキシャル
成長装置の従来の基板保持体(以下、サセプタと記す)
について説明する。
Below is a conventional substrate holder (hereinafter referred to as a susceptor) for a silicon epitaxial growth apparatus using high-frequency induction heating.
I will explain about it.

第2図(a)は、半導体基板1と従来のサセプタ2との
加熱前の様子を示し、第2図(b)は、半導体基板1と
従来のサセプタ2との加熱中の様子を示した各断面図で
ある。
FIG. 2(a) shows the state of the semiconductor substrate 1 and the conventional susceptor 2 before heating, and FIG. 2(b) shows the state of the semiconductor substrate 1 and the conventional susceptor 2 during heating. FIG. 3 is a cross-sectional view.

第2図(a) 、 (b)において、3は石英絶縁板、
4は高周波誘導コイルである。
In FIGS. 2(a) and (b), 3 is a quartz insulating plate;
4 is a high frequency induction coil.

高周波誘導加熱では、サセプタ2に流れる誘導電流でサ
セプタ2自体が加熱され、次にサセプタ2と接触してい
る半導体基板1の底面が加熱される。ところが、半導体
基板1の表面は反応ガスが流れているため、湿度が低く
なってしまう。
In high-frequency induction heating, the susceptor 2 itself is heated by an induced current flowing through the susceptor 2, and then the bottom surface of the semiconductor substrate 1 that is in contact with the susceptor 2 is heated. However, since the reactive gas is flowing on the surface of the semiconductor substrate 1, the humidity becomes low.

従って、半導体基板1の表面と裏面とで温度差を生じ、
半導体基板1に反りが発生する。
Therefore, a temperature difference occurs between the front and back surfaces of the semiconductor substrate 1,
Warpage occurs in the semiconductor substrate 1.

半導体基板1の周辺部は、前記反りによりサセプタ2か
ら離れ、さらに表面に流れる反応ガスにより過冷却され
、半導体基板面内にも温度差が生じ、反りは、ますます
増長される。
The peripheral portion of the semiconductor substrate 1 is separated from the susceptor 2 due to the warpage, and is further supercooled by the reaction gas flowing to the surface, causing a temperature difference within the surface of the semiconductor substrate, and the warpage further increases.

この時の各部の温度関係を式で表わすと、T1ζT2ζ
T3>T4>’rsとなる。ただし、T1はサセプタ2
の内部の温度、T2はサセプタ2表面の温度、T3は半
導体基板1あ裏面の温度、T4は半導体基板1の表面の
温度、T 5は半導体基板1の周辺部の温度である。
Expressing the temperature relationship of each part at this time using an equation, T1ζT2ζ
T3>T4>'rs. However, T1 is susceptor 2
T2 is the temperature of the surface of the susceptor 2, T3 is the temperature of the back surface of the semiconductor substrate 1, T4 is the temperature of the surface of the semiconductor substrate 1, and T5 is the temperature of the peripheral portion of the semiconductor substrate 1.

従って、反りが発生するということは、半導体基板1に
応力が加わっており、前記応力により半導体基板1にす
べり転位が発生する。
Therefore, the occurrence of warpage means that stress is applied to the semiconductor substrate 1, and the stress causes slip dislocations to occur in the semiconductor substrate 1.

また、このように反ったシリコン基板上にエピタキシャ
ル成長により単結晶シリコン層が形成された場合、一連
のエピタキシャル成長過程が終了し、半導体基板1の冷
却の際、反った半導体基板1がもとにもどろうとするた
め、同半導体基板上にエピタキシャル成長した単結晶シ
リコン層に応力が加わり、その結果シリコンエピタキシ
ャル層にすべり転位が発生する。
In addition, when a single crystal silicon layer is formed by epitaxial growth on a silicon substrate that is warped in this way, the series of epitaxial growth processes is completed, and when the semiconductor substrate 1 is cooled, the warped semiconductor substrate 1 may return to its original state. Therefore, stress is applied to the single crystal silicon layer epitaxially grown on the semiconductor substrate, and as a result, slip dislocations occur in the silicon epitaxial layer.

また、シリコンエピタキシャル成長層の比抵抗、厚みは
、基板温度の高低に太き(左右される。したがって、前
出のすべり転位発生過程途中のように、基板面内に温度
差(温度のばらつき)があると、シリコンエピタキシャ
ル層の比抵抗、厚みに半導体基板1の面内ばらつきが生
じる。
In addition, the resistivity and thickness of the silicon epitaxial growth layer vary depending on the substrate temperature. Therefore, as in the middle of the slip dislocation generation process mentioned above, there is a temperature difference (temperature variation) within the substrate surface. If so, variations in the specific resistance and thickness of the silicon epitaxial layer occur within the plane of the semiconductor substrate 1.

発明が解決しようとする課題 本発明は、前途のようなすべり転位の発生や、シリコン
エピタキシャル層の比抵抗および厚みのばらつき増大を
抑制できるエピタキシャル成長装置を提供することを目
的とする。
Problems to be Solved by the Invention It is an object of the present invention to provide an epitaxial growth apparatus that can suppress the occurrence of slip dislocations and increase in variations in resistivity and thickness of a silicon epitaxial layer.

課題を解決するための手段 この目的を達成するために本発明は、サセプタの主表面
に、底面が球面と平面の合成形状を成した半導体基板と
同等以上の大きさの凹形ポケットをそなえた構成である
Means for Solving the Problems In order to achieve this object, the present invention provides a concave pocket on the main surface of the susceptor, the bottom surface of which has a composite shape of a spherical surface and a flat surface, and whose size is equal to or larger than that of a semiconductor substrate. It is the composition.

作用 前記形状のポケットを有するサセプタを用いることによ
って、前途のようなすべり転位の発生や、シリコンエピ
タキシャル層の比抵抗及び厚みのばらつき増大を抑制で
きるものである。
Effect: By using a susceptor having pockets having the shape described above, it is possible to suppress the occurrence of slip dislocations and increase in variations in resistivity and thickness of the silicon epitaxial layer.

実施例 本発明の一実施例について、図面を参照しながら説明す
る。
Embodiment An embodiment of the present invention will be described with reference to the drawings.

第1図(a)は、半導体基板と本発明の一実施例におけ
るサセプタの加熱前の様子を示し、第1図(b)は、半
導体基板と本発明の一実施例におけるサセプタの加熱中
の様子を示した断面である。
FIG. 1(a) shows the semiconductor substrate and the susceptor in one embodiment of the present invention before heating, and FIG. 1(b) shows the semiconductor substrate and the susceptor in one embodiment of the present invention during heating. This is a cross section showing the situation.

第1図(a) 、 (b)において、1は半導体基板、
2はサセプタ、3は石英絶縁板、4は高周波誘導コイル
である。
In FIGS. 1(a) and 1(b), 1 is a semiconductor substrate;
2 is a susceptor, 3 is a quartz insulating plate, and 4 is a high frequency induction coil.

このようなサセプタ2を用いた場合の半導体基板1の加
熱過程は、前途のサセプタ2にポケットが無い場合と同
じ(、半導体基板lの表面と裏面との温度差により、半
導体基板1に反りが発生する。
The heating process of the semiconductor substrate 1 when using such a susceptor 2 is the same as when the susceptor 2 does not have a pocket (the semiconductor substrate 1 may be warped due to the temperature difference between the front and back surfaces of the semiconductor substrate l). Occur.

しかし、サセプタ2に施したポケットは、半導体基板1
が反った状態で、半導体基板1の周辺部と中心部とが接
触する様になっている。
However, the pocket made in the susceptor 2 is
In the warped state, the peripheral portion and center portion of the semiconductor substrate 1 come into contact with each other.

従って半導体基板1の面内の温度は均一になり、同基板
面内の温度差による反りは緩和される。
Therefore, the temperature within the plane of the semiconductor substrate 1 becomes uniform, and warpage due to temperature differences within the plane of the substrate is alleviated.

この時の各部の温度関係を式で表わすとT I’iT2
ζT3>T4ζT5となる。但し、T1〜T5は前途と
同じである。
The temperature relationship of each part at this time can be expressed by the formula T I'iT2
ζT3>T4ζT5. However, T1 to T5 are the same as before.

このような作用により、半導体基板1に発生する反り、
つまり半導体基板1に加わる応力は、ポケットの無いサ
セプタを用いた場合より小さくなり、半導体基板1のす
べり転位の発生は抑制され、また、シリコンエピタキシ
ャル層成長後の半導体冷却過程では、加熱過程で生じた
反りが小さいため、シリコンエピタキシャル層のすべり
転位の発生は、ポケットの無いサセプタ2を用いた場合
より抑制できる。
Due to such an action, warpage that occurs in the semiconductor substrate 1,
In other words, the stress applied to the semiconductor substrate 1 is smaller than when a susceptor without pockets is used, and the occurrence of slip dislocations in the semiconductor substrate 1 is suppressed. Since the warpage is small, the occurrence of slip dislocations in the silicon epitaxial layer can be suppressed more than when a susceptor 2 without pockets is used.

また、前記作用により半導体基板1の面内に生じる温度
差は小さくなるため、シリコンエピタキシャル層の比抵
抗および厚みのばらつきも小さくなる。
Moreover, since the temperature difference generated within the plane of the semiconductor substrate 1 is reduced by the above-mentioned action, variations in resistivity and thickness of the silicon epitaxial layer are also reduced.

発明の効果 以上のように本発明によれば、サセプタの主表面に、底
面が球面と平面の合成形状を成している半導体基板1と
同様以上の凹状ポケットを設けたことにより、半導体基
板の反りによるすべり転位、シリコンエピタキシャル層
の比抵抗および厚みのばらつきを抑制でき、半導体装置
の歩留り向上を実現できる。
Effects of the Invention As described above, according to the present invention, by providing a concave pocket on the main surface of the susceptor with a concave pocket similar to or larger than that of the semiconductor substrate 1 whose bottom surface has a composite shape of a spherical surface and a flat surface, the semiconductor substrate can be improved. It is possible to suppress slip dislocations caused by warpage and variations in the resistivity and thickness of the silicon epitaxial layer, thereby improving the yield of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の一実施例における
サセプタと半導体基板との加熱前および加熱中の様子を
示す各断面図、第2図(a) 、 (b)は従来のサセ
プタと半導体基板との加熱前および加熱中の様子を示す
各断面図である。 1・・・・・・半導体基板、2・・・・・・サセプタ、
3・・・・・・石英絶縁膜、4・・・・・・高周波誘導
コイル。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図
FIGS. 1(a) and (b) are cross-sectional views showing the state of a susceptor and a semiconductor substrate before and during heating in an embodiment of the present invention, and FIGS. 2(a) and (b) are sectional views of a conventional susceptor and a semiconductor substrate. FIG. 3 is a cross-sectional view showing the susceptor and the semiconductor substrate before and during heating; 1... Semiconductor substrate, 2... Susceptor,
3...Quartz insulation film, 4...High frequency induction coil. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1

Claims (1)

【特許請求の範囲】[Claims]  半導体基板を保持する平板状基板保持体と、前記基板
保持体を加熱する加熱部とを備え、前記基板保持体の主
表面に、前記半導体基板の直径と同等以上の大きさの凹
状ポケットを設け、前記凹状ポケットの底面形状が、球
面と平面の合成形状で成ることを特徴とするエピタキシ
ャル成長装置。
The method includes a flat substrate holder that holds a semiconductor substrate, and a heating section that heats the substrate holder, and a concave pocket having a size equal to or larger than the diameter of the semiconductor substrate is provided on the main surface of the substrate holder. . An epitaxial growth apparatus, wherein the bottom surface shape of the concave pocket is a composite shape of a spherical surface and a flat surface.
JP11314088A 1988-05-10 1988-05-10 Epitaxial growth device Pending JPH01283813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11314088A JPH01283813A (en) 1988-05-10 1988-05-10 Epitaxial growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11314088A JPH01283813A (en) 1988-05-10 1988-05-10 Epitaxial growth device

Publications (1)

Publication Number Publication Date
JPH01283813A true JPH01283813A (en) 1989-11-15

Family

ID=14604579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11314088A Pending JPH01283813A (en) 1988-05-10 1988-05-10 Epitaxial growth device

Country Status (1)

Country Link
JP (1) JPH01283813A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740367B2 (en) 1999-03-18 2004-05-25 Asm Japan K.K. Plasma CVD film-forming device
US6761771B2 (en) * 2000-10-19 2004-07-13 Asm Japan K.K. Semiconductor substrate-supporting apparatus
JP4772918B1 (en) * 2010-12-21 2011-09-14 エー・イー・テック株式会社 Method and apparatus for manufacturing gallium nitride (GaN) free-standing substrate
JP2012131692A (en) * 2011-04-28 2012-07-12 Aetech Corp METHOD AND APPARATUS FOR MANUFACTURING GALLIUM NITRIDE (GaN) SELF-SUPPORTING SUBSTRATE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740367B2 (en) 1999-03-18 2004-05-25 Asm Japan K.K. Plasma CVD film-forming device
US6761771B2 (en) * 2000-10-19 2004-07-13 Asm Japan K.K. Semiconductor substrate-supporting apparatus
JP4772918B1 (en) * 2010-12-21 2011-09-14 エー・イー・テック株式会社 Method and apparatus for manufacturing gallium nitride (GaN) free-standing substrate
WO2012086212A1 (en) * 2010-12-21 2012-06-28 エー・イー・テック株式会社 METHOD AND DEVICE FOR MANUFACTURING SELF-SUPPORTING GALLIUM NITRIDE (GaN) SUBSTRATE
JP2012131662A (en) * 2010-12-21 2012-07-12 Aetech Corp METHOD AND APPARATUS FOR MANUFACTURING GALLIUM NITRIDE (GaN) SELF-SUPPORTING SUBSTRATE
JP2012131692A (en) * 2011-04-28 2012-07-12 Aetech Corp METHOD AND APPARATUS FOR MANUFACTURING GALLIUM NITRIDE (GaN) SELF-SUPPORTING SUBSTRATE

Similar Documents

Publication Publication Date Title
US4854986A (en) Bonding technique to join two or more silicon wafers
JPH01283813A (en) Epitaxial growth device
JP2003218031A (en) Method of manufacturing semiconductor wafer
JPS54155770A (en) Manufacture of semiconductor device
JPS6230692B2 (en)
JPS5645047A (en) Manufacture of semiconductor monocrystal film
JPS6466932A (en) Epitaxial silicon wafer
JPH01278717A (en) Chemical vapor growth method
US4411060A (en) Method of manufacturing dielectrically-isolated single-crystal semiconductor substrates
JPS57153445A (en) Sos semiconductor substrate
JPS6386450A (en) Manufacture of substrate for formation of semiconductor element
JPS56167335A (en) Manufacture of semiconductor device
JPS5950095A (en) Chemical reactor
JPS5850410B2 (en) Susceptor for semiconductor vapor phase growth
JPS59121823A (en) Fabrication of single crystal silicon film
JPS6240719A (en) Manufacture of epitaxial wafer
JPS6358915A (en) Molecular beam epitaxy equipment
JPH0521871Y2 (en)
JP2554336B2 (en) Method for manufacturing dielectric isolation substrate
JP2943006B2 (en) Semiconductor substrate manufacturing method
JPS6398120A (en) Crystal growth method
JPS6146017A (en) Thin film producing apparatus
JPS6191920A (en) Epitaxial growth method
JPH04365317A (en) Semiconductor growth apparatus
JPS58212125A (en) Jig for heat treatment