JP2003218031A - Method of manufacturing semiconductor wafer - Google Patents

Method of manufacturing semiconductor wafer

Info

Publication number
JP2003218031A
JP2003218031A JP2002017875A JP2002017875A JP2003218031A JP 2003218031 A JP2003218031 A JP 2003218031A JP 2002017875 A JP2002017875 A JP 2002017875A JP 2002017875 A JP2002017875 A JP 2002017875A JP 2003218031 A JP2003218031 A JP 2003218031A
Authority
JP
Japan
Prior art keywords
film
sic
substrate
semiconductor wafer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002017875A
Other languages
Japanese (ja)
Inventor
Yoshihisa Abe
芳久 阿部
Shunichi Suzuki
俊一 鈴木
Hideo Nakanishi
秀夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2002017875A priority Critical patent/JP2003218031A/en
Priority to US10/432,597 priority patent/US6936490B2/en
Priority to PCT/JP2002/009035 priority patent/WO2003023095A1/en
Priority to EP02765418A priority patent/EP1424409A4/en
Priority to TW091120310A priority patent/TWI222104B/en
Publication of JP2003218031A publication Critical patent/JP2003218031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing semiconductor wafer by which the warping of a semiconductor wafer can be prevented easily. <P>SOLUTION: In this method of manufacturing semiconductor wafer, an SiC or GaN film is formed on the surface of an Si substrate through epitaxial growth, and an SiO<SB>2</SB>film is formed on the surface of the SiC or GaN film. Alternatively, the SiC or GaN film is formed on the surface of the Si substrate through epitaxial growth, and an Si<SB>3</SB>N<SB>4</SB>film is formed on the rear surface of the Si substrate. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Si基板とSiC
またはGaN膜を有する半導体ウェーハの製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a Si substrate and a SiC.
Alternatively, the present invention relates to a method for manufacturing a semiconductor wafer having a GaN film.

【0002】[0002]

【従来の技術】Si基板上へのSiC膜の作成法として
は、各種CVD法、スパッタリング法、各種MBE法等
が公知である。
2. Description of the Related Art Various CVD methods, sputtering methods, various MBE methods and the like are known as methods for forming an SiC film on a Si substrate.

【0003】従来のSiC膜の形成法は、すべて600
〜1200℃以上にSi基板を加熱することを必要とす
る。これはSi−C間の結合が共有結合であるため、化
学結合形成エネルギーと、エピタキシャル結晶成長のた
めの拡散エネルギーの両方が、大きなものとなるためで
ある。
The conventional method for forming a SiC film is 600
It is necessary to heat the Si substrate to ˜1200 ° C. or higher. This is because the bond between Si and C is a covalent bond, and therefore both the chemical bond formation energy and the diffusion energy for epitaxial crystal growth become large.

【0004】しかし、SiCとSiの格子定数には約2
0%の違い(格子ミスマッチ)があり、かつその線熱膨
脹係数にも約8%の違いがある。そのため、高温でのS
iCの薄膜形成後の冷却過程において、熱ひずみが生
じ、素子特性の劣化、反りの発生、機械的破損などを招
く。
However, the lattice constant of SiC and Si is about 2
There is a 0% difference (lattice mismatch), and the linear thermal expansion coefficient also has a difference of about 8%. Therefore, S at high temperature
In the cooling process after forming the iC thin film, thermal strain occurs, which causes deterioration of element characteristics, warpage, mechanical damage, and the like.

【0005】このような反りを防止する方法として、従
来は、反りの発生方向と逆向きに反った形状のSi基板
を使用したり、あるいは、基板の表裏面の両方に成長さ
せたりして、製造時に反りの相殺を図っていた。
As a method of preventing such warpage, conventionally, a Si substrate having a shape warped in the direction opposite to the direction of the warpage is used, or the Si substrate is grown on both the front and back surfaces of the substrate. It was trying to offset the warpage during manufacturing.

【0006】[0006]

【発明が解決しようとする課題】前述のようにSi基板
を特別な形状にする場合は、製造コストが大幅にアップ
する。
If the Si substrate is made into a special shape as described above, the manufacturing cost will be greatly increased.

【0007】また、Si基板の表裏両面での成長方法
は、通常の設備では実施できない。
Further, the growth method on both the front and back surfaces of the Si substrate cannot be carried out by ordinary equipment.

【0008】本発明の目的は、反りの防止を容易に達成
できる、Si基板とSiCまたはGaN膜を有する半導
体ウェーハの製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing a semiconductor wafer having a Si substrate and a SiC or GaN film, which can easily prevent warpage.

【0009】[0009]

【課題を解決するための手段】本発明の解決手段を例示
すると、次のとおりである。
The solution means of the present invention is exemplified as follows.

【0010】(1)Si基板の表面にSiCまたはGa
N膜がエピタキシャル成長により形成され、さらに、そ
のSiCまたはGaN膜の表面にSiO2膜が形成され
ることを特徴とする半導体ウェーハの製造方法。
(1) SiC or Ga on the surface of the Si substrate
A method for manufacturing a semiconductor wafer, wherein an N film is formed by epitaxial growth, and a SiO 2 film is further formed on the surface of the SiC or GaN film.

【0011】(2)Si基板にバッファー膜を介してS
iCまたはGaN膜が形成されることを特徴とする前述
の半導体ウェーハの製造方法。
(2) S on the Si substrate via a buffer film
The method for manufacturing a semiconductor wafer as described above, wherein an iC or GaN film is formed.

【0012】(3)SiO2膜の膜厚がSiC膜の膜厚
の2〜4倍であることを特徴とする前述の半導体ウェー
ハの製造方法。
(3) The method for manufacturing a semiconductor wafer as described above, wherein the thickness of the SiO 2 film is 2 to 4 times the thickness of the SiC film.

【0013】(4)Si基板の表面にSiCまたはGa
N膜がエピタキシャル成長により形成され、かつ、Si
基板の裏面にSi34膜が形成されることを特徴とする
半導体ウェーハの製造方法。
(4) SiC or Ga on the surface of the Si substrate
N film is formed by epitaxial growth and Si
A method for manufacturing a semiconductor wafer, wherein a Si 3 N 4 film is formed on the back surface of the substrate.

【0014】(5)Si基板にバッファー膜を介してS
iCまたはGaN膜が形成されることを特徴とする前述
の半導体ウェーハの製造方法。
(5) S on the Si substrate via a buffer film
The method for manufacturing a semiconductor wafer as described above, wherein an iC or GaN film is formed.

【0015】(6)SiC膜の膜厚がSi34の膜厚と
ほぼ同じであることを特徴とする前述の半導体ウェーハ
の製造方法。
(6) The method for manufacturing a semiconductor wafer as described above, wherein the film thickness of the SiC film is substantially the same as the film thickness of Si 3 N 4 .

【0016】[0016]

【発明の実施の形態】この発明は、Siに比べて半導体
機能として優れた性能を持つSiCまたはGaN膜を有
する半導体ウェーハの製造方法を提供するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a method for manufacturing a semiconductor wafer having a SiC or GaN film having a semiconductor function superior to that of Si.

【0017】まず、SiC膜について述べると、SiC
半導体とくに3C−SiC半導体は、主にSi(シリコ
ン)基板上に3C−SiC膜をエピタキシャル成長させ
ることにより製造される。
First, the SiC film will be described.
Semiconductors, especially 3C-SiC semiconductors, are manufactured mainly by epitaxially growing a 3C-SiC film on a Si (silicon) substrate.

【0018】図1に示すように、Si基板2の表面に3
C−SiC膜1を成長温度(800〜1200℃)でエ
ピタキシャル成長させ、所定の膜厚にしてから、室温に
冷却すると、SiとSiCの熱膨張係数の違いによる反
りが生じる。基板となるSiと成長させるSiCとの間
には8%程度の熱膨張係数の違いがあり、そのため、成
長後にエピタキシャル膜には圧縮応力がかかり、3C−
SiC膜1とSi基板2が反ってしまう。この反りはデ
バイス作成時の課題となることが予測される。また、膜
1の剥離や割れを発生する原因ともなる。したがって、
その反り量を抑制することが重要となる。
As shown in FIG. 1, 3 is formed on the surface of the Si substrate 2.
When the C—SiC film 1 is epitaxially grown at a growth temperature (800 to 1200 ° C.) to a predetermined film thickness and then cooled to room temperature, warpage occurs due to the difference in thermal expansion coefficient between Si and SiC. There is a difference in thermal expansion coefficient of about 8% between Si that serves as a substrate and SiC that is grown. Therefore, after the growth, compressive stress is applied to the epitaxial film and 3C-
The SiC film 1 and the Si substrate 2 are warped. It is predicted that this warpage will be a problem when creating a device. It also causes the peeling and cracking of the film 1. Therefore,
It is important to suppress the warp amount.

【0019】図2に示すように、Si基板2の表面にS
iO2膜3を成長温度(600〜900℃)で成長させ
て所定の膜厚を得てから、室温に冷却すると、SiとS
iO 2の熱膨張係数の違いによる反りが図1とは逆の方
向に生じる。
As shown in FIG. 2, S is formed on the surface of the Si substrate 2.
iO2The film 3 is grown at the growth temperature (600 to 900 ° C.)
After obtaining the desired film thickness by cooling to room temperature, Si and S
iO 2The warpage due to the difference in the coefficient of thermal expansion is opposite to that in Fig. 1.
Occurs in the opposite direction.

【0020】本発明は、図1と図2の反りを効果的に活
用して互いに相殺し、3C−SiC膜1の反りを防止す
るものである。Si基板5の表面に3C−SiC膜6を
エピタキシャル成長させ、ついで、温度を大幅に下げな
いまま、SiO2膜7を成長させることにより、反り量
をコントロールして、3C−SiC/Si基板を得る。
The present invention effectively utilizes the warpages of FIGS. 1 and 2 to cancel each other out and prevent the warpage of the 3C-SiC film 1. A 3C-SiC film 6 is epitaxially grown on the surface of the Si substrate 5, and then a SiO 2 film 7 is grown without significantly lowering the temperature to control the amount of warpage and obtain a 3C-SiC / Si substrate. .

【0021】たとえば、図3に示すように、Si基板2
の表面に3C−SiC膜1を所定の成長温度(800℃
〜1200℃)でエピタキシャル成長させて所定の膜厚
(5〜10μm)にし、そのまま温度を大幅に下げず
に、その3C−SiC膜6の表面に、SiやSiCと比
べて熱膨張係数の低いSiO2膜7を成長させる。これ
により、半導体ウェーハを室温に冷却したとき、図1の
反りと図2の反りが互いに相殺して、全体の反りが低減
される。
For example, as shown in FIG.
The 3C-SiC film 1 is formed on the surface of the substrate at a predetermined growth temperature (800 °
˜1200 ° C.) to obtain a predetermined film thickness (5 to 10 μm) by epitaxial growth, and the temperature of the 3C—SiC film 6 is not lowered significantly. 2 The film 7 is grown. As a result, when the semiconductor wafer is cooled to room temperature, the warpage in FIG. 1 and the warpage in FIG. 2 cancel each other out, and the overall warpage is reduced.

【0022】アモルファスであるSiO2膜7の熱膨張
係数はSiやSiCのそれと比較して5分の1程度にす
ぎず、極めて低い値を示す。それゆえ、好ましくは、S
iO 2膜7の膜厚はエピタキシャル成長したSiC膜6
の2から4倍程度とする。
Amorphous SiO2Thermal expansion of membrane 7
Coefficient should be about one fifth of that of Si and SiC
As expected, it shows an extremely low value. Therefore, preferably S
iO 2The film thickness of the film 7 is the SiC film 6 epitaxially grown.
2 to 4 times.

【0023】SiO2は電気的に絶縁体であるので、デ
バイスにするときには、SiO2膜を局所的にエッチン
グして電極物質を成膜すればよい。
Since SiO 2 is an electrically insulating material, when a device is formed, the SiO 2 film may be locally etched to form an electrode material.

【0024】上記と同様な効果を得るために、図4に示
すように、Si基板5の裏面にSiC膜7と同等な熱膨
張係数を有するSi34膜8をSiC膜7の膜厚と同程
度に成膜してもよい。
In order to obtain the same effect as described above, as shown in FIG. 4, a Si 3 N 4 film 8 having a thermal expansion coefficient equivalent to that of the SiC film 7 is formed on the back surface of the Si substrate 5. The film may be formed to the same extent as.

【0025】なお、エピタキシャル成長においては、S
i基板5の結晶性を成長膜が受け継ぐ。それゆえ、良質
な結晶を得る上でSi基板5の荒れは避けた方がよい。
そのため、Si基板5の荒れをもたらさないように、適
当な物質によるバッファー膜を設けることが好ましい。
In the epitaxial growth, S
The growth film inherits the crystallinity of the i substrate 5. Therefore, it is better to avoid the roughening of the Si substrate 5 in order to obtain a good quality crystal.
Therefore, it is preferable to provide a buffer film made of an appropriate substance so as not to cause the roughness of the Si substrate 5.

【0026】たとえば、Si基板5となるSiウェーハ
上に3C−SiC単結晶をエピタキシャル成長させる際
に、閃亜鉛鉱型単結晶のBP(リン化ホウ素)をバッフ
ァー膜として用いることにより、結晶欠陥を減少させ
る。閃亜鉛鉱型結晶であるBP(リン化ホウ素)の格子
定数は、4.538オングストロームであり、3C−S
iCの4.358オングストロームとほぼ同等であり、
格子不整合によるミスフィット転位を抑制できる。ま
た、熱膨脹率もほぼ同等である。また、BPは、Siと
格子定数にして16.4%の違いがあるものの、BPは
Si上にヘテロエピタキシャル成長できるものである。
まず、Si基板上にBPをエピタキシャル成長させ、続
いて、3C−SiC単結晶を成長させることにより、ミ
スフィット転位を抑制した結晶を得ることができる。
For example, when epitaxially growing a 3C-SiC single crystal on a Si wafer which becomes the Si substrate 5, BP (boron phosphide) of a zinc blende type single crystal is used as a buffer film to reduce crystal defects. Let The lattice constant of BP (boron phosphide), which is a zinc blende type crystal, is 4.538 angstroms and is 3C-S.
It is almost equivalent to iC's 4.358 angstroms,
Misfit dislocations due to lattice mismatch can be suppressed. Also, the coefficient of thermal expansion is almost the same. Further, although BP has a lattice constant difference of 16.4% from Si, BP can be heteroepitaxially grown on Si.
First, a crystal in which misfit dislocations are suppressed can be obtained by epitaxially growing BP on a Si substrate and subsequently growing a 3C-SiC single crystal.

【0027】以下に、好適な実施例1を説明する。A preferred first embodiment will be described below.

【0028】<実施例1> (1)Si基板のSi(100)もしくは(111)を
水素雰囲気中で1000℃以上に加熱することにより、
Si基板の自然酸化膜を除去する。
Example 1 (1) By heating Si (100) or (111) of a Si substrate to 1000 ° C. or higher in a hydrogen atmosphere,
The native oxide film on the Si substrate is removed.

【0029】(2)キャリアガスを水素として、B原料
のBCl3とP原料のPCl3を反応管に流し、低温成長
を約200〜500℃で30分程度行う。
[0029] As hydrogen (2) carrier gas, flowing BCl 3 and PCl 3 in P raw material B material in the reaction tube, for about 30 minutes at about 200 to 500 ° C. The low temperature growth.

【0030】(3)低温成長終了時にBPの原料供給を
止め、BPの結晶成長温度である900〜1200℃ま
で昇温する。
(3) At the end of the low temperature growth, the supply of the BP raw material is stopped, and the temperature is raised to 900 to 1200 ° C. which is the BP crystal growth temperature.

【0031】(4)900〜1200℃の成長温度にな
ったら、BPの原料供給を開始し、そのまま30分以上
保持し、BP膜を1〜5μm程度成膜する。
(4) When the growth temperature reaches 900 to 1200 ° C., the supply of the BP raw material is started and kept for 30 minutes or longer to form a BP film of about 1 to 5 μm.

【0032】(5)所定の結晶成長を終えたのち、BP
の原料供給を停止し、その温度のまま30分程度保持す
る。
(5) After completing the predetermined crystal growth, BP
The raw material supply is stopped and the temperature is maintained for about 30 minutes.

【0033】(6)ついで、SiCの低温成長温度であ
る200〜500℃まで温度を低下させ、原料であるメ
チルシランの供給を開始し、10分程度保持する。
(6) Next, the temperature is lowered to a low temperature growth temperature of SiC of 200 to 500 ° C., the supply of methylsilane as a raw material is started, and the temperature is maintained for about 10 minutes.

【0034】(7)再び3C−SiCの結晶成長温度で
ある800〜1200℃程度間で昇温し、そのまま30
分以上保持し、SiC膜を10〜30μm成膜する。
(7) The temperature is raised again between the crystal growth temperature of 3C-SiC of about 800 to 1200 ° C.
The SiC film is formed to a thickness of 10 to 30 μm by holding for more than a minute.

【0035】(8)所定の3C−SiC結晶成長が終了
した時点で、メチルシラン原料の供給を停止する。
(8) The supply of the methylsilane raw material is stopped when the predetermined 3C-SiC crystal growth is completed.

【0036】(9)しかるのち、600〜900℃にし
て、TEOSと称されているSi(OC254などの
Siアルコキシドを原料ガスとして供給し、20分程度
保持し、SiO2膜をSiC膜の膜厚の2〜4倍程度成
長させる。
(9) Thereafter, the temperature is set to 600 to 900 ° C., a Si alkoxide such as Si (OC 2 H 5 ) 4 called TEOS is supplied as a raw material gas, and the material is held for about 20 minutes to obtain a SiO 2 film. Is grown to about 2 to 4 times the thickness of the SiC film.

【0037】上記工程(1)〜(9)により製造した3
C−SiC半導体ウェーハと比較するために、SiO2
膜を成長させない、すなわち上記(9)の操作を除いた
条件で、3C−SiC/Si基板を作製した。これらを
比較したところ、SiO2膜とBPのバッファー膜を設
けて作成した3C−SiC半導体の結晶素子は、反りが
なく。、かつ、格子欠陥違いによるミスフィット転位が
良好に抑制されており、高品質な結晶になっていたが、
SiO2膜なしで製造したものは、反りが大きく、良質
な単結晶SiCを製造することはできなかった。
3 produced by the above steps (1) to (9)
For comparison with a C-SiC semiconductor wafer, SiO 2
A 3C-SiC / Si substrate was produced under the condition that the film was not grown, that is, the operation (9) was excluded. Comparing these, the 3C-SiC semiconductor crystal element formed by providing the SiO 2 film and the BP buffer film has no warp. And, the misfit dislocations due to the difference in the lattice defects were well suppressed, resulting in a high quality crystal.
The product manufactured without the SiO 2 film had a large warp, and it was not possible to manufacture a high-quality single crystal SiC.

【0038】<実施例2> (1)Si基板のSi(100)もしくは(111)を
水素雰囲気中で1000℃以上に加熱することにより、
Si基板の自然酸化膜を除去する。
Example 2 (1) By heating Si (100) or (111) of a Si substrate to 1000 ° C. or higher in a hydrogen atmosphere,
The native oxide film on the Si substrate is removed.

【0039】(2)キャリアガスを水素として、B原料
のBCl3とP原料のPCl3を反応管に流し、低温成長
を約200〜500℃で30分程度行う。
[0039] As hydrogen (2) carrier gas, flowing BCl 3 and PCl 3 in P raw material B material in the reaction tube, for about 30 minutes at about 200 to 500 ° C. The low temperature growth.

【0040】(3)低温成長終了時にBPの原料供給を
止め、BPの結晶成長温度である900〜1200℃ま
で昇温する。
(3) When the low temperature growth is completed, the supply of the BP raw material is stopped, and the temperature is raised to 900 to 1200 ° C. which is the BP crystal growth temperature.

【0041】(4)900〜1200℃の成長温度にな
ったら、BPの原料供給を開始し、そのまま30分以上
保持し、BP膜を1〜5μm程度成膜する。
(4) When the growth temperature reaches 900 to 1200 ° C., the supply of the BP raw material is started and maintained for 30 minutes or longer to form a BP film of about 1 to 5 μm.

【0042】(5)所定の結晶成長を終えたのち、BP
の原料供給を停止し、その温度のまま30分程度保持す
る。
(5) After completing the predetermined crystal growth, BP
The raw material supply is stopped and the temperature is maintained for about 30 minutes.

【0043】(6)ついで、GaNの低温成長温度であ
る400℃〜500℃まで温度を低下させ、原料である
TMGTMG{トリメチルガリウム(CH33Ga}、
MMH(モノメチルヒドラジンCH3NHNH2)とキャ
リアガスH2に加え、N2の供給を開始し、30分程度保
持する。
(6) Next, the temperature is lowered to 400 ° C. to 500 ° C. which is the low temperature growth temperature of GaN, and the raw material TMGTMG {trimethylgallium (CH 3 ) 3 Ga},
In addition to MMH (monomethylhydrazine CH 3 NHNH 2 ) and carrier gas H 2 , supply of N 2 is started and maintained for about 30 minutes.

【0044】(7)再びGaNの結晶成長温度である7
50℃〜900℃程度で昇温し、そのまま30分以上保
持し、GaN膜を5〜10μm成膜する。
(7) The GaN crystal growth temperature is 7 again.
The temperature is raised at about 50 ° C. to 900 ° C. and kept for 30 minutes or longer to form a GaN film of 5 to 10 μm.

【0045】(8)所定のGaN結晶成長が終了した時
点で、原料の供給を停止する。
(8) The supply of the raw material is stopped when the predetermined GaN crystal growth is completed.

【0046】(9)しかるのち、600〜900℃にし
て、TEOSと称されているSi(OC254などの
Siアルコキシドを原料ガスとして供給し、20分程度
保持し、SiO2膜をGaN膜の膜厚の2〜4倍程度成
長させる。
(9) After that, the temperature is set to 600 to 900 ° C., a Si alkoxide such as Si (OC 2 H 5 ) 4 called TEOS is supplied as a source gas, and the material is held for about 20 minutes to obtain a SiO 2 film. Are grown to about 2 to 4 times the film thickness of the GaN film.

【0047】本発明は、前述の実施例に限定されるもの
ではない。たとえば、原料ガスとしては、前述のガス以
外に種々のものが利用できる。
The invention is not limited to the embodiments described above. For example, as the source gas, various gases other than the above-mentioned gases can be used.

【0048】[0048]

【発明の効果】本発明によれば、SiO2膜やSi34
膜をSiCまたはGaN膜に加えて成膜させることによ
って、半導体ウェーハ全体の反り量をコントロールする
ことができる。
According to the present invention, a SiO 2 film or a Si 3 N 4 film is used.
By forming the film in addition to the SiC or GaN film, the amount of warpage of the entire semiconductor wafer can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1の上側は、Si基板上にSiCを成長温度
でエピタキシャル成長させた場合の様子を示す模式図。
図1の下側は、それを室温まで冷却したときの様子を示
す模式図。
FIG. 1 is a schematic diagram showing the upper side of FIG. 1 when SiC is epitaxially grown on a Si substrate at a growth temperature.
The lower side of FIG. 1 is a schematic diagram showing a state when it is cooled to room temperature.

【図2】図2の上側は、Si基板にSiO2を成長温度
で成長させた場合の様子を示す模式図図2の下側は、そ
れを室温まで冷却したときの様子を示す模式図。
FIG. 2 is a schematic diagram showing the state when SiO 2 is grown on a Si substrate at a growth temperature, and the lower side is a schematic diagram showing the state when it is cooled to room temperature.

【図3】本発明の1つの実施例を示す模式図。FIG. 3 is a schematic view showing one embodiment of the present invention.

【図4】本発明の他の実施例を示す模式図。FIG. 4 is a schematic view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 Si基板 5 Si基板 6 SiC膜 7 SiO2膜 8 Si342 Si substrate 5 Si substrate 6 SiC film 7 SiO 2 film 8 Si 3 N 4 film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 秀夫 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 Fターム(参考) 4G077 AA03 BE08 BE15 DB01 EE06 EF01 FJ06 TC13 TC16 TC17 5F045 AB06 AB14 AB31 AB32 AB33 AC08 AC15 AD06 AD07 AD08 AD09 AD13 AD14 AD15 AD16 AF03 BB11 DA53 DC65 5F052 DA04 GC03 KA01 KA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideo Nakanishi             30 Soya, Hadano City, Kanagawa Prefecture             Kusu Co., Ltd. Development Laboratory F-term (reference) 4G077 AA03 BE08 BE15 DB01 EE06                       EF01 FJ06 TC13 TC16 TC17                 5F045 AB06 AB14 AB31 AB32 AB33                       AC08 AC15 AD06 AD07 AD08                       AD09 AD13 AD14 AD15 AD16                       AF03 BB11 DA53 DC65                 5F052 DA04 GC03 KA01 KA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Si基板の表面にSiCまたはGaN膜
がエピタキシャル成長により形成され、さらに、そのS
iCまたはGaN膜の表面にSiO2膜が形成されるこ
とを特徴とする半導体ウェーハの製造方法。
1. A SiC or GaN film is formed by epitaxial growth on the surface of a Si substrate, and the S or S
A method for manufacturing a semiconductor wafer, wherein a SiO 2 film is formed on the surface of the iC or GaN film.
【請求項2】 Si基板にバッファー膜を介してSiC
またはGaN膜が形成されることを特徴とする請求項1
に記載の半導体ウェーハの製造方法。
2. SiC on a Si substrate via a buffer film
Alternatively, a GaN film is formed.
A method of manufacturing a semiconductor wafer according to item 1.
【請求項3】 SiO2膜の膜厚がSiC膜の膜厚の2
〜4倍であることを特徴とする請求項1〜2のいずれか
1項に記載の半導体ウェーハの製造方法。
3. The thickness of the SiO 2 film is 2 times that of the SiC film.
It is 4 times, The manufacturing method of the semiconductor wafer as described in any one of Claims 1-2.
【請求項4】 Si基板の表面にSiCまたはGaN膜
がエピタキシャル成長により形成され、かつ、Si基板
の裏面にSi34膜が形成されることを特徴とする半導
体ウェーハの製造方法。
4. A method of manufacturing a semiconductor wafer, wherein a SiC or GaN film is formed on a front surface of a Si substrate by epitaxial growth, and a Si 3 N 4 film is formed on a back surface of the Si substrate.
【請求項5】 Si基板にバッファー膜を介してSiC
またはGaN膜が形成されることを特徴とする請求項4
に記載の半導体ウェーハの製造方法。
5. SiC on a Si substrate via a buffer film
Alternatively, a GaN film is formed.
A method of manufacturing a semiconductor wafer according to item 1.
【請求項6】 SiC膜の膜厚がSi34膜の膜厚とほ
ぼ同じであることを特徴とする請求項4〜5のいずれか
1項に記載の半導体ウェーハの製造方法。
6. The method of manufacturing a semiconductor wafer according to claim 4, wherein the film thickness of the SiC film is substantially the same as the film thickness of the Si 3 N 4 film.
JP2002017875A 2001-09-06 2002-01-28 Method of manufacturing semiconductor wafer Pending JP2003218031A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002017875A JP2003218031A (en) 2002-01-28 2002-01-28 Method of manufacturing semiconductor wafer
US10/432,597 US6936490B2 (en) 2001-09-06 2002-09-05 Semiconductor wafer and its manufacturing method
PCT/JP2002/009035 WO2003023095A1 (en) 2001-09-06 2002-09-05 Semiconductor wafer and its manufacturing method
EP02765418A EP1424409A4 (en) 2001-09-06 2002-09-05 Semiconductor wafer and its manufacturing method
TW091120310A TWI222104B (en) 2001-09-06 2002-09-05 Semiconductor wafer and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017875A JP2003218031A (en) 2002-01-28 2002-01-28 Method of manufacturing semiconductor wafer

Publications (1)

Publication Number Publication Date
JP2003218031A true JP2003218031A (en) 2003-07-31

Family

ID=27653418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017875A Pending JP2003218031A (en) 2001-09-06 2002-01-28 Method of manufacturing semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2003218031A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523960A (en) * 2003-04-18 2006-10-19 レイセオン・カンパニー Method for processing a device structure having an attached wafer structure on a composite substrate having a matched coefficient of thermal expansion
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
JP2008124151A (en) * 2006-11-09 2008-05-29 Namiki Precision Jewel Co Ltd Single crystal substrate and method of manufacturing nitride semiconductor single crystal
JP2008251704A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Silicon board and manufacturing method therefor
WO2011074436A1 (en) * 2009-12-17 2011-06-23 東京エレクトロン株式会社 Substrate and method for manufacturing same
EP2418676A1 (en) 2010-08-09 2012-02-15 Siltronic AG Silicon wafer and production method thereof
JP2012051774A (en) * 2010-09-03 2012-03-15 Covalent Materials Corp Compound semiconductor substrate
JP2013149733A (en) * 2012-01-18 2013-08-01 Seiko Epson Corp Semiconductor substrate and semiconductor substrate manufacturing method
JP2014216474A (en) * 2013-04-25 2014-11-17 コバレントマテリアル株式会社 Nitride semiconductor substrate
WO2015019733A1 (en) * 2013-08-06 2015-02-12 住友電気工業株式会社 Silicon carbide semiconductor substrate, method for producing same, and method for producing silicon carbide semiconductor device
JP2017022233A (en) * 2015-07-09 2017-01-26 東京エレクトロン株式会社 Vertical type thermal treatment apparatus and operational method for vertical type thermal treatment apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523960A (en) * 2003-04-18 2006-10-19 レイセオン・カンパニー Method for processing a device structure having an attached wafer structure on a composite substrate having a matched coefficient of thermal expansion
JP2007273814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Silicon substrate and its manufacturing method
JP2008124151A (en) * 2006-11-09 2008-05-29 Namiki Precision Jewel Co Ltd Single crystal substrate and method of manufacturing nitride semiconductor single crystal
JP2008251704A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Silicon board and manufacturing method therefor
WO2011074436A1 (en) * 2009-12-17 2011-06-23 東京エレクトロン株式会社 Substrate and method for manufacturing same
EP2418676A1 (en) 2010-08-09 2012-02-15 Siltronic AG Silicon wafer and production method thereof
JP2012051774A (en) * 2010-09-03 2012-03-15 Covalent Materials Corp Compound semiconductor substrate
JP2013149733A (en) * 2012-01-18 2013-08-01 Seiko Epson Corp Semiconductor substrate and semiconductor substrate manufacturing method
JP2014216474A (en) * 2013-04-25 2014-11-17 コバレントマテリアル株式会社 Nitride semiconductor substrate
WO2015019733A1 (en) * 2013-08-06 2015-02-12 住友電気工業株式会社 Silicon carbide semiconductor substrate, method for producing same, and method for producing silicon carbide semiconductor device
JP2015032788A (en) * 2013-08-06 2015-02-16 住友電気工業株式会社 Silicon carbide semiconductor substrate, method for manufacturing the same, and method for manufacturing silicon carbide semiconductor device
US9818608B2 (en) 2013-08-06 2017-11-14 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor substrate, method for manufacturing silicon carbide semiconductor substrate, and method for manufacturing silicon carbide semiconductor device where depression supression layer is formed on backside surface of base substrate opposite to main surface on which epitaxial layer is formed
JP2017022233A (en) * 2015-07-09 2017-01-26 東京エレクトロン株式会社 Vertical type thermal treatment apparatus and operational method for vertical type thermal treatment apparatus

Similar Documents

Publication Publication Date Title
JP4682328B2 (en) Gallium nitride single crystal thick film and manufacturing method thereof
TWI437637B (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
JP2005303246A (en) METHOD OF GROWING HIGH QUALITY ZnSe EPITAXIAL LAYER ONTO NEW Si SUBSTRATE
JP2006203196A (en) Method for manufacturing epitaxial wafer
JP2000357663A (en) Method of manufacturing iii nitride base compound semiconductor substrate
JP4150527B2 (en) Crystal production method
JP2003113000A (en) Semiconductor epitaxial wafer and method for manufacturing the same
JP2003218031A (en) Method of manufacturing semiconductor wafer
CN113994032A (en) Substrate for electronic device and method for manufacturing the same
JP4633962B2 (en) Manufacturing method of nitride semiconductor substrate
JP2004107114A (en) Method of manufacturing group iii nitride compound semiconductor substrate
TW426887B (en) Method for growing nitride compound semiconductor
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
JP2007142003A (en) Manufacturing method of group iii nitride crystal, epitaxial substrate, warpage reduction method therein, and semiconductor element
US7112243B2 (en) Method for producing Group III nitride compound semiconductor
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP2005343704A (en) METHOD FOR PRODUCING AlxGayIn1-x-yN CRYSTAL
JP2004307253A (en) Method for manufacturing semiconductor substrate
JP4766642B2 (en) SiC semiconductor and SiC epitaxial growth method
JP5929434B2 (en) Method for manufacturing AlN-based film and composite substrate used therefor
JP2005005723A (en) Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
JP2004039766A (en) 3C-SiC SEMICONDUCTOR OR GaN SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JPS6386450A (en) Manufacture of substrate for formation of semiconductor element
WO2024057698A1 (en) Single crystal silicon substrate equipped with nitride semiconductor layer, and method for manufacturing single crystal silicon substrate equipped with nitride semiconductor layer
JP4208078B2 (en) InN semiconductor and manufacturing method thereof