JPH01283345A - Sintered alloy material and its production - Google Patents

Sintered alloy material and its production

Info

Publication number
JPH01283345A
JPH01283345A JP63110562A JP11056288A JPH01283345A JP H01283345 A JPH01283345 A JP H01283345A JP 63110562 A JP63110562 A JP 63110562A JP 11056288 A JP11056288 A JP 11056288A JP H01283345 A JPH01283345 A JP H01283345A
Authority
JP
Japan
Prior art keywords
sintered
copper
powder
iron powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63110562A
Other languages
Japanese (ja)
Other versions
JP2617334B2 (en
Inventor
Isamu Kikuchi
菊地 勇
Masanori Kikuchi
菊地 眞紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63110562A priority Critical patent/JP2617334B2/en
Priority to GB8910565A priority patent/GB2219601B/en
Publication of JPH01283345A publication Critical patent/JPH01283345A/en
Priority to HK767/91A priority patent/HK76791A/en
Application granted granted Critical
Publication of JP2617334B2 publication Critical patent/JP2617334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Abstract

PURPOSE:To obtain a sintered alloy material having superior conformability to a mating member and excellent corrosion resistance and also having superior strength characteristics by subjecting a powdery raw material in which prescribed amounts of powdered manganese bronze are mixed with a copper-coated iron powder to compacting and sintering and then subjecting the resulting sintered compact to sizing to a specific porosity. CONSTITUTION:A powdery raw material prepared by adding powdered manganese bronze having a composition consisting of, by weight, 30-40% Zn, 0.3-1% Sn, 0-5% Al, 0.5-5% Mn, and the balance copper with inevitable impurities to an iron powder coated with 20-50% copper by 25-150 pts.wt. based on 100 pts.wt. of the above iron powder and then mixing them is compacted and sintered. Subsequently, the resulting sintered compact is sized to 15-28vol.% porosity so as to be formed into the above alloy material. Further, it is desirable to place a green compact formed by compacting the above powdery raw material in a heat-resisting vessel and close this vessel with a cover and then sinter the above in a reducing atmosphere at about 800-950 deg.C.

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結合金材およびその製造法に係り、強度およ
び耐食性が共に優れ、しかも軸材などの相手部材に対す
るなじみ性が良好で摩擦係数が小さく、軸受材などとし
て優れた性能を有する焼結合金材およびその製造法を提
供しようとするものである。
Detailed Description of the Invention "Object of the Invention" The present invention relates to a sintered alloy material and a method for producing the same, which have excellent strength and corrosion resistance, have good conformability to mating members such as shaft materials, and have a small coefficient of friction. The present invention aims to provide a sintered alloy material having excellent performance as a bearing material, etc., and a method for manufacturing the same.

(産業上の利用分野) 焼結含油軸受その仙境結合金材およびその製造技術。(Industrial application field) Sintered oil-impregnated bearings, their Senkyo alloy materials, and their manufacturing technology.

(従来の技術) 焼結含油軸受については日本工業規格としてJIS B
 1581−1976に規定されている如く、家庭用電
気機器、音響用機器、事務用機械、農業用機械、自動車
その他の運搬荷投機器などに用いる円筒形、フランジ付
円筒形および球形などの軸受材に関して種々に規定され
、又その主たる成分組成としては純鉄系、鉄−銅系、鉄
−炭素系、鉄−銅−炭素系、鉄−銅−鉛系、青銅系、銅
系、鉛−青銅系など材質、種類は比較的多岐に亘る。
(Conventional technology) Regarding sintered oil-impregnated bearings, JIS B is the Japanese Industrial Standard.
1581-1976, bearing materials such as cylindrical, flanged cylindrical, and spherical bearings used in household electrical equipment, audio equipment, office machinery, agricultural machinery, automobiles, and other transportation and loading equipment, etc. There are various regulations regarding these, and their main component compositions are pure iron, iron-copper, iron-carbon, iron-copper-carbon, iron-copper-lead, bronze, copper, and lead-bronze. There is a relatively wide variety of materials and types.

なお例えば特開昭56−51554号公報においては鉄
粉と黄銅粉を用いた圧粉体を焼結することが発表されて
おり、更に本発明者等によっても特開昭60−2009
27号公報において鉄粉、黄銅粉および洋白粉を用い、
それらの混合粉による圧粉成形体を還元性雰囲気で焼結
処理することを提案している6(発明が解決しようとす
る課題) 上記した鉄を主体とした含油軸受においては骨格的強度
に優れ、高荷重用として好ましいが、相手部材に対する
なじみ性や耐食性に劣っているので利用上制限を受ける
For example, JP-A No. 56-51554 discloses sintering a green compact using iron powder and brass powder, and the present inventors also published JP-A No. 60-2009.
In Publication No. 27, using iron powder, brass powder and nickel silver powder,
It is proposed to sinter a compacted product made of these mixed powders in a reducing atmosphere.6 (Problem to be solved by the invention) The above-mentioned oil-impregnated bearings mainly made of iron have excellent skeletal strength. Although it is preferable for high-load applications, its use is limited because it has poor conformability to mating members and corrosion resistance.

これに対し銅または青銅を主体としたものにおいてはな
じみ性や耐食性は良好であるが、強度上不充分であるか
ら高負荷用に適しない。
On the other hand, those made mainly of copper or bronze have good conformability and corrosion resistance, but are not suitable for high-load applications because they have insufficient strength.

鉄−銅系(鉄−銅−鉛、鉄−銅一炭素などを含む)のも
のはこれらの中間的特性となるが、なお強度や耐食性に
おいて不充分である。
Iron-copper type materials (including iron-copper-lead, iron-copper-carbon, etc.) have properties intermediate between these, but are still insufficient in strength and corrosion resistance.

前記した特開昭56−51554号公報Gこよる鉄粉と
黄銅粉を用いたものにおいては耐食性においては好まし
いとしても強度や相手部材に対するなじみ性などにおい
て充分でない。
Although the iron powder and brass powder disclosed in JP-A-56-51554 G are good in terms of corrosion resistance, they are not sufficient in terms of strength and compatibility with mating members.

前記特開昭60−200927号公報のものは洋白をも
用いることにより強度性を確保しながら充分な耐食性と
摩擦係数低減を図ったものであるが、それらの特性にお
いて必ずしも満足するものとなし得ず、又軸材などの相
手部材に対するなじみ性などにおいて不充分である。
The product disclosed in JP-A No. 60-200927 also uses nickel silver to ensure sufficient corrosion resistance and reduce the coefficient of friction while ensuring strength, but these properties are not necessarily satisfactory. Furthermore, the compatibility with mating members such as shaft members is insufficient.

更に前記したような従来のものにおいては適当な強度を
得ると共に比較的低コストに製品を得るためには相当量
の鉄粉を用いることが不可欠であるところ、このように
して混合された鉄粉が成程銅粉や黄銅粉中に埋れるとし
てもそれなりに露出することとならざるを得す、このよ
うにして露出した鉄粉粒子は相手部材と接摺してこれを
損耗し、又腐食発生の基点となる。
Furthermore, in the conventional products as described above, it is essential to use a considerable amount of iron powder in order to obtain a product with appropriate strength and at a relatively low cost. Even if the iron powder particles are buried in the copper powder or brass powder for some time, they will inevitably be exposed to some extent.The exposed iron powder particles will come into contact with the mating member and damage it, and also cause corrosion. It becomes the base point of occurrence.

即ち前記したような従来法によるものにおいては銅粉な
どの混合量が高くなるに従ってこの添加された銅粉など
による色彩感覚を次第に帯びて来ることとなり、鉄粉の
みによる製品とは異った感触を示すようになるが、これ
を顕微鏡的に観察した場合には各原料粉(鉄粉と銅粉な
ど)が略その混合比に従った状態に露出しており、この
ような製品について耐食性試験をなした場合には銅粉な
どの部分ではその腐食が低減されるとしても鉄粉部分で
は腐食が容易に発生進行する。相手部材に対する損耗な
どについてもこれと同じであって、露出した鉄粉自体は
軸材などに対してやはり鉄としての損耗を与えることと
ならざるを得ない。
In other words, as the amount of copper powder etc. added increases in products made using the conventional method as described above, the color sense due to the added copper powder etc. gradually takes on, and the product has a different feel from products made only with iron powder. However, when this is observed microscopically, each raw material powder (iron powder, copper powder, etc.) is exposed in a state approximately according to the mixing ratio, and corrosion resistance tests are performed on such products. If this is done, even if corrosion is reduced in parts such as copper powder, corrosion easily occurs and progresses in iron powder parts. The same applies to wear and tear on the mating member, and the exposed iron powder itself inevitably causes wear and tear on the shaft material and the like as iron.

「発明の構成」 (課題を解決するだめの手段) 1、  Fe:  20〜64wt%、Cu:  27
〜5 9wt%、Zn:6−24wt%、  Sn :
 0.06〜0.6 wt%、^Il go〜3wt% を含有すると共に、 Mn : 0.1〜3wt% を含有し、しかも前記FeがCuにより実質的完全状態
に被覆され、気孔率15〜28voIlとされたことを
特徴とする焼結合金材。
"Structure of the invention" (Means for solving the problem) 1. Fe: 20-64 wt%, Cu: 27
~59wt%, Zn:6-24wt%, Sn:
0.06 to 0.6 wt%, ^Ilgo to 3 wt%, Mn: 0.1 to 3 wt%, and the Fe is substantially completely covered with Cu, and the porosity is 15. 28 vol.

2゜Fe: 20〜64wt%、Cu : 24.2〜
58.7wt%、Zn : 4.5〜23.8wt%、
Sn : 0.05〜0.6 wt%、Aj! : 0
〜2.98wt% を含有すると共に、 Mn: 0.08〜2.98wt% を含有し、しかも黒鉛、二硫化モリブデン、鉛のような
固体潤滑材の1種または2種以上を0.5〜5wt%を
含有し、前記FeがCuにより実質的完全状態に被覆さ
れ、気孔率が15〜28vop%とされたことを特徴と
する焼結合金材。
2゜Fe: 20~64wt%, Cu: 24.2~
58.7wt%, Zn: 4.5-23.8wt%,
Sn: 0.05-0.6 wt%, Aj! : 0
~2.98wt%, Mn: 0.08~2.98wt%, and 0.5~2.98wt% of one or more solid lubricants such as graphite, molybdenum disulfide, and lead. 5 wt%, the Fe is substantially completely covered with Cu, and the porosity is 15 to 28 vop%.

3、20〜50wt%の銅を被覆した鉄粉100重量部
に対し、Zn: 30〜40wt%、Sn:0.3〜1
.0wt%、八j!:0−5wt%、Mn : 0.5
〜5wt%を含有し残部がCuおよび不可避的不純物よ
りなるマンガン青銅粉を25〜150重量部添加混置部
た原料粉を圧粉成形してから焼結し、次いで気孔率15
〜28von%にサイジングすることを特徴とする焼結
合金材の製造法。
3. Zn: 30-40 wt%, Sn: 0.3-1 for 100 parts by weight of iron powder coated with 20-50 wt% copper.
.. 0wt%, 8j! :0-5wt%, Mn: 0.5
The raw material powder containing 25 to 150 parts by weight of manganese bronze powder containing ~5 wt% and the remainder consisting of Cu and unavoidable impurities is compacted and sintered, and then the porosity is 15.
A method for producing a sintered metal material, characterized by sizing the material to ~28 von%.

4、20〜50−t%の銅を被覆した鉄粉100重量部
に対し、Zn: 30〜40wt%、Sn:0゜3〜1
.0wt%、Aj!:0〜5wt%、Mn+0.5〜5
.0wt%を含有し残部がCuおよび不可避的不純物よ
りなるマンガン青銅粉を19.7〜149.5重量部と
黒鉛、二硫化モリブデンまたは鉛のような固形潤滑材の
1種または2種以上を0.5〜5.3重量部を添加混合
した原料粉を圧粉成形してから焼結し、次いで気孔率1
5〜28vol%にサイジングすることを特徴とする焼
結合金材の製造法。
4. For 100 parts by weight of iron powder coated with 20-50-t% copper, Zn: 30-40 wt%, Sn: 0°3-1
.. 0wt%, Aj! :0~5wt%, Mn+0.5~5
.. 19.7 to 149.5 parts by weight of manganese bronze powder containing 0 wt% with the balance consisting of Cu and unavoidable impurities and one or more solid lubricants such as graphite, molybdenum disulfide, or lead. The raw material powder mixed with .5 to 5.3 parts by weight is compacted and sintered, and then the porosity is 1.
A method for producing a sintered metal material, characterized by sizing the material to 5 to 28 vol%.

(作用) Fe: 20〜64wt%、Cu: 27〜59wt%
、Zn:6〜24wt%を含有すると共にSn:0.0
6〜0.6wt%、A7!:0〜3wt%、Mn:0.
1〜3wt%を含有することにより強度を確保しながら
相手部材に対するなじみ性を維持し、しかも耐食性にお
いて優れた特性を発揮する。即ち上記のようなl’In
、Znと八β、Snの適量添加で強度および耐食性が適
切に向上し、しかも相手部材に対するなじみ性などが損
われない。
(Function) Fe: 20-64wt%, Cu: 27-59wt%
, Zn: 6 to 24 wt% and Sn: 0.0
6-0.6wt%, A7! :0-3wt%, Mn:0.
By containing 1 to 3 wt%, it maintains compatibility with the mating member while ensuring strength, and exhibits excellent corrosion resistance. That is, l'In as above
By adding appropriate amounts of , Zn, 8β, and Sn, the strength and corrosion resistance are appropriately improved, and the conformability to the mating member is not impaired.

焼結合金における前記Feの粉末粒子がCuにより実質
的完全状態に被覆されていることにより、該Fe粉末粒
子が製品面において露出することがなくなり、即ちCu
で製品面が有効且つ緻密に被覆されたものとなって耐食
性を大幅に向上し、又相手部材に対するなじみ性や熱伝
導性なども向上せしめられる。粉末粒子間の焼結につい
てもFe粒子の介入がないので安定した焼結関係が形成
される。
Since the Fe powder particles in the sintered alloy are substantially completely covered with Cu, the Fe powder particles are not exposed on the product surface, that is, Cu
This effectively and densely coats the product surface, greatly improving corrosion resistance, and also improving compatibility with mating parts and thermal conductivity. Regarding sintering between powder particles, a stable sintering relationship is formed since there is no intervention of Fe particles.

Feが20−t%以下では強度が充分に得られず、又他
の成分を多量に必要とし高価となる。一方64−t%を
超えてFeを含有したものは摩擦係数を高め、相手部材
に対するなじみ性が確保されないと共に耐食性が急激に
劣化する。
If the Fe content is less than 20-t%, sufficient strength cannot be obtained, and large amounts of other components are required, resulting in an expensive product. On the other hand, a material containing more than 64-t% of Fe increases the coefficient of friction, does not ensure conformability to a mating member, and rapidly deteriorates corrosion resistance.

Cuが27wt%以上となることによりFe粒子表面の
完全被覆を図る。と共になじみ性を確保し、又59wt
%を上限とすることでFe粒子その他を適量含有させて
強度性を維持し、しかも低コスト性を得しめる。
By setting the Cu content to 27 wt% or more, the surfaces of the Fe particles are completely covered. It also ensures familiarity with the weight of 59wt.
By setting the upper limit to %, it is possible to contain an appropriate amount of Fe particles and the like, maintain strength, and achieve low cost.

Znを6wt%以上とすることでCuやMnと相俟って
耐食性を確保し、又24wt%を上限とすることにより
なじみ性を適切に維持する。Mnが0.1wt%以上と
することによりその脱酸作用から強度および耐食性を有
効に高める。一方3wt%を上限とすることによってな
じみ性を維持し、摩擦係数の上昇を抑制する。
By setting Zn to 6 wt% or more, corrosion resistance is ensured in combination with Cu and Mn, and by setting the upper limit to 24 wt%, conformability is appropriately maintained. By setting Mn to 0.1 wt% or more, strength and corrosion resistance are effectively increased due to its deoxidizing effect. On the other hand, by setting the upper limit to 3 wt%, conformability is maintained and an increase in the coefficient of friction is suppressed.

Snが0.06%以上含有されることにより、Cu、M
nおよびA!やZnなどの適量含有と相俟って銅系高力
合金としてのマンガン青銅の特性を発揮することができ
る。Fe粉末粒子を核とし、これに銅系高力合金である
マンガン青銅のような成分を介在させる本発明の場合に
おいて、このSn分は0.6wt%を超えて含有させて
もその効果が飽和し、殊更にそれ以上の特性も求められ
ず、コスト高となる。即ち0.6wt%を上限とするこ
とにより鉄粉粒子を相当量用いた低コスト性確保を得し
める。
By containing 0.06% or more of Sn, Cu, M
n and A! Together with the inclusion of appropriate amounts of Zn and Zn, the characteristics of manganese bronze as a copper-based high-strength alloy can be exhibited. In the case of the present invention, in which Fe powder particles are used as the core and a component such as manganese bronze, which is a copper-based high-strength alloy, is interposed, the effect is saturated even if the Sn content exceeds 0.6 wt%. However, even better characteristics are not required, resulting in high costs. That is, by setting the upper limit to 0.6 wt%, it is possible to ensure low cost by using a considerable amount of iron powder particles.

ARが0〜3wt%含有されることにより前記したよう
な銅系高力合金としてのマンガン青銅の成分組成を鉄粉
粒子間において確保する。3wt%を超えたAlの含有
は却って強度低下をもたらす傾向が顕われる。なおこの
AAの下限については例えばJIS  H2205にお
ける表2に規定されているように5.0wt%まで含有
したマンガン青銅粉を用い、製品として3.0wt%ま
で含有せしめてよいことは上記の如くであるが、全く含
有せず、あるいは実質的に痕跡程度であってもマンガン
青銅としての高力特性を求め得ることがあるので、殊更
に限定する必要がないものと言える。
By containing AR in an amount of 0 to 3 wt%, the above-mentioned component composition of manganese bronze as a copper-based high-strength alloy is ensured between the iron powder particles. If the Al content exceeds 3 wt%, the strength tends to decrease. Regarding the lower limit of this AA, for example, as specified in Table 2 of JIS H2205, manganese bronze powder containing up to 5.0 wt% may be used, and as mentioned above, it is allowed to contain up to 3.0 wt% as a product. However, even if it does not contain manganese at all, or even if it contains only a trace, it may be possible to obtain the high strength properties of manganese bronze, so it can be said that there is no need to particularly limit it.

800〜950℃の焼結温度により前記したように銅被
覆された鉄粉粒子とマンガン青銅としての銅系高力合金
粉末相互が適切に焼結せしめられる。
As described above, the copper-coated iron powder particles and the copper-based high-strength alloy powder as manganese bronze are appropriately sintered at a sintering temperature of 800 to 950°C.

圧粉成形体を耐熱性容器の底面から離隔した状態に収容
すると共に蓋を施して焼結することによすZn分の気散
損失を防止し、しかも均斉な焼結状態を形成する。
The powder compact is housed in a state separated from the bottom surface of the heat-resistant container and is sintered with a lid, thereby preventing the loss of Zn due to vaporization and forming a uniform sintered state.

圧粉成形し焼結後、サイジングした気孔率15νal1
%以上とすることにより軸受材などとする場合の含油量
を適切に得しめ、潤滑性能を高める。
Porosity 15νal1 after compacting and sintering
% or more, the oil content can be appropriately obtained when used as a bearing material, etc., and the lubrication performance can be improved.

一方この気孔率が28vol%を超えないことにより強
度性を確保すると共に含浸油の流出、飛散を防止する。
On the other hand, since the porosity does not exceed 28 vol%, strength is ensured and the impregnating oil is prevented from leaking and scattering.

黒鉛、二硫化モリブデンまたは鉛のような固体潤滑材の
1種または2種以上を0.5wt%以上含有させること
により潤滑性を高め、摩擦係数を小とする。又5.Ow
t%を超えないことにより製品の強度性を維持する。
By containing 0.5 wt% or more of one or more solid lubricants such as graphite, molybdenum disulfide, or lead, the lubricity is enhanced and the coefficient of friction is reduced. Also 5. Ow
The strength of the product is maintained by not exceeding t%.

Zn: 30〜40wt%、Sn : 0.3−1wt
%、i:0〜5wt%、Mn : 0.5〜5Lt%を
含有し残部がCuおよび不可避的不純物よりなるマンガ
ン青銅粉を用いることによりCu、ZnおよびMnとS
n、あるいはAlが合金体として同時に添加され、それ
らの成分を各別に準備し順次混合する煩雑さを回避する
。又配合された各成分の偏析を適切に防止し、均等な混
合焼結状態を容易に形成する。又このようなマンガン青
銅は銅系合金であるから前記のように鉄粒子に被覆され
たCu層に対するなじみが良好で、焼結機構も安定した
ものとして形成される。
Zn: 30-40wt%, Sn: 0.3-1wt
%, i: 0 to 5 wt%, Mn: 0.5 to 5 Lt%, and the balance is Cu and inevitable impurities.
n or Al is added at the same time as an alloy, thereby avoiding the complexity of preparing each component separately and mixing them sequentially. Moreover, segregation of the blended components is appropriately prevented, and a uniform mixed sintered state can be easily formed. Moreover, since such manganese bronze is a copper-based alloy, it is well adapted to the Cu layer coated on the iron particles as described above, and the sintering mechanism is also stable.

即ち鉄粉粒子が高力を有するマンガン青銅によりなじみ
よ(、強固安定に結合された組織を構成する。
In other words, the iron powder particles become more compatible with the high-strength manganese bronze (forming a strongly and stably bonded structure).

(実施例) 上記したような本発明によるものの具体的な実施態様に
ついて説明すると、本発明は基本的にFe、Cu、 Z
nと共にMn、 Sn、および適宜に八βを含有した焼
結合金であるが、又そのFeがCuで被覆されたもので
あって、これらの組成成分は各別に準備されてよいが、
Fe粉末粒子はCuで被覆されたものとして採用される
。又他の成分も合金として材料を準備してよいことは前
記の通りで、Mn−A4合金と黄銅の各粉末、マンガン
と銅との合金である電気抵抗合金や磁性合金と鉄および
Znの各粉末などを採用することができる。然し好まし
い材料としては純鉄粉末にCuを被覆したものとマンガ
ン青銅粉末を用いることである。
(Example) To explain the specific embodiments of the present invention as described above, the present invention basically includes Fe, Cu, Z
It is a sintered alloy containing Mn, Sn, and optionally 8β together with n, and its Fe is coated with Cu, and these compositional components may be prepared separately, but
Fe powder particles are employed as coated with Cu. As mentioned above, other ingredients may also be prepared as alloys, such as Mn-A4 alloy and brass powder, electric resistance alloy or magnetic alloy which is an alloy of manganese and copper, iron and Zn. Powder etc. can be adopted. However, preferred materials are pure iron powder coated with Cu and manganese bronze powder.

製品としてのFeば一般的に20〜64wt%であるが
、好ましくは30〜604%であり、より好ましくは4
0〜55−1%である。又Cuは一般的には上記のよう
に27〜59−t%であるが、好ましくは25〜55圓
t%、より好ましくは30〜50wt%とすべきである
。Znの一般的範囲は6〜24wt%であるが、好まし
くは8〜24i%、より好ましくは10〜20wt%で
ある。Mnについての好ましい範囲は前記した一般的範
囲の中で0.1〜3−1%であり、より好ましくは0.
5〜2wt%である。
Fe as a product is generally 20 to 64 wt%, preferably 30 to 604%, more preferably 4
It is 0-55-1%. Further, Cu is generally 27 to 59 wt% as mentioned above, preferably 25 to 55 wt%, more preferably 30 to 50 wt%. The general range for Zn is 6-24wt%, preferably 8-24i%, more preferably 10-20wt%. The preferred range for Mn is 0.1 to 3-1% within the above general range, more preferably 0.1% to 3-1%.
It is 5 to 2 wt%.

八lについては3’yt%まで含有することが許容^れ
るが、全く含有しないものであってもよい。
Regarding 8L, it is permissible to contain up to 3'yt%, but it may not be contained at all.

前記した鉄粉は上述したようなCu分の中の少くとも一
部を用いて被覆したものとして準備される。
The above-mentioned iron powder is prepared by being coated with at least a part of the Cu component as described above.

このような鉄粉に対する銅の被覆はメツキ法の如きによ
って行われ、そのような被覆量はメツキ時における通電
量と時間を適当に選ぶことにより適宜の程度に行い得る
。このような銅の被覆量は重量比で20〜50%である
ことは前記の通りであ一′P 」? 、づ:1・ るが、より好ましい範囲としては25〜45%程度であ
る。このような銅被覆により鉄粉粒子の周面ば完全状態
に銅皮膜で被包されることになり、又鉄粉粒子表面に特
にメツキ時においてそれなりの凹凸の存するものとして
得られるから圧粉成形が容易化される。
Such iron powder is coated with copper by a plating method, and the amount of coating can be adjusted to an appropriate degree by appropriately selecting the amount of current and time during plating. As mentioned above, the amount of copper coating is 20 to 50% by weight. , 1. However, a more preferable range is about 25 to 45%. With such copper coating, the peripheral surface of the iron powder particles is completely covered with a copper film, and the surface of the iron powder particles has some unevenness, especially during plating, so it is difficult to compact the particles. is facilitated.

なお原材たる鉄粉粒子の大きさについては特に制限され
ないが、純鉄系焼結体製造のために従来−船釣に採用さ
れている100メソシユ以下より更に拡大した粒子範囲
のものを採用することができる。即ち例えば150メソ
シユ以下のように比較的細粒のものでも銅被覆によって
増径され粒径的に従来−船釣範囲のものと同様に処理す
ることが可能であるし、上記のように圧粉成形が容易と
なることから従来普通の粒径範囲を超えて大径のもので
あっても従来法同然の圧粉成形処理で同等ないしそれよ
り容易に成形することができる。
There are no particular restrictions on the size of the iron powder particles used as the raw material, but in order to produce pure iron sintered bodies, particles with a particle size larger than the 100 mesosites that are conventionally used for boat fishing are used. be able to. That is, even relatively fine grains, such as 150 mesosius or less, can be increased in diameter by copper coating and treated in the same way as those in the conventional boat fishing range, and as described above, they can be treated as compacted powder. Since molding is easy, even particles having a large diameter exceeding the conventional conventional particle size range can be molded equally or more easily by the same powder molding process as the conventional method.

上記のような鉄粉粒子に対するCuの被覆は電解メツキ
の外に浸潤性や蒸着法その他の適宜の手法を採用するこ
とができ、何れにしても鉄粉粒子表面に一般的に95%
以上、少くとも90%以上、好ましくは98%以上の略
完全な被覆状態を形成する。
In addition to electrolytic plating, infiltration, vapor deposition, and other appropriate methods can be used to coat iron powder particles with Cu as described above.
As described above, a substantially complete coverage state of at least 90% or more, preferably 98% or more is formed.

本発明においては上記のように銅被覆された鉄粉粒子間
に銅系の高力合金であるマンガン青銅の成分組成を形成
するものであって、このような銅系高力合金であるマン
ガン青銅は複数の素材粉末を用いて形成することも可能
であるが、好ましい手法としてはマンガン青銅の粉末を
用いることである。即ちこのようなマンガン青銅として
は例えばJIS  H2205に規定されているように
、Zn: 30〜40wt%、Sn:0.3−1wt%
、A1:0.5〜5wt%、Mn : 0.5〜5wt
%であって、残部がCuのような公知のものを広く採用
することが可能であり、又後述する製造例のようにAl
を全く含有しないマンガン青銅粉でもよいもので、この
ような成分組成のマンガン青銅を上記のような銅被覆鉄
粉粒子の間に位置せしめ(混合)、圧粉成形焼結し、あ
るいは更にサイジングすることによって安定且つ強固な
焼結組織が得られ、機械的強行113+1 度の高い製品となる。
In the present invention, as described above, the composition of manganese bronze, which is a copper-based high-strength alloy, is formed between the copper-coated iron powder particles, and the composition of manganese bronze, which is such a copper-based high-strength alloy, is can be formed using a plurality of raw material powders, but a preferred method is to use manganese bronze powder. That is, as such manganese bronze, for example, as specified in JIS H2205, Zn: 30 to 40 wt%, Sn: 0.3 to 1 wt%.
, A1: 0.5-5wt%, Mn: 0.5-5wt
%, and the balance is Cu, and it is possible to widely adopt a known material such as Cu, or as in the manufacturing example described later, Al
Manganese bronze powder containing no manganese bronze may also be used, and manganese bronze having such a composition is placed (mixed) between the copper-coated iron powder particles as described above, compacted and sintered, or further sized. As a result, a stable and strong sintered structure is obtained, resulting in a product with a high mechanical stress of 113+1 degrees.

固体潤滑材としての黒鉛、二硫化モリブデンなどは粉末
として添加されることは当然であるが、黒鉛のような固
体潤滑材は銅被覆鉄粉およびマンガン青銅粉の何れに対
しても比重が小であって、このような黒鉛の如きを単に
混合しても他の原料粉に対し均一状態に分散させること
が困難であり、しかも搬送荷役中およびプレスホッパー
への入替え、圧粉成形時などにおいて黒鉛粉の浮上、片
寄りなどによる偏析が発生する。そこで斯様な黒鉛の如
き固体潤滑材に関しては比較的粗粉のものを採用し、し
かもその微粉分を分級して除去したものを用いると有効
であることが実験により確認された。即ち上記黒鉛粉末
として一般的に市販されているものが1〜30μm、あ
るいは1〜50μmの如きであるのに対し本発明者等が
好ましい固体潤滑材としての黒鉛は10〜150μm、
特に20〜100.camとされ、粗粉であると共に1
0μmまたは20μm以下の微粉分をカントしたもので
あり、それによって均一分散を容易化し、また荷役その
他の取扱時における偏析発生を可及的に防止し得る。前
記のような10μm未満、あるいは20μm未満のよう
な微粉分は液中での分級処理で粉塵の発生がなく、しか
も適切に分級し得る。
It is natural that solid lubricants such as graphite and molybdenum disulfide are added in the form of powder, but solid lubricants such as graphite have a low specific gravity for both copper-coated iron powder and manganese bronze powder. Therefore, even if such graphite is simply mixed, it is difficult to uniformly disperse it in other raw material powders, and furthermore, graphite may be mixed during transportation, transfer to the press hopper, compaction, etc. Segregation occurs due to floating of powder, unevenness, etc. Therefore, it has been confirmed through experiments that it is effective to use a relatively coarse powder as a solid lubricant such as graphite, and to use one whose fine powder has been classified and removed. That is, while the graphite powder that is generally commercially available has a diameter of 1 to 30 μm, or 1 to 50 μm, the graphite used as a solid lubricant preferred by the present inventors has a diameter of 10 to 150 μm.
Especially 20-100. cam, coarse powder and 1
Fine particles of 0 μm or 20 μm or less are canted, thereby facilitating uniform dispersion and preventing segregation as much as possible during cargo handling and other handling. The above-mentioned fine particles of less than 10 μm or less than 20 μm do not generate dust when classified in a liquid, and can be classified appropriately.

なお本発明によるものは必要に応じ上記以外の金属また
は合金粉などを適宜に添加してよい。即ち例えばPb、
、Ni、Stなどの若干を含有せしめても本発明の特質
を失うものでなく、合金としてSn含有黄銅、へβ含有
黄銅、pb含有黄銅、Ni含有黄銅、Fe含有黄銅、S
i含有黄銅などを用いることができる。
Note that metals or alloy powders other than those mentioned above may be appropriately added to the material according to the present invention, if necessary. That is, for example, Pb,
, Ni, St, etc., the characteristics of the present invention will not be lost even if a small amount of Sn, Ni, St, etc. is contained.
I-containing brass or the like can be used.

圧粉成形は一般的に2〜3 Ton/c−程度の圧下で
行われ、その気孔率は22〜35voffi%である。
Powder compaction is generally performed under a pressure of about 2 to 3 Ton/c-, and the porosity is 22 to 35 voffi%.

22voI1%未満では有効なサイジングを行い且つ含
油などに適した気孔率をもつ製品を得ることが困難とな
る。一方35voA%を超えた気孔率を有する圧粉成形
体は焼結取扱中などにおいて損壊、欠損する可能性が高
い。焼結は800〜950℃の還元性雰囲気で行うが、
前記のように含有されているZn分の揮散脱亜鉛を防止
するには耐熱性容器内に網目材などを敷いて底面から離
隔して収容し施蓋して焼結することが好ましい。勿論炭
素粉中に埋没して実施してもよい。
If the 22voI is less than 1%, it will be difficult to perform effective sizing and obtain a product with a porosity suitable for oil impregnation. On the other hand, a powder compact having a porosity exceeding 35 voA% is likely to be damaged or chipped during sintering and handling. Sintering is performed in a reducing atmosphere at 800 to 950°C,
In order to prevent the Zn content from being volatilized and dezinced as described above, it is preferable to spread a mesh material or the like in a heat-resistant container, store the container away from the bottom surface, cover the container, and sinter the container. Of course, it may be carried out by being buried in carbon powder.

焼結によってそれなりに変形し、即ちマンガン青銅を用
いるような本発明の場合においては歪み、変形、寸法変
化の如きもそれなりに顕われるからサイジングして所定
寸法の製品とする。又このサイジングによって気孔率1
5〜28ν0β%の製品とすることにより、含油軸受を
得るに当って好ましい含油量を得しめ、しかも機械的強
度なども適切な値を保持した焼結金属体が得られる。
In the case of the present invention, in which manganese bronze is used, distortion, deformation, and dimensional changes occur to some extent due to sintering, so the product is sized to a predetermined size. This sizing also reduces the porosity to 1
By preparing a product with a content of 5 to 28 ν0β%, a sintered metal body can be obtained which has a preferable oil content for obtaining an oil-impregnated bearing and also maintains appropriate mechanical strength.

本発明によるものの具体的な製造例について説明すると
以下の如くである。
A specific manufacturing example of the product according to the present invention will be described below.

製造例1゜ 粒度が100メソシユ以下の鉄粉に40wt%のCuを
被覆したものと、Cu : 64.5wt%、Zn:3
0−t%、Sn:0.5wt%、Mn:5wt%、を含
有し100メソシユ以下のマンガン青銅粉を準備し、こ
れらを次の第1表のようなwt%に混合した。
Production example 1゜ Iron powder with a particle size of 100 mesosinus or less coated with 40 wt% Cu, Cu: 64.5 wt%, Zn: 3
Manganese bronze powder containing 0-t%, Sn: 0.5wt%, Mn: 5wt% and having a weight of 100 or less was prepared, and these were mixed in the wt% as shown in Table 1 below.

第  1  表 上記した第1表による■〜■の各原料粉は何れも充分に
混合されてから圧粉成形され、即ち外径が101、内径
4mmの環状軸受体として成形した。
Table 1 The raw material powders ① to ② in Table 1 above were thoroughly mixed and then compacted, that is, formed into an annular bearing body having an outer diameter of 10 mm and an inner diameter of 4 mm.

これらの圧粉成形体は夫々各グループ毎に区分して底面
に金属網を敷いた耐熱性鉄箱に収容し、即ら被焼結体を
容器底面から離隔させた状態で収容せしめ、蓋を施して
から焼結炉に装入し、890゛CのAXガスによる還元
性雰囲気で45分間の焼結処理を行った。このようにし
て得られた各焼結体は次いでサイジングをなし、気孔率
が一定の20νon%の製品とした。このような製品に
ついて拡大鏡により検討したが鉄粉粒子は何れも98%
以上の略完全状態に銅層によって被覆されており、露出
部分を実質的に観察し得ないものであった。
These compacted compacts are divided into groups and housed in heat-resistant iron boxes with a metal mesh on the bottom, that is, the bodies to be sintered are kept separated from the bottom of the container, and the lid is closed. After the coating was applied, it was charged into a sintering furnace and sintered for 45 minutes in a reducing atmosphere using AX gas at 890°C. Each of the sintered bodies thus obtained was then sized to produce a product with a constant porosity of 20 νon%. When examining these products using a magnifying glass, iron powder particles were found to be 98%
The copper layer was almost completely covered as described above, and the exposed portion could not be substantially observed.

又このようにして得られた各焼結体についてその成分組
成を検討した結果は次の第2表の如くであった。
Furthermore, the composition of each of the sintered bodies thus obtained was investigated and the results were as shown in Table 2 below.

第2表 上記のようにして得た各製品に対し次いで浸漬処理をな
し、即ち−3Q mtl1g程度の真空条件で気孔中の
空気を除去し且つタービン油を含浸させて含油軸受を得
た。
Table 2 Each product obtained as described above was then subjected to a dipping treatment, that is, the air in the pores was removed under a vacuum condition of about 1 g of -3Q mtl, and the product was impregnated with turbine oil to obtain an oil-impregnated bearing.

これらの製品に対し、その特性試験を行った。Characteristic tests were conducted on these products.

即ち上記したような各製品と、別に比較材として前記し
た従来技術による純鉄系焼結軸受け■ および純鉄粉と
黄銅粉とを50 : 50の割合で混合し圧粉成形、焼
結してから前記した各製品の同し気孔率である20vo
A%にサイジングしたものを1!備し、これらの製品■
〜■および比較材■■について圧環強度、摩擦係数およ
びPV値1000kg / ct −m / minで
40分(この条件で30分程度までは次第に昇温するが
、以後は殆んど昇温せず)連続回転したときの温度上昇
値を測定した結果は次の第3表の如くである。
That is, each of the above-mentioned products, a pure iron sintered bearing by the prior art described above as a comparison material, and pure iron powder and brass powder were mixed in a ratio of 50:50, compacted, and sintered. 20vo, which is the same porosity of each product mentioned above.
The one sized to A% is 1! In preparation, these products■
~ ■ and comparative material ■■ Radial crushing strength, friction coefficient, and PV value 1000 kg / ct - m / min for 40 minutes (under these conditions, the temperature gradually increases until about 30 minutes, but after that there is almost no increase in temperature) ) The results of measuring the temperature rise during continuous rotation are shown in Table 3 below.

第  3  表 又上記したような本発明による各製品■〜■および比較
材■■ について湿度80%、温度60℃の耐食性試験
を行い、錆発生の認められるまでの期間を測定した結果
は次の第4表の如くであった。
Table 3: Corrosion resistance tests were conducted on each of the products ■ to ■ according to the present invention and the comparative material ■■ as described above at a humidity of 80% and a temperature of 60°C, and the period until rust was observed was measured. The results are as follows. It was as shown in Table 4.

第  3  表 製造例2 前記した製造例1における第1表の■の配合において、
外掛けで黒鉛粉末を2wt%含有せしめた外はすべて製
造例1におけると同じに実施して製品とした。
Table 3 Production Example 2 In the formulation of ■ in Table 1 in Production Example 1 described above,
A product was prepared in the same manner as in Production Example 1 except that 2 wt % of graphite powder was added to the outside.

このものについての摩擦係数は0.068であって、よ
り優れた潤滑性を有することが確認され、又圧環強度は
22kg/、、zであって、好ましい強度を有しており
、高温多湿条件下の発錆試験も製造例1の場合と同じで
あることが確認された。
The friction coefficient of this product was 0.068, which confirmed that it had better lubricity, and the radial crushing strength was 22 kg/, z, which is a preferable strength and can be used under high temperature and high humidity conditions. It was confirmed that the rust development test below was also the same as in Production Example 1.

製造例3 製造例1におけると同し銅被薄鉄yJ100部に対し、
Cu:63.8%、Zn : 29.7%、Mn:5%
、Sn : Q、 5%、八1.:1.0%のマンガン
青銅粉25部を混合した外はすべて製造例1におけると
同じに圧粉成形、焼結し、20vo1%までサイジング
したものにタービン油を含浸させて含油軸受を得た。
Production Example 3 For 100 parts of the same copper-covered thin iron yJ as in Production Example 1,
Cu: 63.8%, Zn: 29.7%, Mn: 5%
, Sn: Q, 5%, 81. : Except for mixing 25 parts of 1.0% manganese bronze powder, everything was compacted and sintered in the same manner as in Production Example 1, and the product was sized to 20vo1% and impregnated with turbine oil to obtain an oil-impregnated bearing. .

このものについて特性試験を行った結果は圧環強度が2
9.5kg/菖寓2、摩擦係数は0.075、連続回転
温度上昇値は21.2℃であって、前記製造例1のもの
と同様であり、又発錆の認められた日数120日以上で
あって、A1をそれなりに含有している一船釣マンガン
青銅粉をそのまま用いても好ましい製品が得られるもの
であることが確認された。
The results of characteristic tests on this material showed that the radial crushing strength was 2.
9.5kg/Iris 2, friction coefficient 0.075, continuous rotation temperature rise value 21.2°C, which is the same as in Production Example 1, and the number of days during which rust was observed is 120 days. From the above, it was confirmed that a preferable product can be obtained even if the Ichifunesuri manganese bronze powder containing a certain amount of A1 is used as it is.

「発明の効果」 以上説明したような本発明によるときは鉄粉をCu被覆
したものを用いることにより軸体などの相手部材に対す
る好ましいなじみ性と卓越した耐食性を共に具備しなが
らそうした鉄粉粒子間に高力銅系合金たるマンガン青銅
分が安定強固に結合されることから強度においても優れ
た特性を有する焼結合金材を提供し得るものであり、又
その好ましい製造法を提供するものであって工業的にそ
の効果の大きい発明である。
``Effects of the Invention'' According to the present invention as explained above, by using iron powder coated with Cu, it is possible to achieve both favorable compatibility with mating members such as shafts and excellent corrosion resistance, and to improve the bond between the iron powder particles. Since the manganese bronze component, which is a high-strength copper-based alloy, is stably and firmly bonded to the sintered alloy material, it is possible to provide a sintered alloy material having excellent properties in terms of strength, and also to provide a preferable method for producing the same. This invention has great industrial effects.

Claims (1)

【特許請求の範囲】 1、Fe:20〜64wt%、Cu:27〜59wt%
、Zn:6〜24wt%、Sn:0.06〜0.6wt
%、Al:0〜3wt% を含有すると共に、 Mn:0.1〜3wt% を含有し、しかも前記FeがCuにより実質的完全状態
に被覆され、気孔率15〜28vol%とされたことを
特徴とする焼結合金材。 2、Fe:20〜64wt%、Cu:24.2〜58.
7wt%、Zn:4.5〜23.8wt%、Sn:0.
05〜0.6wt%、Al:0〜2.98wt% を含有すると共に Mn:0.08〜2.98wt% を含有し、しかも黒鉛、二硫化モリブデン、鉛のような
固体潤滑材の1種または2種以上を0.5〜5wt%を
含有し、前記FeがCuにより実質的完全状態に被覆さ
れ、気孔率が15〜28vol%とされたことを特徴と
する焼結合金材。 3、20〜50wt%の銅を被覆した鉄粉100重量部
に対し、Zn:30〜40wt%、Sn:0.3〜1w
t%、Al:0〜5wt%、Mn:0.5〜5wt%を
含有し残部がCuおよび不可避的不純物よりなるマンガ
ン青銅粉を25〜150重量部添加混合した原料粉を圧
粉成形してから焼結し、次いで気孔率15〜28vol
%にサイジングすることを特徴とする焼結合金材の製造
法。 4、原料粉を圧粉成形して得られた圧粉成形体を耐熱性
容器に収容すると共に施蓋し、800〜950℃の還元
性雰囲気で焼結する請求項3に記載の焼結合金材の製造
法。 5、20〜50w%の銅を被覆した鉄粉100重量部に
対し、Zn:30〜40wt%、Sn:0.3〜1wt
%、Al:0〜5wt%、Mn:0.5〜5wt%を含
有し残部がCuおよび不可避的不純物よりなるマンガン
青銅粉を19.7〜149.5重量部と黒鉛、二硫化モ
リブデンまたは鉛のような固形潤滑材の1種または2種
以上を0.5〜5.3重量部を添加混合した原料粉を圧
粉成形してから焼結し、次いで気孔率15〜28vol
%にサイジングすることを特徴とする焼結合金材の製造
法。 6、原料粉を圧粉成形して得られた圧粉成形体を耐熱性
容器内に底面から離隔した状態で収容すると共に施蓋し
、800〜950℃の還元性雰囲気で焼結する請求項5
に記載の焼結合金材の製造法。
[Claims] 1. Fe: 20 to 64 wt%, Cu: 27 to 59 wt%
, Zn: 6-24wt%, Sn: 0.06-0.6wt
%, Al: 0 to 3 wt%, and Mn: 0.1 to 3 wt%, and the Fe was substantially completely covered with Cu, and the porosity was 15 to 28 vol%. Characteristic sintered metal material. 2, Fe: 20-64 wt%, Cu: 24.2-58.
7 wt%, Zn: 4.5 to 23.8 wt%, Sn: 0.
Contains 0.05 to 0.6 wt%, Al: 0 to 2.98 wt%, and Mn: 0.08 to 2.98 wt%, and is a type of solid lubricant such as graphite, molybdenum disulfide, and lead. Or a sintered alloy material containing 0.5 to 5 wt% of two or more kinds, wherein the Fe is substantially completely covered with Cu and the porosity is 15 to 28 vol%. 3. Zn: 30-40 wt%, Sn: 0.3-1 w for 100 parts by weight of iron powder coated with 20-50 wt% copper
t%, Al: 0 to 5 wt%, Mn: 0.5 to 5 wt%, and the balance is Cu and unavoidable impurities. sintered from, then porosity 15-28vol
% sizing method. 4. The sintered alloy according to claim 3, wherein the powder compact obtained by compacting the raw material powder is housed in a heat-resistant container, the lid is closed, and sintered in a reducing atmosphere at 800 to 950°C. Manufacturing method of wood. 5. Zn: 30-40 wt%, Sn: 0.3-1 wt for 100 parts by weight of iron powder coated with 20-50 w% copper
%, Al: 0 to 5 wt%, Mn: 0.5 to 5 wt%, the balance being Cu and inevitable impurities, and 19.7 to 149.5 parts by weight of graphite, molybdenum disulfide or lead. A raw material powder prepared by adding and mixing 0.5 to 5.3 parts by weight of one or more solid lubricants such as
% sizing method. 6. The compacted body obtained by compacting the raw material powder is housed in a heat-resistant container in a state separated from the bottom surface, the lid is closed, and the compacted body is sintered in a reducing atmosphere at 800 to 950°C. 5
A method for producing a sintered metal material described in .
JP63110562A 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same Expired - Fee Related JP2617334B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63110562A JP2617334B2 (en) 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same
GB8910565A GB2219601B (en) 1988-05-09 1989-05-08 Sintered alloy material and process for the preparation of the same
HK767/91A HK76791A (en) 1988-05-09 1991-10-03 Sintered alloy material and process for the preparation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110562A JP2617334B2 (en) 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01283345A true JPH01283345A (en) 1989-11-14
JP2617334B2 JP2617334B2 (en) 1997-06-04

Family

ID=14538978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110562A Expired - Fee Related JP2617334B2 (en) 1988-05-09 1988-05-09 Sintered alloy material and method for producing the same

Country Status (3)

Country Link
JP (1) JP2617334B2 (en)
GB (1) GB2219601B (en)
HK (1) HK76791A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2356222B1 (en) * 2011-02-15 2012-05-31 Sinterizados Y Metalurgia De Solsona, S.A. PROCEDURE FOR THE MANUFACTURE OF SINTERED SLIDING BEARINGS.
JP6035906B2 (en) * 2012-06-29 2016-11-30 オムロン株式会社 Object detection actuator and object detection switch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651554A (en) * 1979-10-01 1981-05-09 Shiyooraito:Kk Machine parts obtained by powder metallurgical method
JPS5690954A (en) * 1979-12-22 1981-07-23 Tatsunosuke Kikuchi Sintered alloy
JPS5896850A (en) * 1981-12-04 1983-06-09 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS6082646A (en) * 1983-10-11 1985-05-10 Tatsunosuke Kikuchi Sintered alloy and its manufacture
JPS60200927A (en) * 1984-03-27 1985-10-11 Tatsunosuke Kikuchi Production of sintered alloy
JPS61210155A (en) * 1985-03-15 1986-09-18 Hitachi Powdered Metals Co Ltd Iron-brass sintered sliding material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2067221B (en) * 1979-12-22 1984-01-11 Tokyo Oilless Metal Ind Sintered alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651554A (en) * 1979-10-01 1981-05-09 Shiyooraito:Kk Machine parts obtained by powder metallurgical method
JPS5690954A (en) * 1979-12-22 1981-07-23 Tatsunosuke Kikuchi Sintered alloy
JPS5896850A (en) * 1981-12-04 1983-06-09 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS6082646A (en) * 1983-10-11 1985-05-10 Tatsunosuke Kikuchi Sintered alloy and its manufacture
JPS60200927A (en) * 1984-03-27 1985-10-11 Tatsunosuke Kikuchi Production of sintered alloy
JPS61210155A (en) * 1985-03-15 1986-09-18 Hitachi Powdered Metals Co Ltd Iron-brass sintered sliding material

Also Published As

Publication number Publication date
JP2617334B2 (en) 1997-06-04
HK76791A (en) 1991-10-11
GB2219601B (en) 1991-05-01
GB2219601A (en) 1989-12-13
GB8910565D0 (en) 1989-06-21

Similar Documents

Publication Publication Date Title
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
JP3013946B2 (en) Multi-layer composite sliding material with excellent seizure resistance
JPH01275735A (en) Sintered alloy material and its manufacture
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
JPH01136944A (en) Sintered metallic material
JPH0140907B2 (en)
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
JPH01283345A (en) Sintered alloy material and its production
GB2067221A (en) Sintered Alloys
JPH01283346A (en) Sintered alloy material and its production
JPS6347762B2 (en)
JP2631146B2 (en) Sintered metal body and method for producing the same
JPS59107006A (en) Two-layered oil-impregnated bearing made of sintered fe material and its production
JPS63282221A (en) Manufacture of composite sintered material
JPH045745B2 (en)
JPS6253580B2 (en)
JPS6346138B2 (en)
JPH04124248A (en) Sintered alloy for oilless bearing and its production
JPS6346140B2 (en)
JP2017122245A (en) Method for producing bronze composite iron powder and method for producing sintered metal
JPS61210155A (en) Iron-brass sintered sliding material
JPS6324040A (en) Production of sintered alloy
JPH086156B2 (en) Sintered metal product and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees