JPH01283346A - Sintered alloy material and its production - Google Patents

Sintered alloy material and its production

Info

Publication number
JPH01283346A
JPH01283346A JP63110563A JP11056388A JPH01283346A JP H01283346 A JPH01283346 A JP H01283346A JP 63110563 A JP63110563 A JP 63110563A JP 11056388 A JP11056388 A JP 11056388A JP H01283346 A JPH01283346 A JP H01283346A
Authority
JP
Japan
Prior art keywords
powder
sintered
porosity
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63110563A
Other languages
Japanese (ja)
Inventor
Isamu Kikuchi
菊地 勇
Masanori Kikuchi
菊地 眞紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63110563A priority Critical patent/JPH01283346A/en
Priority to GB8910576A priority patent/GB2218710B/en
Publication of JPH01283346A publication Critical patent/JPH01283346A/en
Priority to HK766/91A priority patent/HK76691A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Abstract

PURPOSE:To produce a sintered alloy material excellent in strength and corrosion resistance, having superior conformability to a mating member, and reduced in friction coefficient by subjecting a powdery raw material prepared by mixing prescribed amounts of manganese bronze powder with an iron powder to compacting and sintering and then sizing the resulting sintered compact to a specific porosity. CONSTITUTION:A powdery raw material prepared by adding powdered manganese bronze having a composition consisting of, by weight, 30-40% Zn, 0.5-5% Mu, 0.3-1.0% Sn, 0-5.0% Al, and the balance copper with inevitable impurities to an iron powder by 25-400 pts.wt. based on 100 pts.wt. of the above iron powder and then mixing them is compacted. The resulting green compact is sintered and then sized to 15-28vol.% porosity so as to be formed into the above alloy material. Further, it is desirable to place the green compact prepared by compacting the above powdery raw material in a heat-resisting vessel, to close this vessel with a cover, and to sinter the above in a reducing atmosphere at 800-950 deg.C.

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結合金材およびその製造法に係り、強度およ
び耐食性に優れ、しかも軸材などの相手部材に対するな
じみ性が良好であり、摩擦係数が小さく軸受材などとし
て優れた性能を有する焼結合金材およびその製造法を提
供しようとするものである。
Detailed Description of the Invention "Object of the Invention" The present invention relates to a sintered alloy material and a method for manufacturing the same, which have excellent strength and corrosion resistance, good compatibility with mating members such as shaft materials, and a low coefficient of friction. The present invention aims to provide a sintered alloy material that is small and has excellent performance as a bearing material, etc., and a method for manufacturing the same.

(産業上の利用分野) 焼結含油軸受その仙境結合金+1およびその製造技術。(Industrial application field) Sintered oil-impregnated bearing, Senkyokukino+1 and its manufacturing technology.

(従来の技術) 焼結含油軸受については日本工業規格としてJIS B
 1581−1976に規定されている如く、家庭用電
気機器、音響用機器、事務用機械、農業用i械、自動車
その他の運搬荷投機器などに用いる円筒形、フランジ付
円筒形および球形などの軸受材に関して種々に規定され
、又その主たる成分組成としては純鉄系、鉄−銅系、鉄
−炭素系、鉄−銅一炭素系、鉄−銅−鉛系、青銅系、銅
系、鉛−青銅系など材質、種類は比較的多岐に亘る。
(Conventional technology) Regarding sintered oil-impregnated bearings, JIS B is the Japanese Industrial Standard.
1581-1976, cylindrical, flanged cylindrical, spherical, etc. bearings used in household electrical equipment, audio equipment, office machinery, agricultural machinery, automobiles, and other transport/loading equipment, etc. There are various specifications regarding materials, and their main component compositions are pure iron, iron-copper, iron-carbon, iron-copper-carbon, iron-copper-lead, bronze, copper, and lead-based. There is a relatively wide variety of materials and types, including bronze.

なお例えば特開昭56−51554号公報においては鉄
粉と黄銅粉を用いた圧粉体を焼結することが発表されて
おり、更に本発明者等によっても特開昭60−2009
27号公報において鉄粉、黄銅粉および洋白粉を用い、
それらの混合粉による圧粉成形体を還元性雰囲気で焼結
処理することを提案している。
For example, JP-A No. 56-51554 discloses sintering a green compact using iron powder and brass powder, and the present inventors also published JP-A No. 60-2009.
In Publication No. 27, using iron powder, brass powder and nickel silver powder,
It is proposed to sinter a compacted body made of these mixed powders in a reducing atmosphere.

(発明が解決しようとする問題点) 上記した鉄を主体とした含油軸受においては骨格的強度
に優れ、高荷重用として好ましいが、相手部Hに対する
なしめ性や耐食性に劣っているので利用上制限を受ける
(Problems to be Solved by the Invention) The above-mentioned oil-impregnated bearings mainly made of iron have excellent skeletal strength and are preferable for high-load applications, but they have poor toughness and corrosion resistance against the mating part H, so they are difficult to use. subject to restrictions.

これに対し銅または青銅を主体としたものにおいてはな
じみ性や耐食性は良好であるが、強度上不充分であるか
ら高負荷用に適しない。
On the other hand, those made mainly of copper or bronze have good conformability and corrosion resistance, but are not suitable for high-load applications because they have insufficient strength.

鉄−銅系(鉄−銅一鉛、鉄−銅−炭素などを含む)のも
のはこれらの中間的特性となるが、なお強度や耐食性に
おいて不充分である。
Iron-copper based materials (including iron-copper-lead, iron-copper-carbon, etc.) have properties intermediate between these, but are still insufficient in strength and corrosion resistance.

前記した特開昭56−51554号公報による鉄粉と黄
銅粉を用いたものにおいては耐食性においては好ましい
としても強度や相手部材に対する7ざじみ性などにおい
て充分でない。
Although the iron powder and brass powder disclosed in the above-mentioned Japanese Patent Application Laid-open No. 56-51554 is good in terms of corrosion resistance, it is not sufficient in terms of strength and resistance against mating members.

前記特開昭60−200927号公報のものは洋白をも
用いることにより強度性を確保しながら充分な耐食性と
摩擦係数低減を図ったものであるが、それらの特性にお
いて必ずしも満足するものとなし得す、又軸材などの相
手部材に対するなじみ性などにおいて不充分である。
The product disclosed in JP-A No. 60-200927 also uses nickel silver to ensure sufficient corrosion resistance and reduce the coefficient of friction while ensuring strength, but these properties are not necessarily satisfactory. In addition, it is insufficient in terms of compatibility with mating members such as shaft members.

「発明の構成」 (問題点を解決するための手段) 1、  Fe: 20−80wt%、Cu: 11〜5
2iyt%、Zr+:6〜32wt%、 Sn : 0
.1〜0.8wt%、を含有すると共に、 Mn : 0.1〜4.0wt%、Aβ:0−4.0w
t%を含有し、気孔率15〜28vol%とされたこと
を特徴とする焼結合金材。
"Structure of the invention" (Means for solving problems) 1. Fe: 20-80wt%, Cu: 11-5
2iyt%, Zr+: 6-32wt%, Sn: 0
.. 1 to 0.8 wt%, Mn: 0.1 to 4.0 wt%, Aβ: 0 to 4.0 w
t% and a porosity of 15 to 28 vol%.

2、  Fe: 20〜80wt%、Cu : 8.3
〜51.7wt%、Zn : 4.5〜31.8wt%
、Sn : 0.05〜0.8 wt%を含有すると共
に、 Mn : 0.08〜4.0 wt%、八E  :  
0〜4.0wt%を含有し、且つ黒鉛、二硫化モリブデ
ンまたは鉛のような固体潤滑材の1種または2種以上を
0.5〜5.0%含有し、気孔率が15〜28vol%
とされたことを特徴とする焼結合金材。
2. Fe: 20-80wt%, Cu: 8.3
~51.7wt%, Zn: 4.5~31.8wt%
, Sn: 0.05 to 0.8 wt%, Mn: 0.08 to 4.0 wt%, and 8E:
0 to 4.0 wt%, and 0.5 to 5.0% of one or more solid lubricants such as graphite, molybdenum disulfide, or lead, and a porosity of 15 to 28 vol%.
A sintered metal material characterized by:

3、鉄粉100重量部に対し、Zn:30〜40wt%
、Mn : 0.5〜5ivt%、Sn : 0.3〜
1.0wt%、Ai1!:0〜5.0wt%を含有し残
部がCuおよび不可避的不純物よりなるマンガン青銅粉
を25〜400重量部を添加混合した原料粉を圧粉成形
し、次いで焼結してから気孔率15〜2BvoI1%に
ザイジングすることを特徴とする焼結合金材の製造法。
3. Zn: 30 to 40 wt% relative to 100 parts by weight of iron powder
, Mn: 0.5~5ivt%, Sn: 0.3~
1.0wt%, Ai1! : 25 to 400 parts by weight of manganese bronze powder containing 0 to 5.0 wt% with the remainder being Cu and unavoidable impurities is added and mixed, and the raw material powder is compacted, then sintered, and then the porosity is 15 to 15. A method for producing a sintered metal material, characterized by sizing to 2BvoI1%.

4、鉄粉100重量部に対し、Zn:30〜40iyt
%、Mn : 0.5〜5.0wt%、Sn:0.3〜
1.0i%、If: 0〜5.Qwt%を含有し残部が
Cuおよび不可避不純物よりなるマンガン青銅粉17.
7〜387.8重量部と黒鉛、二硫化モリブデンまたは
鉛のような固形潤滑材の1種または2種以上を0.5〜
5.3重量部を添加混合した原料粉を圧粉成形してから
焼結し、次いで気孔率15〜28voff%にサイジン
グすることを特徴とする焼結合金材の製造法。
4. Zn: 30 to 40 iyt per 100 parts by weight of iron powder
%, Mn: 0.5~5.0wt%, Sn: 0.3~
1.0i%, If: 0-5. Manganese bronze powder containing Qwt% with the balance consisting of Cu and unavoidable impurities 17.
7 to 387.8 parts by weight and 0.5 to 387.8 parts by weight of one or more solid lubricants such as graphite, molybdenum disulfide, or lead.
A method for producing a sintered alloy material, which comprises compacting and sintering raw material powder to which 5.3 parts by weight is added and mixed, and then sizing to a porosity of 15 to 28 voff%.

(作用) Fe: 20〜80wt%、Cu: 11〜52wt%
、Zn:6〜32wt%、Sn : 0.1〜0.8w
t%、Al:0〜4.0wt%を含有すると共にMn:
0.1〜4.0wt%を含有することにより強度を確保
しなから相手部材に対するなじみ性を維持し、しかも耐
食性において優れた特性を発揮する。即ち上記のような
Mn、Aj!、Snの適量添加で銅系高力合金たるマン
ガン青銅としての強度を鉄粉粒子間に得しめ、同時に耐
食性が適切に向上し、しかも相手部材に対するなじみ性
などが損われない。
(Function) Fe: 20-80wt%, Cu: 11-52wt%
, Zn: 6-32wt%, Sn: 0.1-0.8w
t%, Al: 0 to 4.0 wt%, and Mn:
By containing 0.1 to 4.0 wt%, strength is ensured, compatibility with the mating member is maintained, and excellent corrosion resistance is exhibited. That is, Mn, Aj! as above! By adding an appropriate amount of Sn, the strength of manganese bronze, which is a copper-based high-strength alloy, is obtained between the iron powder particles, and at the same time, the corrosion resistance is appropriately improved, and the compatibility with the mating member is not impaired.

Feが20wt%以下では鉄粉粒子の骨格的強度が充分
に得られず、又他の成分を多量に必要とし高価となる。
If Fe is less than 20 wt%, sufficient skeletal strength of the iron powder particles cannot be obtained, and large amounts of other components are required, resulting in high cost.

一方80wt%を超えてFeを含有したものは摩擦係数
を高め、相手部材に対するなじみ性が確保されないと共
に耐食性が急激に劣化する。
On the other hand, a material containing more than 80 wt% of Fe increases the coefficient of friction, does not ensure compatibility with a mating member, and rapidly deteriorates corrosion resistance.

Cuが11.0wt%以上となることによりなじみ性を
確保し、又52訂%を上限とすることで低コスト性を得
しめる。
Compatibility is ensured by setting the Cu content to 11.0 wt% or more, and low cost is achieved by setting the upper limit to 52 wt%.

Znを6.0wt%以上とすることでCu、、Mn、八
k、Sn等と相俟って耐食性を確保し、又32.Owt
%を上限とすることによりなじみ性を適切に維持する。
By setting Zn to 6.0 wt% or more, corrosion resistance is ensured in combination with Cu, Mn, 8K, Sn, etc., and 32. Owt
% to maintain appropriate compatibility.

Mnが0.1wt%以上とすることにより強度および耐
食性を有効に高める。一方4.0wt%を上限とするこ
とによってなじみ性を維持し、摩擦係数の上昇を抑制す
る。
By setting Mn to 0.1 wt% or more, strength and corrosion resistance are effectively increased. On the other hand, by setting the upper limit to 4.0 wt%, conformability is maintained and an increase in the coefficient of friction is suppressed.

圧粉成形し焼結後、サイジングした気孔率を15vol
%以上とすることにより軸受)4などとする場合の含油
量を適切に得しめ、潤滑性能を高める。
After powder compaction and sintering, the sized porosity is 15vol.
% or more, it is possible to obtain an appropriate oil content for bearings (4) and improve the lubrication performance.

一方この気孔率が28vol%を超えないことにより強
度性を確保する。
On the other hand, strength is ensured by ensuring that the porosity does not exceed 28 vol%.

黒鉛、二硫化モリブデンまたは鉛のような固体潤滑材の
1種または2種以上を0.5wt%以上含有させること
により潤滑性を高め、摩擦係数を小とする。又5.Qw
t%を超えないことにより製品の強度性を維持する。
By containing 0.5 wt% or more of one or more solid lubricants such as graphite, molybdenum disulfide, or lead, the lubricity is enhanced and the coefficient of friction is reduced. Also 5. Qw
The strength of the product is maintained by not exceeding t%.

Zn:  3 0 〜4 0wt%、 Mn:  0.
5 〜5.0wt%、 Sn二0.3〜1.0wt%、
へβ二〇〜5.0wt%を含有し残部がCuおよび不可
避的不純物よりなるマンガン青銅粉を用いることにより
Cu、、Zn、 Mn、Δ[、Snが合金体として同時
に添加され、それらの成分を各別に準備し順次混合する
煩雑さを回避する。又配合された各成分の偏析を適切に
防止し、均等な混合焼結状態を容易に形成すると共に銅
系高力合金としての特性を鉄粉粒子間において的確に発
揮する。
Zn: 30 to 40 wt%, Mn: 0.
5 ~ 5.0 wt%, Sn2 0.3 ~ 1.0 wt%,
By using manganese bronze powder containing 20 to 5.0 wt% of β and the remainder consisting of Cu and unavoidable impurities, Cu, Zn, Mn, Δ[, and Sn are simultaneously added as an alloy, and these components are This avoids the hassle of preparing each separately and mixing them sequentially. In addition, segregation of the blended components is appropriately prevented, a uniform mixed sintered state is easily formed, and the characteristics of a copper-based high strength alloy are accurately exhibited between the iron powder particles.

800℃〜950℃の焼結温度を採用することにより前
記したような鉄粉粒子とマンガン青銅としての銅系高力
合金粉末とが適切に焼結せしめられる。
By employing a sintering temperature of 800° C. to 950° C., the above-mentioned iron powder particles and the copper-based high strength alloy powder as manganese bronze can be appropriately sintered.

圧粉成形体を耐熱性容器の底面から離隔した状態に収容
すると共′に蓋を施して焼結することによりZn分の気
散損失を防止し、しかも均斉な焼結状態を形成する。
The powder compact is housed in a state separated from the bottom surface of a heat-resistant container and is sintered with a lid, thereby preventing loss of Zn due to dispersion and forming a uniform sintered state.

サイジング後の気孔率を15voI1%以上とすること
により焼結組織内に好ましい含油空隙を分散形成し、軸
受材として利用する場合に好ましい潤滑特性を得しめる
。又この気孔率を28vo#%以下とすることによって
適切な圧環強度などを確保し、しかも含有せしめられた
潤滑油の飛散ないし過大な流出を防止する。
By setting the porosity after sizing to 15voI1% or more, preferable oil-impregnated voids are dispersed and formed in the sintered structure, and preferable lubrication properties are obtained when used as a bearing material. Further, by setting the porosity to 28 vo#% or less, appropriate radial crushing strength is ensured, and furthermore, scattering or excessive outflow of the contained lubricating oil is prevented.

(実施例) 上記したような本発明によるものの具体的な実施態様に
ついて説明すると、本発明は基本的にFe、Cu、 Z
nと共にM、nを含有した焼結合金であって、これらの
成分は各別に準備し混合してもよい。然し合金体として
材料を準備してよいことは前記の通りで、マンガン−ア
ルミ合金と黄銅の各粉末と鉄粉、95〜98Mn合金と
黄銅の各粉末および鉄粉粉末などを採用することができ
る。然し好ましい原料としては純鉄粉末とマンガン青銅
粉末である。
(Example) To explain the specific embodiments of the present invention as described above, the present invention basically includes Fe, Cu, Z
It is a sintered alloy containing M and n together with n, and these components may be prepared separately and mixed. However, as mentioned above, materials may be prepared as alloys, and manganese-aluminum alloy and brass powders and iron powder, 95-98Mn alloy and brass powders, iron powder, etc. can be used. . However, the preferred raw materials are pure iron powder and manganese bronze powder.

Feは一般的に20〜80−t%であるが、好ましくは
30〜60wt%であり、より好ましくは40了で シl゛ ・ヨー゛イO 〜55圓t%である。
Fe is generally 20 to 80 wt%, preferably 30 to 60 wt%, and more preferably 40 to 55 wt%.

又Cuは一般的には上記のように11〜52wt%であ
るが、好ましくは25〜50i%、より好ましくは35
〜45wt%とすべきである。
Further, Cu is generally 11 to 52 wt% as mentioned above, preferably 25 to 50i%, more preferably 35 wt%.
It should be ~45 wt%.

Znの一般的範囲は6〜32wt%であるが、好ましく
は8〜25wt%、より好ましくは10〜25圓t%で
ある。
The general range for Zn is 6-32 wt%, preferably 8-25 wt%, more preferably 10-25 wt%.

Mnについての好ましい範囲は前記した一般的範囲の中
で0.1〜4.0wt%であり、より好ましくは0.5
〜2.0wt%である。
The preferred range for Mn is 0.1 to 4.0 wt% within the general range described above, more preferably 0.5 wt%.
~2.0wt%.

なお本発明によるものはAlを例えばJIS )122
05における表2に規定されているように5.0wt%
まで含有したMn青銅を用い製品として4.0wt%以
下を含有してもよい。即ちこの程度の脣を含有しても強
度その他の特性に殊更に変化を来すことがないが、Al
を実質的に含有しないものでもよい。
In addition, in the case of the present invention, Al is used in accordance with JIS) 122, for example.
5.0 wt% as specified in Table 2 in 05
Mn bronze containing up to 4.0 wt% may be used as a product. In other words, even if the aluminum is contained to this extent, there will be no particular change in strength or other properties.
It may also be one that does not substantially contain.

圧粉成形は一般的に2〜3Ton/cJ程度の圧下で行
われ、その気孔率は22〜35vol%である。
Powder compaction is generally performed under a pressure of about 2 to 3 Ton/cJ, and the porosity is 22 to 35 vol%.

22vol%未満では有効なサイジングを行い且つ含油
などに適した気孔率をもつ製品を得ることが困難となる
。一方35vol%を超えた気孔率を有する圧粉成形体
は焼結取扱中などにおいて損壊、欠損する可能性が高い
If it is less than 22 vol %, it will be difficult to perform effective sizing and obtain a product with a porosity suitable for oil impregnation. On the other hand, a powder compact having a porosity exceeding 35 vol% is likely to be damaged or chipped during sintering and handling.

焼結は800〜950℃の還元性雰囲気で行うが、前記
のように含有されているZn分の揮散脱亜鉛を防止する
には耐熱性容器内に収容し施蓋して焼結することが好ま
しい。勿論炭素粉中に埋没して実施してもよい。なおこ
のような焼結時の揮散脱亜鉛防止は上記のような合金体
粉末におけるSn分の存在によっても適切に達成し得る
Sintering is carried out in a reducing atmosphere at 800 to 950°C, but as mentioned above, in order to prevent the Zn content from being volatilized and dezincified, it is necessary to store it in a heat-resistant container and sinter it with a lid on. preferable. Of course, it may be carried out by being buried in carbon powder. Note that such prevention of volatilization and dezincing during sintering can also be appropriately achieved by the presence of Sn in the alloy powder as described above.

固体潤滑材としての黒鉛、二硫化モリブデンなどは粉末
として添加されることは当然であるが、黒鉛のような固
体潤滑材は銅被覆鉄粉およびマンガン青銅粉の何れに対
しても比重が小であって、このような黒鉛の如きを単に
混合しても他の原料粉に対し均一状態に分散させること
が困難であり、しかも搬送荷役中およびプレスホッパー
への入替え、圧粉成形時などにおいて黒鉛粉の浮上、片
寄りなどによる偏析が発生ずる。そこで斯様な黒鉛の如
き固体潤滑材に関しては比較的粗粉のものを採用し、し
かもその微粉分を分級して除去したものを用いると有効
であることが実験により確認された。即ち上記黒鉛粉末
として一般的に市販されているものが1〜30μm1あ
るいは1〜50μmの如きであるのに対し本発明者等が
好ましい固体潤滑材としての黒鉛は10〜150μm1
特に20〜100μmとされ、粗粉であると共に10μ
mまたは20μm以下の微粉分をカントしたものであり
、それによって均一分散を容易化し、また荷役その他の
取扱時における偏析発生を可及的に防止し得る。前記の
ような10μm未満、あるいは20μm未満のような微
粉分は液中での分級処理で粉塵の発生がなく、しかも適
切に分級し得る。
It is natural that solid lubricants such as graphite and molybdenum disulfide are added in the form of powder, but solid lubricants such as graphite have a low specific gravity for both copper-coated iron powder and manganese bronze powder. Therefore, even if such graphite is simply mixed, it is difficult to uniformly disperse it in other raw material powders, and furthermore, graphite may be mixed during transportation, transfer to the press hopper, compaction, etc. Segregation occurs due to powder floating and shifting. Therefore, it has been confirmed through experiments that it is effective to use a relatively coarse powder as a solid lubricant such as graphite, and to use one whose fine powder has been classified and removed. That is, while the above-mentioned graphite powder that is generally commercially available has a size of 1 to 30 μm1 or 1 to 50 μm, the graphite used as a solid lubricant preferred by the present inventors has a size of 10 to 150 μm1.
In particular, it is 20 to 100 μm, and it is a coarse powder and 10 μm.
Fine particles of 20 μm or less are canted, which facilitates uniform dispersion and prevents segregation as much as possible during cargo handling and other handling. The above-mentioned fine particles of less than 10 μm or less than 20 μm do not generate dust when classified in a liquid, and can be classified appropriately.

なお本発明によるものは必要に応し上記以外の金属また
は合金粉などを適宜に添加してよい。即ち例えばPb、
 Ni、 Siなどの若干を含有せしめても本発明の特
質を失うものでなく、合金としてSn含有黄銅、Al含
有黄銅、pb含有黄銅、Ni含有黄銅、Fe含有黄銅、
Si含有黄銅などを用いることができる。
Note that metals or alloy powders other than those mentioned above may be appropriately added to the material according to the present invention, if necessary. That is, for example, Pb,
Even if a small amount of Ni, Si, etc. is contained, the characteristics of the present invention are not lost, and alloys such as Sn-containing brass, Al-containing brass, PB-containing brass, Ni-containing brass, Fe-containing brass,
Si-containing brass or the like can be used.

焼結によってそれなりに変形し、即ちマンガン青銅を用
いるような本発明の場合においては歪み、寸法変化の如
きもそれなりに顕われるからサイジングして所定寸法の
製品とする。
In the case of the present invention, where manganese bronze is used, distortion and dimensional changes occur to some extent due to sintering, so the product is sized to a predetermined size.

本発明によるものの具体的な製造例について説明すると
以下の如くである。
A specific manufacturing example of the product according to the present invention will be described below.

製造例1゜ 粒度が100メソシユ以下の鉄粉と、Cu : 64.
5wt%、Zn:30wt%、Mn:5.0wt%、S
n : 0.5wt%で100メソシユ以下とされたマ
ンガン青銅粉を準備し、これらを次の第1表のような重
量割合で混合した。
Production Example 1 Iron powder with a particle size of 100 mesosinus or less, and Cu: 64.
5wt%, Zn: 30wt%, Mn: 5.0wt%, S
Manganese bronze powders containing n: 0.5 wt% and 100 mesohydrium or less were prepared, and these were mixed in the weight proportions shown in Table 1 below.

第 1 表 (重量部) 上記した第1表による■〜■の原料粉は夫々圧粉成形し
て環状の軸受体とし、次いで網材を敷いた耐熱性鉄箱に
入れて底面から離隔した状態に収容すると共に蓋を施し
、890℃のAXガスによる還元性雰囲気で45分間の
焼結処理を行った。
Table 1 (Parts by weight) The raw material powders listed in Table 1 above were compacted into an annular bearing body, and then placed in a heat-resistant iron box lined with mesh material and separated from the bottom surface. The sample was placed in a container and covered with a lid, and sintered for 45 minutes in a reducing atmosphere using AX gas at 890°C.

得られた焼結体は次いでサイジングをなし気孔率20v
ol%の製品とし、タービン油を真空含油せしめ た。
The obtained sintered body was then sized to have a porosity of 20v.
It was made into a product of 1.0 mol% and vacuum impregnated with turbine oil.

このような製品および比較材として■ 鉄、■鉄粉と黄
銅を50 : 50の割合で混合したものによる同じ気
孔率製品についての圧環強度、摩擦係数およびpv値1
000 kgf/cffl ・m/minで40分以上
連続回転したときの温度上昇値を測定した結果は次の第
2表の如くである。
Radial crushing strength, friction coefficient, and pv value 1 for such products and comparative materials of the same porosity products made of iron, ■ iron powder and brass mixed at a ratio of 50:50.
The results of measuring the temperature rise value when continuously rotating at 000 kgf/cffl·m/min for 40 minutes or more are shown in Table 2 below.

第2表 父上記したような本発明による各製品■〜■および比較
材■■ について湿度80%、60℃の耐食性試験を行
い、錆発生の認められるまでの期間を測定した結果は次
の第3表の如くであった。
Table 2: Corrosion resistance tests were conducted at 60°C at 80% humidity for each of the products ■ to ■ according to the present invention and the comparative material ■■ as described above, and the period until rust was observed was measured. The results are as follows. It was as shown in Table 3.

第3表 即ち本発明によるものは何れも強度的に優れ、軸受特性
も良好であって、耐食性も用いられた銅合金の量を考慮
すると比較材より大幅に良好となっていることが明かで
ある。
Table 3 shows that all the materials according to the present invention have excellent strength and good bearing properties, and their corrosion resistance is significantly better than the comparative materials considering the amount of copper alloy used. be.

製造例2 前記した製造例1における第1表の■の配合において、
外掛けで黒鉛粉末を2wt%含有せしめた外はすべて製
造例1におけると同じに実施して製品とした。
Production Example 2 In the formulation (■) in Table 1 in Production Example 1 described above,
A product was prepared in the same manner as in Production Example 1 except that 2 wt % of graphite powder was added to the outside.

このものについての摩擦係数は0.057であって、よ
り優れた潤滑性を有することが確認され、又圧環強度は
38kg/fl”であって、好ましい強度を有している
ことを知った。
The friction coefficient of this material was 0.057, which confirmed that it had better lubricity, and the radial crushing strength was 38 kg/fl'', which was found to have a preferable strength.

製造例3 製造例1における鉄粉100重量部に対し、Cu:63
.5wt%、Zn : 29.5wt%、Mn:4.8
wt%、Sn:0.5wt%、Aj!:1.7wt%で
、同じ(100メツシユ以下とされたマンガン青銅粉を
150重量部配合した原料粉を用い、これを製造例1と
同じに圧粉成形、焼結し、サイジングして気孔率20%
の製品としてからタービン油を真空含油させたものの圧
環強度29.8kg/w2、摩擦係数は0、073で連
続回転による温度上昇値は22.2℃であり、好ましい
含油軸受であることが確認された。
Production Example 3 Cu: 63 parts by weight for 100 parts by weight of iron powder in Production Example 1
.. 5wt%, Zn: 29.5wt%, Mn: 4.8
wt%, Sn: 0.5wt%, Aj! : Using a raw material powder containing 150 parts by weight of manganese bronze powder with the same content (100 mesh or less) at 1.7 wt%, this was compacted, sintered, and sized in the same manner as in Production Example 1 to determine the porosity. 20%
Since the product was vacuum-impregnated with turbine oil, the radial crushing strength is 29.8 kg/w2, the friction coefficient is 0.073, and the temperature rise due to continuous rotation is 22.2°C, and it has been confirmed that it is a desirable oil-impregnated bearing. Ta.

「発明の効果」′ 以上説明したような本発明によるときは軸体などの相手
部材に対する好ましいなじみ性を具備しながら強度、耐
食性において優れた特性を有する焼結合金材を低コスト
に提供し、又その比較的簡易な製造法を提供するもので
あって工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as described above, a sintered alloy material having excellent properties in terms of strength and corrosion resistance while having favorable conformability to a mating member such as a shaft body can be provided at a low cost. Moreover, it provides a relatively simple manufacturing method, and is an invention that is industrially highly effective.

Claims (1)

【特許請求の範囲】 1、Fe:20〜80wt%、Cu:11〜52wt%
、Zn:6〜32wt%、Sn:0.1〜0.8wt%
、を含有すると共に、 Mn:0.1〜4.0wt%、Al:0〜4.0wt%
を含有し、気孔率15〜28vol%とされたことを特
徴とする焼結合金材。 2、Fe:20〜80wt%、Cu:8.3〜51.7
wt%、Zn:4.5〜32wt%、Sn:0.05〜
0.8wt%、を含有すると共に、 Mn:0.08〜4.0wt%、Al:0〜4.0wt
%を含有し、且つ黒鉛、二硫化モリブデンまたは鉛のよ
うな固体潤滑材の1種または2種以上を0.5〜5.0
%含有し、気孔率が15〜28vol%とされたことを
特徴とする焼結合金材。 3、鉄粉100重量部に対し、Zn:30〜40wt%
、Mn:0.5〜5wt%、Sn:0.3〜1.0wt
%、Al:0〜5.0wt%を含有し残部がCuおよび
不可避的不純物よりなるマンガン青銅粉を25〜400
重量部を添加混合した原料粉を圧粉成形し、次いで焼結
してから気孔率15〜28vol%にサイジングするこ
とを特徴とする焼結合金材の製造法。 4、原料粉を圧粉成形して得られた圧粉成形体を耐熱性
容器内に底面より離隔して収容すると共に施蓋し、80
0〜950℃の還元性雰囲気で焼結する請求項3に記載
の焼結合金材の製造法。 5、鉄粉100重量部に対し、Zn:30〜40wt%
、Mn:0.5〜5wt%、Sn:0.3〜1.0wt
%、Al:0〜5.0wt%を含有し残部がCuおよび
不可避不純物よりなるマンガン青銅粉17.7〜387
.8重量部と黒鉛、二硫化モリブデンまたは鉛のような
固形潤滑材の1種または2種以上を0.5〜5.3重量
部を添加混合した原料粉を圧粉成形してから焼結し、次
いで気孔率15〜28vol%にサイジングすることを
特徴とする焼結合金材の製造法。 6、原料粉を圧粉成形して得られた圧粉成形体を耐熱性
容器内に底面より離隔して収容すると共に施蓋し、80
0〜950℃の還元性雰囲気で焼結する請求項5に記載
の焼結合金材の製造法。
[Claims] 1. Fe: 20 to 80 wt%, Cu: 11 to 52 wt%
, Zn: 6 to 32 wt%, Sn: 0.1 to 0.8 wt%
, Mn: 0.1 to 4.0 wt%, Al: 0 to 4.0 wt%
A sintered alloy material containing the following: and having a porosity of 15 to 28 vol%. 2, Fe: 20-80wt%, Cu: 8.3-51.7
wt%, Zn: 4.5 to 32 wt%, Sn: 0.05 to
0.8 wt%, Mn: 0.08 to 4.0 wt%, Al: 0 to 4.0 wt%
% and one or more solid lubricants such as graphite, molybdenum disulfide or lead from 0.5 to 5.0%.
% and has a porosity of 15 to 28 vol%. 3. Zn: 30 to 40 wt% relative to 100 parts by weight of iron powder
, Mn: 0.5-5wt%, Sn: 0.3-1.0wt
%, Al: 0 to 5.0 wt%, with the balance consisting of Cu and unavoidable impurities.
A method for producing a sintered alloy material, which comprises compacting raw material powder to which parts by weight have been added and mixed, followed by sintering and sizing to a porosity of 15 to 28 vol%. 4. The powder compact obtained by compacting the raw material powder is stored in a heat-resistant container at a distance from the bottom and the lid is closed.
The method for producing a sintered alloy material according to claim 3, wherein the sintering is performed in a reducing atmosphere at 0 to 950°C. 5. Zn: 30 to 40 wt% relative to 100 parts by weight of iron powder
, Mn: 0.5-5wt%, Sn: 0.3-1.0wt
%, Al: 0 to 5.0 wt%, with the balance consisting of Cu and inevitable impurities 17.7 to 387
.. A raw material powder containing 8 parts by weight and 0.5 to 5.3 parts by weight of one or more solid lubricants such as graphite, molybdenum disulfide, or lead is compacted and then sintered. and then sizing to a porosity of 15 to 28 vol%. 6. The powder compact obtained by compacting the raw material powder is stored in a heat-resistant container at a distance from the bottom and the lid is closed.
The method for producing a sintered alloy material according to claim 5, wherein the sintering is performed in a reducing atmosphere at 0 to 950°C.
JP63110563A 1988-05-09 1988-05-09 Sintered alloy material and its production Pending JPH01283346A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63110563A JPH01283346A (en) 1988-05-09 1988-05-09 Sintered alloy material and its production
GB8910576A GB2218710B (en) 1988-05-09 1989-05-08 Sintered alloy material and process for the preparation of the same
HK766/91A HK76691A (en) 1988-05-09 1991-10-03 Sintered alloy material and process for the preparation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110563A JPH01283346A (en) 1988-05-09 1988-05-09 Sintered alloy material and its production

Publications (1)

Publication Number Publication Date
JPH01283346A true JPH01283346A (en) 1989-11-14

Family

ID=14539004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110563A Pending JPH01283346A (en) 1988-05-09 1988-05-09 Sintered alloy material and its production

Country Status (3)

Country Link
JP (1) JPH01283346A (en)
GB (1) GB2218710B (en)
HK (1) HK76691A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976695A (en) * 1996-10-02 1999-11-02 Westaim Technologies, Inc. Thermally sprayable powder materials having an alloyed metal phase and a solid lubricant ceramic phase and abradable seal assemblies manufactured therefrom
US20050118051A1 (en) * 2003-02-21 2005-06-02 Akira Harada Porous material and method for producing porous material
FR2907468B1 (en) * 2006-10-20 2009-01-23 Airbus France Sas INTERFACE FOR ADAPTING LUBRICATION AND HARDNESS BETWEEN TWO PIECES OF TITANIUM OR TITANIUM ALLOY IN MOTION RELATING TO ONE ANOTHER.
CN111719086B (en) * 2019-03-21 2022-03-22 南京理工大学 Iron-based medium-high temperature self-lubricating material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651554A (en) * 1979-10-01 1981-05-09 Shiyooraito:Kk Machine parts obtained by powder metallurgical method
JPS5696001A (en) * 1979-12-29 1981-08-03 Tatsunosuke Kikuchi Sintered alloy
JPS57169064A (en) * 1981-04-10 1982-10-18 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS5896850A (en) * 1981-12-04 1983-06-09 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS6082646A (en) * 1983-10-11 1985-05-10 Tatsunosuke Kikuchi Sintered alloy and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651554A (en) * 1979-10-01 1981-05-09 Shiyooraito:Kk Machine parts obtained by powder metallurgical method
JPS5696001A (en) * 1979-12-29 1981-08-03 Tatsunosuke Kikuchi Sintered alloy
JPS57169064A (en) * 1981-04-10 1982-10-18 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS5896850A (en) * 1981-12-04 1983-06-09 Hitachi Powdered Metals Co Ltd Low wear sintered sliding material containing oil
JPS6082646A (en) * 1983-10-11 1985-05-10 Tatsunosuke Kikuchi Sintered alloy and its manufacture

Also Published As

Publication number Publication date
GB2218710A (en) 1989-11-22
GB8910576D0 (en) 1989-06-21
HK76691A (en) 1991-10-11
GB2218710B (en) 1991-05-01

Similar Documents

Publication Publication Date Title
JP2652866B2 (en) Sintered material for oil-impregnated bearing and method for producing the same
US20130251586A1 (en) Sintered bearing and preparation method thereof
JP2512477B2 (en) Copper-based sliding material
EP1993760A2 (en) Low cost bronze powder for high performance bearings
US20120107168A1 (en) Iron-based sintered sliding member and manufacturing method thereof
JPH01275735A (en) Sintered alloy material and its manufacture
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
JPH01136944A (en) Sintered metallic material
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JPH01283346A (en) Sintered alloy material and its production
JPH0140907B2 (en)
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
GB2067221A (en) Sintered Alloys
JP2631146B2 (en) Sintered metal body and method for producing the same
US3728089A (en) Aluminum-silicon base sintered porous bearing metals
JP2617334B2 (en) Sintered alloy material and method for producing the same
JPS6082646A (en) Sintered alloy and its manufacture
JPS63282221A (en) Manufacture of composite sintered material
JPS6346138B2 (en)
JPH0499836A (en) Sintered copper series sliding material
JPS6253580B2 (en)
JP2517675B2 (en) Sintered copper alloy for high load sliding
JPS6346140B2 (en)
JPS6324040A (en) Production of sintered alloy