JPH01283324A - Production of grain-oriented electrical steel sheet having high magnetic flux density - Google Patents

Production of grain-oriented electrical steel sheet having high magnetic flux density

Info

Publication number
JPH01283324A
JPH01283324A JP63112551A JP11255188A JPH01283324A JP H01283324 A JPH01283324 A JP H01283324A JP 63112551 A JP63112551 A JP 63112551A JP 11255188 A JP11255188 A JP 11255188A JP H01283324 A JPH01283324 A JP H01283324A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
cold rolling
magnetic flux
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63112551A
Other languages
Japanese (ja)
Other versions
JPH0686631B2 (en
Inventor
Nobuyuki Takahashi
延幸 高橋
Katsuro Kuroki
黒木 克郎
Satoshi Arai
聡 新井
Yozo Suga
菅 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63112551A priority Critical patent/JPH0686631B2/en
Priority to EP88118993A priority patent/EP0321695B1/en
Priority to DE88118993T priority patent/DE3882502T2/en
Priority to US07/274,432 priority patent/US4994120A/en
Priority to KR1019880015250A priority patent/KR930001330B1/en
Publication of JPH01283324A publication Critical patent/JPH01283324A/en
Publication of JPH0686631B2 publication Critical patent/JPH0686631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce the grain-oriented electrical steel sheet having a high magnetic flux density by subjecting a silicon steel slab to hot rolling and cold rolling under specific conditions to form a steel sheet and subjecting the steel sheet to decarburization annealing, then coating an annealing and separating agent thereon, subjecting the steel sheet to finish annealing and to a nitriding treatment during the course of the annealing. CONSTITUTION:The slab of the silicon steel contg., by weight%, 1.5-4.8% Si, 0.012-0.050% solAl, <=0.012% in total of 1 or 2 kinds of S and Se, 0.0010-0.0120% N, >=4.0 Mn/(S+Se), and 0.0005-0.0080% B is heated to <=1200 deg.C and is then worked to a rough sheet material by hot rolling. The hot rolled sheet is made into the steel sheet of the final sheet thickness by one pass or >=2 passes of cold rolling including intermediate annealing and is then heated in a wet hydrogen atmosphere by which the steel sheet is subjected to the decarburization annealing. The annealing and separating agent of MgO system contg. 4wt.% Fe-nitride-Mn is then coated on the steel sheet and is subjected to finish annealing at about >=1200 deg.C intended for secondary recrystallization and purification of the steel, by which the steel sheet is subjected to the nitriding treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気機器の鐵芯として用いられる一方向性電
磁鋼板の製造に際し、基本的冶金現象として利用される
二次再結晶の発現に対して有効な析出物(一般にインヒ
ビターと呼ばれている)として新規な成分組成とそれを
前提とするプロセスに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the development of secondary recrystallization, which is used as a basic metallurgical phenomenon in the production of unidirectional electrical steel sheets used as iron cores of electrical equipment. The present invention relates to a new component composition as an effective precipitate (generally called an inhibitor) and a process based on it.

〔従来の技術〕[Conventional technology]

一方向性電磁鋼板は、鋼板面が(1101面で圧延方向
に<001>軸を有する所謂ゴス方位(ミラー指数で(
110) <001>方位と表す)を持つ結晶粒から構
成されており、軟磁性材料として変圧器および電機用の
鐵芯に使用される。
The unidirectional electrical steel sheet has a so-called Goss orientation (Miller index: (
110) It is composed of crystal grains with <001> orientation), and is used as a soft magnetic material in transformers and iron cores for electrical equipment.

この鋼板は、磁気特性として磁化特性と鐵損特性が良好
でなければならない。
This steel plate must have good magnetic properties such as magnetization properties and iron loss properties.

磁化特性の良否は、かけられた一定の磁場の下で鐵芯内
に誘起される磁束密度で決まり、磁束密度が高い製品(
一方向性電磁銅板)を用いると鐵芯を小型化できる。
The quality of magnetization characteristics is determined by the magnetic flux density induced within the iron core under a constant applied magnetic field, and products with high magnetic flux density (
By using a unidirectional electromagnetic copper plate (unidirectional electromagnetic copper plate), the iron core can be made smaller.

磁束密度が高い鋼板は、結晶粒の方位を(1101<0
01>に高度に揃えることによって得られる。
Steel sheets with high magnetic flux density have crystal grain orientations (1101<0
01>.

鐵損は、鐵芯に所定の交流磁場を与えたときに熱エネル
ギとして消費される電力損失であり、その良否に対して
、磁束密度、板厚、鋼中の不純物量、比抵抗、結晶粒度
等が影響する。
Iron loss is the power loss consumed as thermal energy when a predetermined alternating magnetic field is applied to the iron core. etc. are affected.

磁束密度が高い銅j板は、電気機器の識芯を小さくでき
るととも乙こ識損も低くなるから望ましく、当該分野で
はできる限り磁束密度の高い製品を低コスI・で製造す
る方法の開発が課題となっている。
Copper J-boards with high magnetic flux density are desirable because they can reduce the center of gravity of electrical equipment and also reduce the loss of power, and in this field, development of methods to manufacture products with as high a magnetic flux density as possible at a low cost is required. has become an issue.

処で、一方向性電磁鋼板は、スラブを熱間圧延して得ら
れる熱延機を適切な冷間圧延と焼鈍との組合せにより最
終板厚とした鋼板を仕上焼鈍することにより、(110
1<001>方位を有する一次再結晶粒を選択成畏させ
る所謂二次再結晶によって得られる。
The unidirectional electrical steel sheet is produced by finishing annealing the steel sheet to a final thickness by a combination of appropriate cold rolling and annealing using a hot rolling mill obtained by hot rolling a slab.
It is obtained by so-called secondary recrystallization in which primary recrystallized grains having a 1<001> orientation are selectively formed.

二次再結晶は、二次再結晶前の鋼板中に微細な析出物、
たとえばMnS 、  八nN  、MnSe、  (
AA 。
Secondary recrystallization is caused by the formation of fine precipitates in the steel sheet before secondary recrystallization.
For example, MnS, 8nN, MnSe, (
A.A.

5i)N、 CuzS等が存在すること或はSn、Sb
等の粒界存在型の元素が存在するごとによって達成され
る。ごれら析出物、粒界存在型の元素は、J。
5i) The presence of N, CuzS, etc. or Sn, Sb
This is achieved by the presence of grain boundary-existing elements such as. Elements existing in grain boundaries and precipitates are J.

E、 May and D、Turnbull (Tr
ans、Met、Soc、AIME212(1958)
 p769/781)によって説明されているように、
仕上焼鈍工程で(110) <001>方位以外の一次
再結晶粒の成長を抑え、fllol <001>方位粒
を選択的に成長させる機能を持つ。
E, May and D, Turnbull (Tr
ans, Met, Soc, AIME212 (1958)
p769/781),
In the final annealing step, it has the function of suppressing the growth of primary recrystallized grains other than the (110) <001> orientation and selectively growing flol <001> oriented grains.

このような、粒成長の抑制効果は、一般にインヒビター
効果と呼ばれている。
Such a grain growth suppressing effect is generally called an inhibitor effect.

従って、当該分野における研究開発の重点課題は、如何
なる種類の析出物或は粒界存在型の元素を用いて二次再
結晶を安定させるか、そして正確な(110) <00
1>方位粒の存在割合を高めるために、それらの適切な
存在状態を如何に達成するかにある。
Therefore, the key issue for research and development in this field is what kind of precipitates or grain boundary-existing elements should be used to stabilize secondary recrystallization, and how to achieve accurate (110) <00
In order to increase the proportion of 1> oriented grains, the problem lies in how to achieve an appropriate state of their existence.

特に、最近では、一種類の析出物による(110)<0
01>方位の高度な制御に限界がある処から、種々の析
出物について短所、長所を深く解明することにより幾つ
かの析出物を有機的に組合せて、より磁束密度の高い製
品を安定してかつ低コストで製造し得る技術の開発が進
められている。
In particular, recently, (110)<0 due to one type of precipitate
01> Since there is a limit to advanced control of orientation, by deeply understanding the disadvantages and advantages of various precipitates, it is possible to organically combine several precipitates to stably produce products with higher magnetic flux density. Further, the development of technology that can be manufactured at low cost is progressing.

析出物の種類として、N、F、Littmannは、特
公昭30−3651号公報にまた、J、E、Mayおよ
びり、Turnbullは、TransoMet、So
c、八IME 212(1958) p769/781
にMnSを、日日および叛意は、特公昭33−4710
号公報にAjl!NとMnSを、F ied lerは
、Trans、Met、Soc。
Regarding the types of precipitates, N, F, Littmann, J, E, May, Turnbull, TransoMe, So
c, 8 IME 212 (1958) p769/781
The MnS, Japan, and rebellion were published in the Special Publication No. 33-4710.
Ajl in the issue! N and MnS, Fiedler is Trans, Met, Soc.

AIME 212(1961) p、1201〜120
5にVNを、今生らは、特公昭51−13469号公報
にMnSe、Sbを、J、A。
AIME 212 (1961) p, 1201-120
5, and Imao et al. published MnSe, Sb in Japanese Patent Publication No. 51-13469, J, A.

Salsgiverらは特公昭57−45818号公報
にAffiNと硫化銅を小松らは、特公昭62−452
85号公報に(AA、5i)Nを提示している。その他
に、TiS  。
Salsgiver et al. reported AffiN and copper sulfide in Japanese Patent Publication No. 57-45818, and Komatsu et al.
(AA, 5i)N is presented in Publication No. 85. In addition, TiS.

CrS  、CrC、NbC,5iOz等も知られてい
る。
CrS, CrC, NbC, 5iOz, etc. are also known.

一方、粒界存在型の元素として、日本金属学会誌27(
1963) p、186に、斉藤達雄がAs、Sn、S
b等を提示しているが、工業生産においては、これら元
素が単独で使用される例は無く、何れも析出物と共存さ
せてその補助的効果を狙って使用される。
On the other hand, as a grain boundary existing element, the Journal of the Japan Institute of Metals 27 (
1963) p. 186, Tatsuo Saito describes As, Sn, S
b, etc., but in industrial production, there are no examples of these elements being used alone, and they are all used together with the precipitate to achieve a supplementary effect.

さらに、特徴のあるインヒビターとして、It、Gre
nobleにより合衆国特許第3.905.842号(
1975)に提示されているもの、H,Fiedler
により合衆国特許第3,905,843号(1975)
に提示されているものがある。即ち、固溶のS、B、N
を適当量だけ存在させることによって、磁束密度の高い
一方向性電磁鋼板の製造を可能にしている。
Furthermore, as characteristic inhibitors, It, Gre
U.S. Patent No. 3.905.842 by Noble (
1975), H. Fiedler
No. 3,905,843 (1975)
There are some that are presented. That is, S, B, N in solid solution
By having an appropriate amount of , it is possible to manufacture unidirectional electrical steel sheets with high magnetic flux density.

二次再結晶に効果のある析出物の選択基準は、必ずしも
明らかにされていないが、その代表他見解か、検問によ
り[鐵と鋼J 53(1967) p、1007〜10
73に述べられている。要約すると、(1)大きさは、
0,1μIn程度 (2)必要容積は、0.1vo1.%以上(3)二次再
結晶温度域で完全に)容けてしまっても、全く溶けなく
ても不可であり、適当な程度固溶すること である。
The selection criteria for precipitates that are effective in secondary recrystallization are not necessarily clear, but representative opinions or other opinions or inquiries have shown that [Tetsu-to-Hagane J 53 (1967) p. 1007-10]
73. To summarize, (1) the size is
Approximately 0.1 μIn (2) The required volume is 0.1 vol. % or more (3) Even if it is completely dissolved in the secondary recrystallization temperature range, it is impossible even if it does not melt at all, and it is necessary to form a solid solution to an appropriate degree.

上に述べた種々の析出物は、これらの条件G°こ当ては
まる部分もあるが、全ての現象かこの条件に当てはまる
わけではない。本発明の冷間圧延以降に鋼板を窒化する
プロセスにおいては、−に記(1)は重要な意味を持た
ない。
Although some of the various precipitates described above meet these conditions G°, this does not apply to all phenomena. In the process of nitriding a steel sheet after cold rolling according to the present invention, (1) in - does not have any important meaning.

このように、現状では、析出物の選択をする際の指導原
理は確立しておらず、試行錯誤の繰返しで新しいインヒ
ビター制御技術が探索されている。
Thus, at present, no guiding principles have been established for selecting precipitates, and new inhibitor control techniques are being searched for through repeated trial and error.

何れにしても、高い磁束密度(+11(11<001.
>方位の高い集積度)を得るためには、析出物を微細で
均一かつ多量に、仕上焼鈍前の鋼板中に存在させること
が必要であり、析出物の制御と併せその析出物の特性に
合致する圧延、熱処理の適切な組合せにより、二次再結
晶前の性状を調整することが重要である。
In any case, the high magnetic flux density (+11 (11<001.
> In order to obtain a high degree of accumulation in orientation, it is necessary to have fine, uniform, and large amounts of precipitates in the steel sheet before final annealing. It is important to adjust the properties before secondary recrystallization by appropriate combinations of rolling and heat treatment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現在、]二業生産されている代表的な一方向性電磁釦、
I板の製造方法として3種類あり、それぞれ長所および
短所をもっでいる。
Currently, a typical unidirectional electromagnetic button that is produced in two industries,
There are three methods for manufacturing I-plates, each with its own advantages and disadvantages.

第1の製造方法は、M、F、littmannにより特
公昭30 3651号公幸旧こ提示された、MnSをイ
ンヒビターとして用いる2凹冷延プロセスである。−次
再結晶粒は安定して発達するけれども、高い磁束密度か
得られない。
The first manufacturing method is a two-concave cold rolling process using MnS as an inhibitor, which was proposed by M. F. Littmann in Japanese Patent Publication No. 3651/1983. Although -order recrystallized grains develop stably, high magnetic flux density cannot be obtained.

第2の製造方法は、田[」、板金らにより特公昭404
5644号公報乙こ提示された、ApN+MnSをイン
ヒビターとして用い、最終冷延を80%を超える強圧下
とする1凹冷延プロセスであり、極めて高い磁束密度か
得られるけれども、工業生産に際して製造条件の適正範
囲が狭く、高い磁性の製品の安定した生産か困難である
The second manufacturing method was developed by Takashi, Shekin et al.
The one-concave cold rolling process proposed in Publication No. 5644 uses ApN+MnS as an inhibitor and subjects the final cold rolling to a strong reduction of over 80%.Although extremely high magnetic flux density can be obtained, it is difficult to meet the manufacturing conditions during industrial production. The suitable range is narrow and it is difficult to stably produce highly magnetic products.

第3の製造方法は、今生らにより特公昭51−1346
1号公報に提示された、Mn5(および/またはMn5
e)+sbをインヒビターとして用いる2凹冷延プロセ
スであって、比較的高い磁束密度が得られるけれども、
Sb 、Seといった有害かつ高価な元素を使用し、し
かも2回冷延法である処から製造コストが高い。
The third manufacturing method was developed by Imao et al.
Mn5 (and/or Mn5
e) a two-concave cold rolling process using +sb as an inhibitor, although a relatively high magnetic flux density is obtained;
The manufacturing cost is high because harmful and expensive elements such as Sb and Se are used, and the process requires a double cold rolling process.

上記3種類の製造方法には、共通ずる次の問題がある。The above three types of manufacturing methods have a number of common problems.

即ち、これら製造方法においては、何れも析出物を微細
かつ均一に析出させるために、析出物を一旦固溶させる
。そのために、スラブ加熱温度が必然的に高くなる。
That is, in all of these manufacturing methods, the precipitates are once dissolved in solid solution in order to finely and uniformly precipitate the precipitates. Therefore, the slab heating temperature inevitably becomes high.

因みに、第1の製造方法においては、スラブ加熱温度は
1260℃以−トであり、第2の製造方法においては、
特開昭48−51852号公報に開示されているように
、素材のSi含有量によるか、Si:3%の場合で13
50℃である。第3の製造方法においても、特開昭51
−20716号公報に開示されているように、スラブ加
熱温度は1230℃以上てあり、高い磁束密度か得られ
た実施例によれば1320℃といった極めて高い/精度
である。
Incidentally, in the first manufacturing method, the slab heating temperature is 1260°C or higher, and in the second manufacturing method,
As disclosed in Japanese Unexamined Patent Publication No. 48-51852, 13
The temperature is 50°C. Also in the third manufacturing method, JP-A-51
As disclosed in Japanese Patent No. 20716, the slab heating temperature is 1230° C. or higher, and in an example where a high magnetic flux density is obtained, it is 1320° C., which is extremely high/accurate.

このように、スラブを高温に加熱して析出物を固溶さ・
已、その後の熱間圧延中或ば熱処理中に析出させる。
In this way, the slab is heated to a high temperature to dissolve the precipitates into solid solution.
Then, it precipitates during subsequent hot rolling or heat treatment.

スラブ加熱温度が高くなると、加熱のためのエネルギ消
費か多くなるとともに、ノロの発生による歩留りの低下
といった問題がある他加熱炉の補修コス)・の増大、設
備稼働率の低下といった問題を惹起する。さらに、特公
昭57−41526号公報に開示されているように、ス
ラブの加熱温度が高いごとに起因して線状の二次再結晶
不良部が発生するため、連続鋳造スラブを使用できない
という問題がある。
As the slab heating temperature increases, energy consumption for heating increases, and this also causes problems such as a decrease in yield due to the generation of slag, an increase in heating furnace repair costs, and a decrease in equipment operating rate. . Furthermore, as disclosed in Japanese Patent Publication No. 57-41526, continuous casting slabs cannot be used because linear secondary recrystallization defects occur each time the slab is heated to a high temperature. There is.

JJilえて、1−゛記コスト面の問題以−ヒに重要な
問題は、鐵)員を低下せしめるべくsi含有量を多く、
製品板厚を)Nくするといった11段を採ると、前記綿
状の二次再結晶不良部か多発し、高温スラブ加熱法を前
提とするプロセスでは、将来の鐵損特性1i+IIJこ
希望か持てないことである。
In addition, the more important problem than the cost problem described in 1-2 is to increase the Si content in order to reduce the
If 11 steps are adopted, such as reducing the product board thickness by N, the aforementioned flocculent secondary recrystallization defects will occur frequently, and in a process based on high-temperature slab heating, future iron loss characteristics of 1i + IIJ will be difficult to achieve. There is no such thing.

かかる問題を解決すべく、特公昭61−60896号公
報に、鋼中のS含有量を少なくすることによって、二次
再結晶を極めて安定させ、高Si化、薄手化を可能なら
しめるプロセスが提案された。しかしながら、このプロ
セスにも工業生産において、磁束密度を高い水準で安定
させることが困難であるという問題がある。
In order to solve this problem, Japanese Patent Publication No. 61-60896 proposes a process that makes secondary recrystallization extremely stable by reducing the S content in the steel, making it possible to increase the Si content and make the steel thinner. It was done. However, this process also has the problem that it is difficult to stabilize the magnetic flux density at a high level in industrial production.

一方、)1.Grenobleにより合衆国特許第3,
905,842号に提示された方法或はH,Fiedl
erにより合衆国特許第3 、905 、843号に提
示された方法があるが、これらの技術には本質的な矛盾
があり、工業生産されていない。即ち、この技術ではイ
ンヒビターとして固溶Sを主体としているから、固溶S
を確保するためにMn含有量を低くし、MnSを形成さ
せないことが必須の要件である。具体的には、Mn/S
≦2.1が必須の要件となる。処で、広べ知られている
ように、固溶Sは材料の靭性に極めて悪影響を持つ。従
って、Si含有量が多く、割れ易い一方向性電磁鋼板に
あっては、このような固溶Sのある状態で材料を冷間圧
延することは、工業生産では極めて困難である。
On the other hand, )1. U.S. Patent No. 3 by Grenoble,
905,842 or H. Fiedl.
er in US Pat. No. 3,905,843, but these techniques have inherent inconsistencies and have not been commercially produced. In other words, since this technology mainly uses solid solution S as an inhibitor, solid solution S
In order to ensure this, it is essential to reduce the Mn content and prevent the formation of MnS. Specifically, Mn/S
≦2.1 is an essential requirement. As is widely known, solid solution S has a very negative effect on the toughness of materials. Therefore, in the case of unidirectional electrical steel sheets that have a high Si content and are easily cracked, it is extremely difficult in industrial production to cold-roll the material in a state where such solid solution S is present.

前述のように、低コストで、高い磁束密度を有し、将来
、低鐵損の可能性の高い高Si、薄手製品の製造を可能
ならしめるためには、インヒビター設計を再構築する必
要がある。さらに、安定して磁束密度の高い製品を得る
ためには、製造条件による不安定性を除く必要がある。
As mentioned above, the inhibitor design needs to be restructured in order to make it possible to manufacture high-Si, thin products with low cost, high magnetic flux density, and a high possibility of low iron loss in the future. . Furthermore, in order to obtain a product with a stable high magnetic flux density, it is necessary to eliminate instability caused by manufacturing conditions.

即ち、1つの製造条件、たとえば冷延圧下率を指定した
とき、高いGti束密度を有する製品を得るための他の
条件、たとえば熱延板焼鈍における冷却条件、脱炭焼鈍
温度等の条件の許容範囲が狭くなることは、電磁鋼板の
製造上不利でありまた、歩留りの低下にも結び付く。こ
れらの条件の許容範囲を広くするCとが、安定した工業
生産のためには重要である。
That is, when one manufacturing condition, for example, the cold rolling reduction ratio, is specified, other conditions, such as cooling conditions in hot-rolled plate annealing, decarburization annealing temperature, etc., are allowed in order to obtain a product with a high Gti bundle density. A narrow range is disadvantageous in manufacturing electrical steel sheets and also leads to a decrease in yield. C, which widens the allowable range of these conditions, is important for stable industrial production.

本発明は、これらの問題を解決することを、発明におけ
る技術的課題としている。
The technical objective of the present invention is to solve these problems.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の特徴とする処は、重量で、Si  :1.5〜
4.8%、酸可溶性Aβ: 0.012〜0.050%
、5またはSeの1種又は2種を合計量で0.012%
以下、N : 0.0010〜0.0120%、Mn 
/ (S + Se)≧4.0、B : 0.0005
〜0.0080%、残部二Feおよび不可避的不純物か
らなるスラブを、熱間圧延し、1回または、中間焼鈍を
挟む2回以上の冷間圧延工程によって最終板厚とし、次
いで、湿水素雰囲気中で脱炭焼鈍し、焼鈍分離剤を塗布
した後二次再結晶と鋼の純化を目的とする仕上焼鈍を行
い、さらに、最終冷延後から仕上焼鈍における二次再結
晶開始までの間に鋼板の窒化処理を行うことを特徴とす
る磁束密度の高い一方向性電磁鋼板の製造方法にあり、
更に、前記スラブを熱間圧延前に1200℃未満の温度
に加熱すること、及び最終板厚を0.10〜0.23+
+nに特定するところに特徴を有する。
The feature of the present invention is that Si: 1.5 to 1.5 by weight.
4.8%, acid soluble Aβ: 0.012-0.050%
, 5 or one or two of Se in a total amount of 0.012%
Hereinafter, N: 0.0010 to 0.0120%, Mn
/ (S + Se)≧4.0, B: 0.0005
A slab consisting of ~0.0080%, balance di-Fe and unavoidable impurities is hot rolled, subjected to one or two or more cold rolling steps with intermediate annealing to achieve the final thickness, and then rolled in a wet hydrogen atmosphere. The steel is decarburized and annealed in the steel, after which an annealing separator is applied, followed by secondary recrystallization and finish annealing for the purpose of purifying the steel. A method for manufacturing a unidirectional electrical steel sheet with high magnetic flux density, characterized by performing nitriding treatment on the steel sheet,
Further, heating the slab to a temperature below 1200°C before hot rolling, and a final thickness of 0.10 to 0.23+
+n.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者等は、溶鋼中のSを一定量以下に少なくしかつ
、固溶Sを少なくする条件下で、適当量のA7!とNお
よびBを含有せしめた素材を、熱間圧延して熱延板とし
た後、1回または2回の冷間圧延工程で最終板厚とする
プロセスとするとともに、最終冷延から仕上焼鈍におけ
る二次再結晶開始までの間に鋼板の窒化処理を行うよう
にすることにより、広い冷延圧下率範囲に互り安定して
磁束密度の高い電磁鋼板を製造することに成功した。
The present inventors have determined that an appropriate amount of A7! under the conditions of reducing S in molten steel to below a certain amount and reducing solid solution S! After hot-rolling a material containing N and B to form a hot-rolled plate, the final thickness is obtained through one or two cold rolling steps, and the process includes final cold rolling and final annealing. By performing the nitriding treatment on the steel sheet before the start of secondary recrystallization, we succeeded in producing an electrical steel sheet with stable high magnetic flux density over a wide range of cold rolling reductions.

次に、本発明を特徴づける構成要件について説明する。Next, the constituent elements characterizing the present invention will be explained.

Si含有量が過度に多くなると、製品(ストリップ)の
長さ方向に線状の二次再結晶不良が多発し、安定した生
産を不可能にする。この傾向は、特にSi含有量が3.
2%を超える高Si範囲でまた、最終板厚が0.23+
+m (9m1d)以下の薄手製品において顕著となる
。このような問題をよりよく解決するための要件の1つ
としてS+Seの含有量を規定しなければならない。
If the Si content is excessively high, linear secondary recrystallization defects occur frequently in the length direction of the product (strip), making stable production impossible. This tendency is particularly observed when the Si content is 3.
In the high Si range above 2%, the final plate thickness is 0.23+
This is noticeable in thin products of +m (9m1d) or less. In order to better solve such problems, the content of S+Se must be defined as one of the requirements.

即ち、線状の二次再結晶不良部が全く発生しないように
するためには、S+Se量上限値上限値012%としな
ければならない。この限定範囲内にあっても、可及的に
低S+Seとする方がよい。本発明のプロセスにおいて
は、従来、有効であるとされていたSまたはSe含有量
ではむしろ磁束密度は劣化し、SまたはSe含有量が少
ないものほど良好な磁束密度を有する製品を得ることが
できる。
That is, in order to prevent the occurrence of linear secondary recrystallization defects at all, the upper limit value of the amount of S+Se must be set to 012%. Even within this limited range, it is better to keep S+Se as low as possible. In the process of the present invention, the magnetic flux density deteriorates with the S or Se content, which was conventionally considered to be effective, and it is possible to obtain a product with a better magnetic flux density as the S or Se content is lower. .

しかしながら、現在の工業的な電磁鋼溶製技術でコスト
を過度に高くすることなく低くし得るS含有量は、重量
で、0.0005%か一般的である。
However, the S content, which can be reduced without excessively increasing the cost using current industrial electromagnetic steel melting technology, is generally 0.0005% by weight.

一方、本発明においては、製造コストを低くずべく、熱
間圧延および冷間圧延過程で材料の割れを皆無にするこ
とを狙っており、固溶Sによる材料の靭性劣化に起因す
る材料の割れを防くために、Mn / (S + Se
)≧4として鋼中に存在する微量のS 、Seを可及的
にMnS  、MnSeとして固着するようにしている
On the other hand, the present invention aims to completely eliminate material cracking during hot rolling and cold rolling processes in order to reduce manufacturing costs. In order to prevent
)≧4, so that trace amounts of S and Se present in the steel are fixed as MnS and MnSe as much as possible.

第1図に、C: 0.053%、Si:3.35%、P
;0.030%、Al:o、030%、N : 0.0
075%、B;0.0039%、を含有し、さらに、M
n:0.4%および0.12%を含む溶鋼にS含有量を
変化させた50kgインゴットを1360℃および11
50’Cに加熱し、熱間圧延して得られた熱延板端部の
割れの状況を示す。Mn/S≧4で急激に割れが減少し
、特にMnSを固溶させない1150℃の低い加熱温度
とじた材料は、殆ど割れか発生していない。
In Figure 1, C: 0.053%, Si: 3.35%, P
;0.030%, Al: o, 030%, N: 0.0
075%, B; 0.0039%, and further contains M
50 kg ingots with varying S contents were heated to 1360°C and 11% to molten steel containing n: 0.4% and 0.12%.
The state of cracking at the end of a hot rolled sheet obtained by heating to 50'C and hot rolling is shown. When Mn/S≧4, the number of cracks decreases rapidly, and in particular, the material heated at a low heating temperature of 1150° C., which does not dissolve MnS, has almost no cracks.

また、Mnの含有量は、S含有量との関係において、上
述の如く、Mn / (S + Se)≧4.0で、熱
延板の耳割れを防止するという観点からは十分であるが
、Mn含有量の上限は、0.45%が好ましい。0.4
5%を超えると、製品にフォルステライト皮膜欠陥か出
る。
Furthermore, in relation to the S content, the Mn content is Mn/(S + Se)≧4.0, which is sufficient from the viewpoint of preventing edge cracking in the hot rolled sheet, as described above. , the upper limit of the Mn content is preferably 0.45%. 0.4
If it exceeds 5%, forsterite film defects will appear in the product.

次に、Bの添加効果について説明する。Next, the effect of adding B will be explained.

C: 0.053%、Si : 3.27%、M n 
: 0.15%、S : 0.007%、P : 0.
025%、Ai : 0.027%、N : 0.00
80%、B : 0.0002%および0.0095%
、残部二Feおよび不可避的不純物からなる50kgイ
ンゴットを、1150℃に加熱した後熱間圧延して2.
0鶴の熱延板とした。次いで、1120°cx3分間の
熱延板焼鈍を施した後0.2 mmの最終板厚に冷間圧
延し、810℃8830’C1850℃1870℃18
90℃8910℃の各温度で脱炭焼鈍を施した後、窒化
フェロマンガンを含有し向0を主成分とする焼鈍分離剤
を塗布した後仕上焼鈍を施した。その結果を、第2図に
示す。
C: 0.053%, Si: 3.27%, Mn
: 0.15%, S: 0.007%, P: 0.
025%, Ai: 0.027%, N: 0.00
80%, B: 0.0002% and 0.0095%
, a 50 kg ingot consisting of the remainder Fe and unavoidable impurities was heated to 1150° C. and then hot rolled.
It was made into a hot rolled sheet of 0 Tsuru. Next, the hot-rolled plate was annealed at 1120°C for 3 minutes, and then cold-rolled to a final thickness of 0.2 mm.
After performing decarburization annealing at various temperatures of 90° C. and 8910° C., a post-finish annealing was performed by applying an annealing separator containing ferromanganese nitride and having orientation 0 as a main component. The results are shown in FIG.

第2図から明らかな如く、脱炭焼鈍温度を高くすると製
品の磁束密度は高くなるけれども、S含有量の少ないも
のは、細粒が発生し易くかつBeの最高値が低い。
As is clear from FIG. 2, when the decarburization annealing temperature is increased, the magnetic flux density of the product increases, but products with a low S content tend to generate fine grains and have a low maximum Be value.

一方、S含有量が多過ぎると、脱炭焼鈍温度によっては
高いBB値の製品が得られない。S含有量の適正な範囲
は、0.0005〜0.0080%である。
On the other hand, if the S content is too high, a product with a high BB value cannot be obtained depending on the decarburization annealing temperature. The appropriate range of S content is 0.0005 to 0.0080%.

このBの効果は、Nが適当量台まれる場合に意味がある
。恐らく、BNとして効果を持つと考えられる。N <
 0.001%では効果がなく、N >O,O]、20
%ではブリスターと呼ばれる鋼板の脹れが発生ずる。
This effect of B becomes meaningful when N is reduced by an appropriate amount. It is thought that it is probably effective as a BN. N<
There is no effect at 0.001%, N > O, O], 20
%, swelling of the steel plate called blister occurs.

次に、八〇はNと結合して八ENとなるが、本発明にお
いては、後工程即ち最終冷間圧延以降の工程で鋼を窒化
することによりAffを含む化合物を形成せしめること
を必須としているから、フリーのAPが一定量以上必要
である。そのためには、0.012〜0.050%必要
である。
Next, 80 is combined with N to become 8EN, but in the present invention, it is essential to form a compound containing Aff by nitriding the steel in a subsequent process, that is, a process after final cold rolling. Therefore, a certain amount or more of free AP is required. For that purpose, 0.012 to 0.050% is required.

スラブ加熱温度については、従来技術におけるように、
インヒビターを固溶させる高温スラブ加熱でもまた、従
来、無理であると考えられていた普通銅皿の低温スラブ
加熱でも二次再結晶は生しる。しかしながら、第1図に
示すように、熱延板の側縁部の割れを少なくできること
、スラブ加熱のためのエネルギ消費量を少なくするごと
ができること、ノロ(鋼滓)の発生がなく炉の補修の頻
度、程度を著しく軽減できること等の理由から、120
0℃以下の低温スラブ加熱が好ましい。
Regarding the slab heating temperature, as in the prior art,
Secondary recrystallization occurs both in high-temperature slab heating to dissolve the inhibitor, and in low-temperature slab heating in an ordinary copper pan, which was previously thought to be impossible. However, as shown in Figure 1, it is possible to reduce cracks on the side edges of hot-rolled sheets, reduce energy consumption for slab heating, and repair furnaces without generating slag (steel slag). 120 because it can significantly reduce the frequency and severity of
Low-temperature slab heating of 0° C. or lower is preferred.

冷間圧延に際しては、最も高い磁束密度を有する製品を
得るために、短時間の熱延板焼鈍を材料に施す。磁気特
性が若干劣ることを我慢するならば、コストを低下せし
めるべく、熱延板焼鈍を省略することもできる。
During cold rolling, the material is subjected to a short hot-roll annealing to obtain a product with the highest magnetic flux density. If a slight deterioration in magnetic properties is tolerated, hot-rolled sheet annealing can be omitted in order to reduce costs.

また、最終製品の結晶粒を小さくするために、中間焼鈍
を挟む2回以上の冷間圧延工程を採ることもできる。
Further, in order to reduce the crystal grain size of the final product, two or more cold rolling steps with intermediate annealing may be performed.

また、第3の発明において最終板厚を0.10〜0.2
311としたのは、次の理由による。たとえば、特開昭
57−41326号公報に開示されているように、板厚
を減少させると、渦流損か減少するけれども、ヒステリ
シス損は増大し、両者の妥協点として鉄損の低い特定板
厚範囲が存在する。0.10〜0.23mmの範囲であ
る。
Further, in the third invention, the final plate thickness is 0.10 to 0.2
The reason for choosing 311 is as follows. For example, as disclosed in Japanese Patent Application Laid-Open No. 57-41326, when the plate thickness is reduced, the eddy current loss decreases, but the hysteresis loss increases. A range exists. It is in the range of 0.10 to 0.23 mm.

本発明では、二次再結晶が安定し高い磁束密度を有する
製品が得られる冷間圧延圧下率範囲が、高い圧下率側ま
で許容できるから、このような薄手の製品を製造するに
際し、極めて有利である。
In the present invention, the cold rolling reduction range in which products with stable secondary recrystallization and high magnetic flux density can be obtained can be tolerated up to the high reduction ratio side, so it is extremely advantageous when manufacturing such thin products. It is.

例えば、板厚0.15mmの薄手高磁束密度の製品を低
コストの一回冷延で得るためには、B無添加材でハ板厚
1.5mmの熱延板が必要となる。しがし、工業生産規
模で1.5鶴厚までの熱延を行なうことは、生産性の低
下、制御の困難さから極めて不利である。
For example, in order to obtain a thin product with a thickness of 0.15 mm and a high magnetic flux density by a single low-cost cold rolling process, a hot-rolled sheet with a thickness of 1.5 mm made of B-free material is required. However, hot rolling to a thickness of up to 1.5 mm on an industrial production scale is extremely disadvantageous due to decreased productivity and difficulty in control.

実施例3から明らかなようにB添加材では最終冷延率9
3%の製品まで、高い磁束密度が得られるから、板厚2
.0+nの熱延板からでも高磁束密度が一回冷延で得ら
れ安定した工業生産を行なう上で有利である。
As is clear from Example 3, the final cold rolling rate of the B additive material was 9.
High magnetic flux density can be obtained for products with a thickness of up to 3%.
.. Even from a 0+n hot-rolled sheet, a high magnetic flux density can be obtained in one cold rolling process, which is advantageous for stable industrial production.

最終冷延後の材料は、湿水素或は湿水素、窒素混合雰囲
気ガス中で脱炭焼鈍される。
The material after the final cold rolling is decarburized and annealed in wet hydrogen or a mixed atmosphere of wet hydrogen and nitrogen.

このときの温度は、特に拘らないが、800〜900℃
の範囲内が好ましい。また、そのときの雰囲気の露点は
、水素、窒素の混合比によるが、+30℃以上とするこ
とが望ましい。
The temperature at this time is not particularly limited, but is 800 to 900°C.
It is preferably within the range of . Further, the dew point of the atmosphere at that time depends on the mixture ratio of hydrogen and nitrogen, but is preferably +30° C. or higher.

次いで、焼鈍分離剤を塗布し、高温(通常1100〜1
200℃)長時間の仕上焼鈍を行う。本発明においては
、最終冷間圧延以降仕上焼鈍での二次再結晶発現前まで
の過程で鋼を窒化することにより二次再結晶に必要なイ
ンヒビターを作り込む点に特徴がある。その際、最も好
ましい実施態様は、仕上焼鈍の昇温過程で鋼を窒化する
方法である。これを達成するために、焼鈍分離剤中に窒
化能のある化合物、たとえば、MnN 、 CrN等を
適当量添加するか或ばN113等窒化能のある気体を雰
囲気ガス中に添加する必要がある。
Next, an annealing separator is applied and heated to a high temperature (usually 1100 to 1
(200°C) long-term final annealing. The present invention is characterized in that an inhibitor necessary for secondary recrystallization is created by nitriding the steel during the process after the final cold rolling until the onset of secondary recrystallization in final annealing. In this case, the most preferred embodiment is a method in which the steel is nitrided during the temperature raising process of final annealing. In order to achieve this, it is necessary to add an appropriate amount of a compound capable of nitriding, such as MnN, CrN, etc., to the annealing separator, or to add a gas capable of nitriding, such as N113, to the atmospheric gas.

その他の実施態様として、脱炭焼鈍工程の均熱過程以降
において、NH3等窒化能のあるガスを含有するガスを
雰囲気として鋼板(ストリップ)を処理するか或は脱炭
焼鈍後、Nト13等窒化能のあるガスを含有するガスを
雰囲気とする熱処理炉で鋼板を窒化する方法がある。
As another embodiment, after the soaking process of the decarburization annealing process, the steel plate (strip) is treated in an atmosphere containing a gas with nitriding ability such as NH3, or after decarburization annealing, the steel plate (strip) is treated with a gas containing a gas with nitriding ability such as NH3, or after decarburization annealing, There is a method of nitriding a steel plate in a heat treatment furnace in which the atmosphere is a gas containing a gas capable of nitriding.

また、上に述べた方法を組合せて実施してもよい。Moreover, the methods described above may be combined and implemented.

二次再結晶を完了した鋼板は、水素雰囲気中で純化焼鈍
される。
The steel plate that has undergone secondary recrystallization is subjected to purification annealing in a hydrogen atmosphere.

〔実施例〕〔Example〕

実施例1 重量%で、C: 0.055%、Si  :3.50%
、P:0.031%、Afi :0.026%、N :
 0.0077%、B:(a)0.0003%、(b)
0.0015%、(c)0.0060%、および、(d
)0.0100%を含有した溶鋼を鋳造したスラブを1
195℃に加熱後、熱延し、2.3mmの熱延板を得た
。次いで1150℃×1分間の熱延板焼鈍を施した後0
.2311の板厚に冷延し、830℃で2分間、湿水素
窒素混合気中で脱炭焼鈍をした。この時の雰囲気露点は
55℃であった。更に、窒化フェロマンガンを重量で4
%添加した触0からなる焼鈍分離剤を塗布し、10℃/
hrの昇温速度で1200℃に加熱し、20時間保持す
る仕上焼鈍を施した。
Example 1 In weight%, C: 0.055%, Si: 3.50%
, P: 0.031%, Afi: 0.026%, N:
0.0077%, B: (a) 0.0003%, (b)
0.0015%, (c) 0.0060%, and (d
) A slab made of molten steel containing 0.0100%
After heating to 195° C., hot rolling was performed to obtain a 2.3 mm hot rolled sheet. Then, after hot-rolled plate annealing at 1150°C for 1 minute,
.. It was cold rolled to a thickness of 2311 mm and decarburized annealed at 830° C. for 2 minutes in a wet hydrogen/nitrogen mixture. The atmospheric dew point at this time was 55°C. Furthermore, 4 ferromanganese nitride by weight
Apply an annealing separator consisting of 0% additive and heat at 10℃/
Finish annealing was performed by heating to 1200° C. at a heating rate of hr and holding it for 20 hours.

この時の雰囲気は、1200℃までの昇温過程ではN2
ニア5%、N2:25%1200℃の保定中は、N2:
100%とした。
The atmosphere at this time was N2 during the heating process up to 1200℃.
Near 5%, N2: 25% During retention at 1200℃, N2:
It was set as 100%.

得られた製品の磁束密度は次の通りであった。The magnetic flux density of the obtained product was as follows.

この結果から明らかに、適正なりの成分範囲が存在する
From this result, it is clear that there is an appropriate range of ingredients.

実施例2 重量で、C: 0.050%、S i  : 3.30
%、Mn:0.150%、P:0.025%、S:0.
006%、Aβ−0,028%、N : 0.0075
%、Cr  :0.120%、残部:Feおよび不可避
的不純物からなる電磁鋼スラブ(A)と、前記成分系に
Bを0.0030%添力uした電磁鋼スラブl)を、1
150℃に加熱した後、熱間圧延してそれぞれ板厚1.
6.2.0.2.5.2.8 。
Example 2 By weight, C: 0.050%, Si: 3.30
%, Mn: 0.150%, P: 0.025%, S: 0.
006%, Aβ-0,028%, N: 0.0075
%, Cr: 0.120%, balance: Fe and unavoidable impurities (A), and an electromagnetic steel slab l) with 0.0030% B added to the above component system, 1
After heating to 150°C, hot rolling was performed to give each plate a thickness of 1.
6.2.0.2.5.2.8.

3.5++mの熱延板を得た。A hot rolled sheet of 3.5++ m was obtained.

これらに、1120°cx2分間の焼鈍を施し、1回の
冷間圧延で板厚0.29mmの最終板厚とした。次いで
、850℃X150秒間の脱炭焼鈍を、露点+60℃の
湿水素窒素混合ガス中で施した後、)IgO中にTlO
2:3重量%とフェロ窒化マンガン:5重量%を添加し
た焼鈍分離剤を塗布した。
These were annealed at 1120°c for 2 minutes and cold rolled once to give a final plate thickness of 0.29 mm. Next, decarburization annealing was performed at 850°C for 150 seconds in a wet hydrogen-nitrogen mixed gas with a dew point of +60°C.
An annealing separator containing 2:3% by weight and ferromanganese nitride: 5% by weight was applied.

この材料に、10℃/hrの昇温速度で1200℃に加
熱し、20時間保持する仕上焼鈍を施した。このときの
雰囲気は、昇温中はNz:25%、N2・ニア5%の混
合ガス、1200℃に保定中はN2 :100%のガス
であった。
This material was subjected to final annealing by heating to 1200° C. at a heating rate of 10° C./hr and holding it for 20 hours. The atmosphere at this time was a mixed gas of 25% Nz and 5% N2.Nia during the temperature rise, and a 100% N2 gas while the temperature was maintained at 1200°C.

このときの結果を、第3図に示す。The results at this time are shown in FIG.

第3図から明らかな如く、材料(A)では、熱延板の厚
さ2.5.2.8mmのもののみが高磁束密度を示した
のに対し、材料CB)では、熱延板の厚さ2.0 、2
.5 、2.8 、3.5顛のもので高磁束密度を示し
、冷延時の圧下率を変動させても製品の磁気特性が高い
水準で安定している。
As is clear from Fig. 3, in material (A), only the hot-rolled sheets with a thickness of 2.5 and 2.8 mm showed high magnetic flux density, whereas in material CB), the hot-rolled sheets with a thickness of 2.5 and 2.8 mm showed high magnetic flux density. Thickness 2.0, 2
.. 5, 2.8, and 3.5 sizes exhibit high magnetic flux densities, and the magnetic properties of the products remain stable at a high level even when the rolling reduction during cold rolling is varied.

実施例3 実施例2におけると同一の成分系および厚さの熱延板を
得、これらに1120’c x 2分間の焼鈍を施した
後、1回の冷間圧延で0.2(bm厚さの最終板厚とし
た。
Example 3 Hot-rolled sheets with the same composition and thickness as those in Example 2 were obtained, and after annealing them at 1120'c x 2 minutes, the thickness was reduced to 0.2 (bm) by one cold rolling. The final plate thickness was taken as the final thickness.

この材料に、850 ’CX90秒間の脱炭焼鈍を、湿
水素、窒素雰囲気中で施し、次いで焼鈍分離剤を塗布し
た後、実施例2におけると同一の条件で仕上焼鈍を施し
た。
This material was subjected to decarburization annealing at 850'CX for 90 seconds in a wet hydrogen and nitrogen atmosphere, and then, after applying an annealing separator, final annealing was performed under the same conditions as in Example 2.

その結果を、第4図に示す。The results are shown in FIG.

第4図から明らかな如く、材料(A)では、熱延板の厚
さが1.6.2.Ou+のちののみが高い磁束密度を示
したのに対し、材料CB)では、熱延板の厚さ1.6 
、2.0 、2.5 、2.8鶴のものについて高い磁
束密度を示した。
As is clear from FIG. 4, for material (A), the thickness of the hot rolled sheet is 1.6.2. Only Ou+ later showed a high magnetic flux density, whereas material CB) had a hot-rolled plate thickness of 1.6
, 2.0, 2.5, and 2.8 Tsuru showed high magnetic flux density.

実施例4 C: 0.055%、S i  : 3.28%、Mn
  :0.15%、S : o、oo6%、P : 0
.025%、Aβ: 0.027%、N : 0.00
77%に、B : 0.0003%と0.0020%、
を添力11したスラブを1150℃に加熱後、熱間圧延
し、2、6+uの熱延板を得た。スケールを落した後、
1、8 **まで冷間圧延し、次いで1100“CX2
分間の焼鈍を施した。この後酸洗し、0.15++m厚
に冷延し、840℃×70秒の脱炭焼鈍を行なった。こ
の鋼板に、MgO中に、重量で3%のフェロ窒化マンガ
ンを添加した焼鈍分離剤を塗布して、1200℃まで8
℃/hの昇温速度で加熱後20時間の焼鈍を施した。
Example 4 C: 0.055%, Si: 3.28%, Mn
: 0.15%, S: o, oo6%, P: 0
.. 025%, Aβ: 0.027%, N: 0.00
77%, B: 0.0003% and 0.0020%,
After heating the slab with a loading force of 11 to 1150°C, it was hot rolled to obtain a 2,6+u hot rolled plate. After dropping the scale,
Cold rolled to 1,8**, then 1100"CX2
Annealing was performed for 1 minute. Thereafter, it was pickled, cold rolled to a thickness of 0.15++m, and decarburized annealed at 840°C for 70 seconds. This steel plate was coated with an annealing separator containing 3% by weight of ferromanganese nitride in MgO, and then heated to 1200°C.
After heating at a temperature increase rate of °C/h, annealing was performed for 20 hours.

この昇温過程の雰囲気はN250%とN250%の混合
カスを使用し、1200′Cの均熱時は11゜100%
とした。
The atmosphere for this heating process is a mixture of N250% and N250%, and when soaking at 1200'C, the temperature is 11°100%.
And so.

得られた、成品の磁気特性、及び結晶粒径は、以下のと
おりである。
The magnetic properties and crystal grain size of the obtained product are as follows.

実施例5 重量%で、C: 0.052%、S i  : 3.3
0%、Mn;0.14%、P : 0.033%、/M
! :0.027%、N:0.0075%、B : 0
.0020%残部Feおよび不可避的不純物からなる溶
鋼にSを(a) 0.004%、(b)0.010%、
(c)  0.018%添加して得たスラブを1195
℃に加熱後、熱延し2. O**厚さの熱延板を得た。
Example 5 In weight %, C: 0.052%, S i : 3.3
0%, Mn: 0.14%, P: 0.033%, /M
! : 0.027%, N: 0.0075%, B: 0
.. (a) 0.004%, (b) 0.010%,
(c) 1195 slab obtained by adding 0.018%
After heating to ℃, hot rolling 2. A hot rolled sheet having a thickness of O** was obtained.

これに1120℃X2分間+900℃X1分間の熱延板
焼鈍を施し酸洗した後、0.20m1の板厚まで冷間圧
延した。次いで850℃X100秒間の脱炭焼鈍を湿水
素中で施し、hgoに?InNを重量%て3%添加した
焼鈍分離剤を塗布した後、1200℃×20時間の仕上
焼鈍を施した。この仕上焼鈍の雰囲気ガスは昇温過程で
はN2:25%、H□ ニア5%の混合ガスであり、1
200℃の均熱時はN2:100%であった。磁束密度
は下表の通りであった。
This was subjected to hot-rolled plate annealing at 1120°C for 2 minutes + 900°C for 1 minute, pickled, and then cold rolled to a plate thickness of 0.20 m1. Next, decarburization annealing was performed at 850°C for 100 seconds in wet hydrogen to give hgo? After applying an annealing separator containing 3% by weight of InN, final annealing was performed at 1200° C. for 20 hours. The atmosphere gas for this final annealing is a mixed gas of 25% N2 and 5% H□ in the temperature rising process.
When soaking at 200°C, N2:100%. The magnetic flux density was as shown in the table below.

実施例6 重量で、C: 0.045%、S i  : 3.50
%、Mn:0.16%、P : 0.035%1,11
:0.028%、N:0.0080910. B : 
0.0025%、残部Feおよび不可避的不純物からな
る溶鋼に、Seを(a) 0.0050%。
Example 6 By weight, C: 0.045%, Si: 3.50
%, Mn: 0.16%, P: 0.035%1,11
:0.028%, N:0.0080910. B:
(a) 0.0050% Se to molten steel consisting of 0.0025%, the balance Fe and unavoidable impurities.

(b) 0.0100%、 (c) 0.0200%添
加して得られた鋼スラブをll50゛cに加熱した後、
熱間圧延し2.0Hj〃さの熱延板を得た。これに、1
150℃×2分間+900“CX2分間の熱延板焼鈍を
施した後急冷し、次いで酸洗した後、0.20mmの最
終板厚まで冷間圧延した。
After heating the steel slab obtained by adding (b) 0.0100% and (c) 0.0200% to 1150゛c,
A hot rolled sheet having a thickness of 2.0 Hj was obtained by hot rolling. To this, 1
The hot rolled sheet was annealed at 150°C for 2 minutes + 900"CX for 2 minutes, then rapidly cooled, then pickled, and then cold rolled to a final thickness of 0.20 mm.

引き続き、830℃×90秒間の脱炭焼鈍を鋼板に施し
、MgOに、重量で5%のフェロ窒化マンガンを添加し
た焼鈍分離剤を塗布した。
Subsequently, the steel plate was subjected to decarburization annealing at 830° C. for 90 seconds, and an annealing separator containing 5% by weight of ferromanganese nitride added to MgO was applied.

次いで、鋼板に、10℃/hrの昇温速度で1200℃
に加熱し、20時間保持する仕」二焼鈍を施した。
Next, the steel plate was heated to 1200°C at a heating rate of 10°C/hr.
The material was then annealed by heating it to a temperature and holding it for 20 hours.

このときの雰囲気は、1200℃までの昇温過程ではN
2:25%、Hzニア5%の混合ガス、1200’Cの
均熱時はN2 :100%のガスであった。
The atmosphere at this time was N during the heating process up to 1200°C.
The mixed gas was 25% N2 and 5% near Hz, and the gas was 100% N2 during soaking at 1200'C.

得られた製品の磁気特性は、次の如くであった。The magnetic properties of the obtained product were as follows.

この結果から明らかな如く、Se含有量が多過ぎると、
高磁束密度の製品が得られない。
As is clear from this result, if the Se content is too high,
Products with high magnetic flux density cannot be obtained.

実施例7 重量で、C: 0.048%、S i  : 3.30
%、Mn;0.145%、S : 0.008%、7B
 :0.030%、N;0、0075%、B : 0.
0024%、残部Feおよび不可避的不純物からなるス
ラブを1100℃で加熱後熱延し、2.311厚の熱延
板を得た。
Example 7 By weight, C: 0.048%, Si: 3.30
%, Mn; 0.145%, S: 0.008%, 7B
: 0.030%, N: 0,0075%, B: 0.
A slab consisting of 0.024% Fe and unavoidable impurities was heated at 1100° C. and then hot rolled to obtain a hot rolled sheet with a thickness of 2.311 mm.

この熱延板に(1)熱延板焼鈍なし、(2)900°c
x6分の熱延板焼鈍、(3)1130°cx2分+90
0℃×1分の熱延板焼鈍後急冷却を、それぞれ施した。
This hot-rolled sheet has (1) no hot-rolled sheet annealing, (2) 900°C
Hot rolled sheet annealing for x6 minutes, (3) 1130°c x 2 minutes +90
The hot rolled sheets were annealed at 0° C. for 1 minute and then rapidly cooled.

これを0.30mm厚まで1回で冷延し、840℃×1
80秒の脱炭焼鈍を湿水素、窒素混合気中で行ない、M
gOに重量で5%のフェロ窒化マンガンを添加した。焼
鈍分離剤を塗布した後、1200℃×20時間の仕上焼
鈍を施した。この昇温過程の昇温速度は15℃/hrで
あり、雰囲気ガスは窒素:25%、水素;75%の混合
ガスを用いた。また、1200℃の均熱時の雰囲気ガス
は水素100%であった。
This was cold-rolled in one step to a thickness of 0.30 mm, and 840℃ x 1
Decarburization annealing was performed for 80 seconds in a wet hydrogen and nitrogen mixture, and M
5% by weight of ferromanganese nitride was added to gO. After applying the annealing separator, final annealing was performed at 1200° C. for 20 hours. The temperature increase rate in this temperature increase process was 15° C./hr, and the atmospheric gas used was a mixed gas of 25% nitrogen and 75% hydrogen. Further, the atmospheric gas during soaking at 1200° C. was 100% hydrogen.

磁気特性は以下のとおりであった。The magnetic properties were as follows.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上述べたように構成しかつ、作用せしめる
ようにしたから、磁気特性の極めて優れた一方向性電磁
鋼板を−採り得る冷延圧下率範囲等、製造条件の自由度
を大きくし得るから安定した生産を可能にする格別の効
果を奏する。
Since the present invention is constructed and operated as described above, the degree of freedom in manufacturing conditions such as the range of cold rolling reduction in which grain-oriented electrical steel sheets with extremely excellent magnetic properties can be obtained is increased. It has an exceptional effect in making stable production possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Mn/Sと熱延板端部割れ深さの関係を示す
図、 第2図は、B添加量と脱炭焼鈍温度の関係が、製品の磁
束密度(BIl)に及ぼす影響を示す図、第3図は、B
を添加しない方向性電磁鋼素材(A)と、Bを0.00
30%添加した方向性型1鋼素材(B)について、熱延
板と板厚と製品の磁束密度(Bll(T))の関係を示
す図、 第4図は、Bを添加しない方向性電磁鋼素材・(A)と
、Bを0.0030%添加した方向性電磁鋼素材(B)
について、最終板厚を0.2(bmとしたときの、熱延
板の厚さ(ゲージ)と製品の磁束密度(Be(T))の
関係を示す図である。 手続補正書(自発) 昭和63年7り/7日
Figure 1 shows the relationship between Mn/S and the depth of cracking at the end of a hot rolled sheet. Figure 2 shows the effect of the relationship between B addition amount and decarburization annealing temperature on the magnetic flux density (BIl) of the product. Figure 3 shows B
Grain-oriented electrical steel material (A) with no added B and 0.00 B
Figure 4 shows the relationship between the magnetic flux density (Bll(T)) of the hot-rolled plate, plate thickness, and product for the grain-oriented type 1 steel material (B) with 30% additive. Steel material (A) and grain-oriented electrical steel material (B) with 0.0030% B added
This is a diagram showing the relationship between the thickness (gauge) of the hot-rolled sheet and the magnetic flux density (Be(T)) of the product, when the final sheet thickness is 0.2 (bm). Procedural amendment (voluntary) July 7th, 1985

Claims (1)

【特許請求の範囲】 1)重量で、Si:1.5〜4.8%、酸可溶性Al:
0.012〜0.050%、SまたはSeの1種又は2
種を合計量で0.012%以下、N:0.0010〜0
.0120%、Mn/(S+Se)≧4.0、B:0.
0005〜0.0080%、残部:Feおよび不可避的
不純物からなるスラブを、熱間圧延し、1回または、中
間焼鈍を挟む2回以上の冷間圧延工程によって最終板厚
とし、次いで、湿水素雰囲気中で脱炭焼鈍し、焼鈍分離
剤を塗布した後二次再結晶と鋼の純化を目的とする仕上
焼鈍を行い、さらに、最終冷延後から仕上焼鈍における
二次再結晶開始までの間に鋼板の窒化処理を行うことを
特徴とする磁束密度の高い一方向性電磁鋼板の製造方法
。 2)重量で、Si:1.5〜4.8%、酸可溶性Al:
0.012〜0.050%、SまたはSeの1種又は2
種を合計量で0.012%以下、N:0.0010〜0
.0120%、Mn/(S+Se)≧4.0、B:0.
0005〜0.0080%、残部:Feおよび不可避的
不純物からなるスラブを、1200℃未満の温度に加熱
した後熱間圧延し、1回または、中間焼鈍を挟む2回以
上の冷間圧延工程によって最終板厚とし、次いで、湿水
素雰囲気中で脱炭焼鈍し、焼鈍分離剤を塗布した後二次
再結晶と鋼の純化を目的とする仕上焼鈍を行い、さらに
、最終冷延後から仕上焼鈍における二次再結晶開始まで
の間に鋼板の窒化処理を行うことを特徴とする磁束密度
の高い一方向性電磁鋼板の製造方法。 3)最終板厚が0.10〜0.23mmである、請求項
1又は2記載の方法。
[Claims] 1) By weight, Si: 1.5 to 4.8%, acid-soluble Al:
0.012-0.050%, one or two of S or Se
Total amount of seeds is 0.012% or less, N: 0.0010-0
.. 0120%, Mn/(S+Se)≧4.0, B:0.
A slab consisting of 0.0005% to 0.0080%, balance: Fe and unavoidable impurities is hot rolled, subjected to one cold rolling process or two or more cold rolling steps with intermediate annealing in between, to obtain a final thickness, and then subjected to wet hydrogen treatment. After decarburization annealing in an atmosphere and applying an annealing separator, secondary recrystallization and finish annealing are performed for the purpose of purifying the steel, and then from the final cold rolling to the start of secondary recrystallization in finish annealing. A method for producing a unidirectional electrical steel sheet with high magnetic flux density, characterized by subjecting the steel sheet to nitriding treatment. 2) By weight, Si: 1.5-4.8%, acid-soluble Al:
0.012-0.050%, one or two of S or Se
Total amount of seeds is 0.012% or less, N: 0.0010-0
.. 0120%, Mn/(S+Se)≧4.0, B:0.
A slab consisting of 0005 to 0.0080%, balance: Fe and unavoidable impurities is heated to a temperature of less than 1200°C, then hot rolled, and then subjected to one cold rolling process or two or more cold rolling steps with intermediate annealing in between. After obtaining the final thickness, decarburization annealing is performed in a wet hydrogen atmosphere, and after applying an annealing separator, final annealing is performed for the purpose of secondary recrystallization and purification of the steel.Further, final annealing is performed after the final cold rolling. A method for producing a grain-oriented electrical steel sheet with high magnetic flux density, characterized in that the steel sheet is subjected to nitriding treatment before the start of secondary recrystallization. 3) The method according to claim 1 or 2, wherein the final plate thickness is 0.10 to 0.23 mm.
JP63112551A 1987-11-20 1988-05-11 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density Expired - Lifetime JPH0686631B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63112551A JPH0686631B2 (en) 1988-05-11 1988-05-11 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
EP88118993A EP0321695B1 (en) 1987-11-20 1988-11-14 Process for production of grain oriented electrical steel sheet having high flux density
DE88118993T DE3882502T2 (en) 1987-11-20 1988-11-14 Process for the production of grain-oriented electrical steel sheets with high flux density.
US07/274,432 US4994120A (en) 1987-11-20 1988-11-18 Process for production of grain oriented electrical steel sheet having high flux density
KR1019880015250A KR930001330B1 (en) 1987-11-20 1988-11-19 Process for production of grain oriented electrical steel sheet having high flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112551A JPH0686631B2 (en) 1988-05-11 1988-05-11 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH01283324A true JPH01283324A (en) 1989-11-14
JPH0686631B2 JPH0686631B2 (en) 1994-11-02

Family

ID=14589493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112551A Expired - Lifetime JPH0686631B2 (en) 1987-11-20 1988-05-11 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0686631B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417617A (en) * 1990-05-11 1992-01-22 Nippon Steel Corp Production of grain-oriented electrical steel sheet having high magnetic flux density
US5653821A (en) * 1993-11-09 1997-08-05 Pohang Iron & Steel Co., Ltd. Method for manufacturing oriented electrical steel sheet by heating slab at low temperature
US6451128B1 (en) 1997-06-27 2002-09-17 Pohang Iron & Steel Co., Ltd. Method for manufacturing high magnetic flux denshy grain oriented electrical steel sheet based on low temperature slab heating method
KR100345696B1 (en) * 1997-08-04 2002-09-18 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR100340495B1 (en) * 1997-06-27 2002-11-22 주식회사 포스코 Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100431608B1 (en) * 1999-12-18 2004-05-17 주식회사 포스코 Manufacturing of high magnetic density grain oriented silicon steel
WO2010075797A1 (en) 2008-12-31 2010-07-08 宝山钢铁股份有限公司 Method for manufacturing grain oriented silicon steel with single cold rolling
WO2011007771A1 (en) 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
WO2012087016A2 (en) 2010-12-23 2012-06-28 주식회사 포스코 Grain-oriented electric steel sheet having superior magnetic property and method for manufacturing same
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
WO2019146697A1 (en) 2018-01-25 2019-08-01 日本製鉄株式会社 Grain-oriented electrical steel sheet
WO2019146694A1 (en) 2018-01-25 2019-08-01 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
US10760141B2 (en) 2014-12-15 2020-09-01 Posco Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
US10851431B2 (en) 2014-12-18 2020-12-01 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US10907231B2 (en) 2015-12-22 2021-02-02 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US11608540B2 (en) 2016-12-22 2023-03-21 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693522B1 (en) 2014-12-24 2017-01-06 주식회사 포스코 Grain oriented electrical steel having excellent magnetic properties and method for manufacturing the same
KR102012319B1 (en) 2017-12-26 2019-08-20 주식회사 포스코 Oriented electrical steel sheet and manufacturing method of the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417617A (en) * 1990-05-11 1992-01-22 Nippon Steel Corp Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH0730398B2 (en) * 1990-05-11 1995-04-05 新日本製鐵株式会社 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
US5653821A (en) * 1993-11-09 1997-08-05 Pohang Iron & Steel Co., Ltd. Method for manufacturing oriented electrical steel sheet by heating slab at low temperature
US6451128B1 (en) 1997-06-27 2002-09-17 Pohang Iron & Steel Co., Ltd. Method for manufacturing high magnetic flux denshy grain oriented electrical steel sheet based on low temperature slab heating method
KR100340495B1 (en) * 1997-06-27 2002-11-22 주식회사 포스코 Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100345696B1 (en) * 1997-08-04 2002-09-18 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheets by heating its slab at low tempreatures
KR100431608B1 (en) * 1999-12-18 2004-05-17 주식회사 포스코 Manufacturing of high magnetic density grain oriented silicon steel
US9038429B2 (en) 2008-12-31 2015-05-26 Baoshan Iron & Steel Co., Ltd. Method for manufacturing grain-oriented silicon steel with single cold rolling
WO2010075797A1 (en) 2008-12-31 2010-07-08 宝山钢铁股份有限公司 Method for manufacturing grain oriented silicon steel with single cold rolling
WO2011007771A1 (en) 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
US8366836B2 (en) 2009-07-13 2013-02-05 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
WO2012087016A2 (en) 2010-12-23 2012-06-28 주식회사 포스코 Grain-oriented electric steel sheet having superior magnetic property and method for manufacturing same
US9997283B2 (en) 2010-12-23 2018-06-12 Posco Grain-oriented electric steel sheet having superior magnetic property
US10760141B2 (en) 2014-12-15 2020-09-01 Posco Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
US10851431B2 (en) 2014-12-18 2020-12-01 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US10907231B2 (en) 2015-12-22 2021-02-02 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
US11608540B2 (en) 2016-12-22 2023-03-21 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor
KR20200097346A (en) 2018-01-25 2020-08-18 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
KR20200103826A (en) 2018-01-25 2020-09-02 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
WO2019146694A1 (en) 2018-01-25 2019-08-01 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2019146697A1 (en) 2018-01-25 2019-08-01 日本製鉄株式会社 Grain-oriented electrical steel sheet
EP3744870A4 (en) * 2018-01-25 2021-06-02 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet
EP3744868A4 (en) * 2018-01-25 2021-06-02 Nippon Steel Corporation Grain-oriented electrical steel sheet
US11469017B2 (en) 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet
US11466338B2 (en) 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
KR20210110681A (en) 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
US11952646B2 (en) 2019-01-16 2024-04-09 Nippon Steel Corporation Grain-oriented electrical steel sheet having excellent insulation coating adhesion without forsterite coating

Also Published As

Publication number Publication date
JPH0686631B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JPS6245285B2 (en)
JPH01283324A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
EP0321695B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPH032324A (en) Manufacture of grain-oriented silicon steel sheet having excellent magnetic characteristics and film characteristics
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
EP0326912B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
EP0539858B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH01230721A (en) Manufacture of grain-oriented silicon steel sheet having high saturation magnetic flux density
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH083125B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP2024503245A (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH01301820A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6148761B2 (en)
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14