JPH01301820A - Production of grain oriented silicon steel sheet having high magnetic flux density - Google Patents

Production of grain oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JPH01301820A
JPH01301820A JP63134503A JP13450388A JPH01301820A JP H01301820 A JPH01301820 A JP H01301820A JP 63134503 A JP63134503 A JP 63134503A JP 13450388 A JP13450388 A JP 13450388A JP H01301820 A JPH01301820 A JP H01301820A
Authority
JP
Japan
Prior art keywords
annealing
magnetic flux
flux density
silicon steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63134503A
Other languages
Japanese (ja)
Other versions
JPH0686632B2 (en
Inventor
Nobuyuki Takahashi
延幸 高橋
Yozo Suga
菅 洋三
Katsuro Kuroki
黒木 克郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63134503A priority Critical patent/JPH0686632B2/en
Publication of JPH01301820A publication Critical patent/JPH01301820A/en
Publication of JPH0686632B2 publication Critical patent/JPH0686632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce the grain oriented silicon steel sheet having a high magnetic flux density by subjecting a silicon steel slab contg. specific slight ratios of Al, Ti and N and contg. S or Se at a low ratio to hot rolling and cold rolling to a sheet material and subjecting the sheet material to decarburization annealing and final finish annealing under specific conditions. CONSTITUTION:The silicon steel slab contg., by weight %, 1.5-4.8% Si, 0.012-0.050% Al, 0.0010-0.0120% N, 0.0020-0.0150% Ti, and <=0.012% in total of 1 or 2 kinds of S or Se, and contg. 0.06-0.6 Ti/N (by at%) and >=4.0 Mn/(s+se) (by weight) is hot rolled at <=1,200 deg.C and is then processed to the final sheet thickness by 1 or >=2 passes of cold rolling. The sheet is then subjected to decarburization annealing in a wet hydrogen atmosphere and thereafter, an annealing and separation agent essentially consisting of MgO is coated thereon and the steel sheet is subjected to secondary recrystallization annealing in an atmosphere to a gaseous mixture composed of N2 and H2 and in addition, the steel sheet surface is subjected to a nitriding treatment in the heating up stage up to the start of the secondary recrystallization. The grain oriented silicon steel sheet having the high magnetic flux density is stably produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気機器の鉄心に用いられる一方向性珪素鋼板
の製造における基本冶金・現象として利用するところの
、二次再結晶の発現に対して有効な析出物を形成させる
ための新規な成分組合せを提示するもので、これにより
磁束密度の高い一方向性珪素鋼板の製造を可能にするも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the development of secondary recrystallization, which is used as a basic metallurgy/phenomenon in the production of unidirectional silicon steel sheets used for iron cores of electrical equipment. This paper proposes a new combination of ingredients for forming effective precipitates, thereby making it possible to manufacture unidirectional silicon steel sheets with high magnetic flux density.

〔従来の技術〕[Conventional technology]

一方向性珪素鋼板は鋼板面が(110)面で、圧延方向
が<100>軸を有するいわゆるゴス方位(ミラー指数
で(110) <001 >方位を表わす)を持つ結晶
粒から構成されており、軟磁性材料として変圧器および
発電機用の鉄心に使用される。
A unidirectional silicon steel sheet is composed of crystal grains with the steel sheet surface having a (110) plane and a <100> axis in the rolling direction, which is the so-called Goss orientation (expressed by the (110) <001> orientation in Miller index). , used as a soft magnetic material in iron cores for transformers and generators.

この鋼板は磁気特性として磁化特性と鉄損特性が良好で
なければならない。磁化特性の良否はかけられた一定の
磁場中で鉄心内に誘起される磁束密度の高低で決まり、
磁束密度の高い製品では鉄心を小型化出来る。磁束密度
の高さは鋼板結晶粒の方位を(110) <001 >
に高度に揃えることによって達成出来る。
This steel plate must have good magnetic properties such as magnetization properties and iron loss properties. The quality of magnetization characteristics is determined by the level of magnetic flux density induced within the iron core in a constant magnetic field.
For products with high magnetic flux density, the iron core can be made smaller. The height of the magnetic flux density is determined by the orientation of the steel plate grains (110) <001>
This can be achieved by aligning to a high degree.

鉄損は鉄心に所定の交流磁場を与えた場合に熱エネルギ
ーとして消費される電力損失であり、その良否に対して
磁束密度、板厚、不純物量、比抵抗、結晶粒大きさ等が
影響する。
Iron loss is the power loss consumed as thermal energy when a specified alternating magnetic field is applied to the iron core, and its quality is affected by magnetic flux density, plate thickness, amount of impurities, resistivity, crystal grain size, etc. .

磁束密度の高い鋼板は電気機器の鉄心を小さく出来、ま
た鉄損も少なくなるので望ましく、当該技術分野では出
来る限り磁束密度の高い製品を安いコストで製造する方
法の開発が課題である。
A steel plate with a high magnetic flux density is desirable because it allows the iron core of electrical equipment to be made smaller and also reduces iron loss, and the challenge in this technical field is to develop a method for manufacturing products with as high a magnetic flux density as possible at a low cost.

ところで、一方向性珪素鋼板は、熱延板を適切な冷延と
焼鈍との組合せにより最終板厚になったw4仮を仕上焼
鈍することにより (1101<001 >方位を有す
る一次再結晶粒を選択成長させる、いわゆる二次再結晶
によって得られる。二次再結晶は二次再結晶前の鋼板中
に微細な析出物、例えばMnS、  A#N  、Mn
Se、CuzS、 (Al、Si) N等が存在するこ
と、あるいはSn、Sb等の粒界存在型の元素が存在す
ることによって達成される。これら析出物、粒界存在型
の元素はJ、E、May and D。
By the way, unidirectional silicon steel sheets are produced by finishing annealing a hot-rolled sheet to a final thickness of W4 by a combination of appropriate cold rolling and annealing (primary recrystallized grains having a 1101<001> orientation). It is obtained by selective growth, so-called secondary recrystallization.Secondary recrystallization is performed by forming fine precipitates such as MnS, A#N, Mn in the steel sheet before secondary recrystallization.
This is achieved by the presence of Se, CuzS, (Al, Si) N, etc., or by the presence of grain boundary-existing elements such as Sn, Sb, etc. These precipitates and grain boundary-existing elements are described in J, E, May and D.

Turnbull(Trans、Het、Soc、AI
ME 212(1958) p769/781)によっ
て説明されているように仕上焼鈍工程で(110) <
001 >方位以外の一次再結晶粒の成長を抑え、(1
101<001 >方位粒を選択的に成長させる機能を
持つ。このような粒成長の抑制効果は一般にはインヒビ
ター効果と呼ばれている。
Turnbull (Trans, Het, Soc, AI
(110) <
001 > The growth of primary recrystallized grains other than the orientation is suppressed, and (1
101<001> It has a function of selectively growing oriented grains. Such a grain growth suppressing effect is generally called an inhibitor effect.

したがって当該分野の研究開発の重点課題はいかなる種
類の析出物、あるいは粒界存在型の元素を用いて二次再
結晶を安定させるか、そして正確な(110) <00
1 >方位粒の存在割合を高めるためにそれらの適切な
存在状態をいかに達成するかにある。特に、最近では一
種類の析出物による方法では(1101<001 >方
位の高度の制御に限界があるため、各析出物について短
所・長所を深く解明することにより、いくつかの析出物
を有機的に組合せて、より磁束密度の高い製品を安定に
、かつコスト安く製造出来る技術開発が進められている
Therefore, the key issue for research and development in this field is what kind of precipitates or grain boundary-existing elements can be used to stabilize secondary recrystallization, and how to accurately (110) <00
1. How to achieve an appropriate state of existence of oriented grains in order to increase the proportion of them. In particular, recently, methods using one type of precipitate have limitations in controlling the altitude of the 1101<001> orientation. In combination with this, technological development is underway to produce products with higher magnetic flux density stably and at lower cost.

析出物の種類として、M、F、Littmannは特公
昭30−3651に、J、E、May and D、T
urnbullはTransMeL、Soc、AIME
 212(1958)p769/781にMnSを、田
口、坂倉は特公昭33−4710にAnと門nSを、F
iedlerはTrans、Met、Soc AIME
 22H1961)p1201〜1205にVNを、今
生らは特公昭5L13469にMnSe。
Regarding the types of precipitates, M, F, Littmann in Japanese Patent Publication No. 30-3651, J, E, May and D, T
urnbull is TransMeL, Soc, AIME
212 (1958) p769/781 with MnS, Taguchi and Sakakura with An and MonnS in Tokuko Sho 33-4710, F
iedler is Trans, Met, Soc AIME
22H1961) VN on p1201-1205, MnSe on Tokuko Sho 5L13469.

sbを、Salsgiver等は特公昭57−4581
8にAINと硫化銅を、小松らは特願昭60−1798
55に(A1゜Si) Nを開示しており、特開昭60
−184632号公報には、AINとMnS又はMnS
e、 Sn  、 Cuを含む珪素鋼板にTiを添加す
る方法が開示されている。
sb, Salsgiver, etc., Special Publication No. 57-4581
8, AIN and copper sulfide, Komatsu et al. patent application 1798-1986
55 discloses (A1゜Si)N, and JP-A-1989-1999.
-184632, AIN and MnS or MnS
A method of adding Ti to a silicon steel sheet containing e, Sn, and Cu is disclosed.

その他Ti5.  CrS、  CrC,NbC,5i
Oz等が知られている。又粒界存在型の元素として[日
本金属学会誌J 27 (1963) p186斎藤達
雄にAs、Sn、Sb等が述べられているが工業生産に
おいてはこれら元素単独で使用される例は無く、いずれ
も析出物と共存させてその補助的効果を狙って使用され
ている。
Other Ti5. CrS, CrC, NbC, 5i
Oz et al. are known. In addition, As, Sn, Sb, etc. are mentioned by Tatsuo Saito as grain boundary-existing elements [Journal of the Japan Institute of Metals J 27 (1963) p. 186, but there are no examples of these elements being used alone in industrial production, and It is also used to coexist with the precipitate and aim for its auxiliary effect.

二次再結晶に効果のある析出物の選択基準は必ずしも明
らかにされていないが、その代表的見解が検量により「
鉄と綱J 53(1967) p1007〜1023に
述べられている。要約すると (1)大きさは0.1唖程度 (2)必要容積は0.1 voff%以上(3)二次再
結晶温度範囲で完全に溶けてしまっても全く溶けなくて
も不可であり適当な程度固溶する である。上記各種析出物はこれら条件に当てはまる部分
もあるが、全ての現象がこの条件に当てはまるわけでは
無い。最近の冷延以降に窒化する方法においては、上記
(1)は重要な意味をもたないことが判った。この様に
現状では析出物の選択をする際の指導原理は確立してお
らず、試行錯誤の繰り返しで、新しいインヒビター制御
技術が探索されている。いずれにしても高い磁束密度(
(110) <001 >方位の高集積度)を得るため
には析出物を微細で均一かつ多量に仕上高温焼鈍前の鋼
板中に存在させる事が必要であり、析出物の制御と同時
にその析出物の特性に合致すべく圧延、熱処理の適切な
組合せにより二次再結晶前の性状を調整する事が重要で
ある。
The selection criteria for precipitates that are effective for secondary recrystallization are not necessarily clear, but a typical opinion is that "
It is described in Tetsu to Tsuna J 53 (1967) p1007-1023. To summarize, (1) the size is about 0.1 ton (2) the required volume is 0.1 voff% or more (3) it is impossible even if it melts completely or not at all in the secondary recrystallization temperature range. It is a solid solution to an appropriate degree. Although some of the above-mentioned various precipitates meet these conditions, not all phenomena meet these conditions. It has been found that (1) above does not have any important meaning in recent methods of nitriding after cold rolling. Thus, at present, no guiding principles have been established for selecting precipitates, and new inhibitor control techniques are being searched for through repeated trial and error. In any case, high magnetic flux density (
(110) In order to obtain a high degree of accumulation of <001> orientations, it is necessary to have fine, uniform, and large amounts of precipitates present in the steel sheet before high-temperature annealing. It is important to adjust the properties before secondary recrystallization by an appropriate combination of rolling and heat treatment to match the properties of the material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現在、工業生産されている代表的な一方向性珪素鋼板製
造方法として3種類あるが、各々については長所・短所
がある。第一の技術はM、F、Li ttmannによ
る特公昭30−3651号公報に示されたMnSを用い
た二回冷延工程であり、得られる二次再結晶粒は安定し
て発達するが、高い磁束密度が得られない。第二の技術
は日日等による特公昭40−15644号公報に示され
たAIN +MnSを用いた最終冷延を80%以上の強
圧下率とするプロセスであり・高い磁束密度は得られる
が、工業生産に際してその製造条件の適切範囲が狭く最
高磁性の製品の安定生産に欠ける。第三の技術は今生等
による特公昭5143469号公報に示されたMn5(
および/またはMn5e) + S bを含有する珪素
鋼を二凹冷延工程によって製造するプロセスであり、比
較的に高い磁束密度は得られるが、Sb、Seのような
有害でかつ高価な元素を使用し、しかも二回冷延法であ
ることから製造コストが高くなる。上記3種類の技術に
おいては共通して次のような問題がある。
Currently, there are three typical methods for manufacturing unidirectional silicon steel sheets that are industrially produced, and each method has its advantages and disadvantages. The first technique is a two-time cold rolling process using MnS, which was disclosed in Japanese Patent Publication No. 30-3651 by M. F. Littmann, and the resulting secondary recrystallized grains develop stably. High magnetic flux density cannot be obtained. The second technology is a process in which the final cold rolling using AIN + MnS is performed with a strong reduction ratio of 80% or more, as shown in Japanese Patent Publication No. 15644/1973 by Nichi et al. Although high magnetic flux density can be obtained, In industrial production, the appropriate range of manufacturing conditions is narrow and stable production of products with the highest magnetic properties is lacking. The third technology is Mn5 (
This is a process in which silicon steel containing Sb and/or Mn5e) + Sb is produced by a two-concave cold rolling process, and although a relatively high magnetic flux density can be obtained, it does not contain harmful and expensive elements such as Sb and Se. Moreover, since it uses a double cold rolling method, the manufacturing cost is high. The above three types of techniques have the following problems in common.

すなわち、上記技術はいずれもが析出物を微細、均一に
制御する技術として熱延に先立つスラブ加熱温度を第一
の技術では1260℃以上、第二の技術では特開昭48
−51852号公報に示すように素材Si量によるが3
%Siの割合で1350℃、第三の技術では特開昭51
−20716号公報Gこ示されるように1230℃以上
、高い磁束密度の得られた実施例では1320°Cとい
った極めて高い温度にすることによって粗大に存在する
析出物を一旦固溶させ、その後の熱延中、あるいは熱処
理中に析出させている。スラブ加熱温度を上げることは
スラブ加熱時の使用エネルギーの増大、ノロの発生によ
る歩留り低下および加熱炉補修費の増大ならびに加熱炉
補修頻度の増大に起因する設備稼働率の低下、さらには
特公昭57−41526号公報に示されるように線状二
次再結晶不良が発生するために連続鋳造スラブが使用出
来ないという問題がある。しかしこのようなコスト上の
問題以上に重要なことは、鉄を質向上のためにSiを多
く、成品板厚を薄く、といった手段を採るとこの線状二
次再結晶不良の発生が増大し、高温スラブ加熱法を前提
にした技術では将来の鉄損向上に希望を持てない。これ
に対し特公昭61−60896号公報に開示されている
技術では鋼中のSを少なくすることによって二次再結晶
が極めて安定し、高Si薄手成品を可能にした。しかし
この技術は量産規模で工場生産する上で磁束密度の安定
性に問題があり、例えば特開昭62−40315号公報
に開示されているような改良技術が提案されているが今
まで完全に解決するに至っていない。
That is, all of the above-mentioned technologies are technologies for controlling precipitates finely and uniformly, with the first technology increasing the heating temperature of the slab prior to hot rolling to 1260°C or higher, and the second technology increasing the heating temperature of the slab to 1260°C or higher, while the second technology
As shown in Publication No. 51852, it depends on the amount of Si in the material.
The ratio of %Si is 1350℃, and the third technology is JP-A-51
-20716 Publication G As shown in this figure, by heating the temperature to an extremely high temperature of 1,230°C or higher, or 1,320°C in the example where a high magnetic flux density was obtained, the coarse precipitates are once dissolved into solid solution, and the subsequent heat It is precipitated during rolling or heat treatment. Increasing the slab heating temperature increases the energy used when heating the slab, decreases yield due to the generation of slag, increases heating furnace repair costs, and decreases equipment operation rate due to an increase in the frequency of heating furnace repairs. As shown in Japanese Patent No. 41526, there is a problem in that continuous casting slabs cannot be used because linear secondary recrystallization defects occur. However, what is more important than this cost problem is that if measures are taken to improve the quality of iron, such as increasing the Si content and reducing the thickness of the finished product, the occurrence of linear secondary recrystallization defects will increase. However, technologies based on high-temperature slab heating methods have no hope for improving iron loss in the future. On the other hand, in the technique disclosed in Japanese Patent Publication No. 61-60896, secondary recrystallization is extremely stable by reducing the amount of S in the steel, making it possible to produce a thin product with high Si content. However, this technology has problems with the stability of magnetic flux density when mass-produced in a factory, and although improved technology has been proposed, such as the one disclosed in Japanese Patent Application Laid-Open No. 62-40315, until now it has not been fully developed. It has not been resolved yet.

以上の技術とは別にH,grenobleによる米国特
許第3,905.842号、H,Fiedlerによる
米国特許第3.905.843号があるが、この技術は
本質的に矛盾があり工業生産されていない。すなわち、
この技術ではインヒビターとして固溶Sが中心であるた
め、固溶S確保のためにMnを下げて、MnSを形成さ
せない事が必須である。具体的にはMn/Sり2.1が
必要である。ところで固溶S及びSeは材料の靭性に極
めて悪影響を持つことは広く知られている。したがって
Si量が多(割れ易い一方向性珪素鋼板ではこのような
固溶S或いはSeのある状態で冷間圧延することは、工
業生産では極めて困難である。以上に詳述したように、
コストを低く、特性的には高い磁束密度でしかも将来の
低鉄損の可能性の大きい高Si、薄手成品も満足させる
ためにはインヒビター設計を再構築する必要がある。
Apart from the above technology, there are U.S. Patent No. 3,905.842 by H. Grenoble and U.S. Patent No. 3.905.843 by H. Fiedler, but these technologies are inherently contradictory and have not been industrially produced. do not have. That is,
In this technique, solid solution S is mainly used as an inhibitor, so it is essential to lower Mn to ensure solid solution S to prevent the formation of MnS. Specifically, an Mn/S ratio of 2.1 is required. By the way, it is widely known that solid solution S and Se have an extremely adverse effect on the toughness of materials. Therefore, it is extremely difficult in industrial production to cold-roll a unidirectional silicon steel sheet with a large amount of Si (which is easily broken) in the presence of solid solution S or Se.As detailed above,
It is necessary to reconstruct the inhibitor design in order to satisfy high-Si, thin products that have low cost, high magnetic flux density characteristics, and a high possibility of low core loss in the future.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は溶鋼中のS又はSe又はその複合量を一定
量以下に少なくし、しかも固溶S又はSeを少なくする
条件下で適当量のAlとN 、Tiを含有させた素材を
通常の1回又は2回の冷延工程で最終板厚とし、脱炭焼
鈍、焼鈍分離剤塗布、仕上焼鈍を行なうプロセスを採る
とともに最終冷延から仕上焼鈍での二次再結晶開始まで
の昇温段階の間に窒化処理を行うことにより、安定して
磁束密度の高い一方向性珪素鋼板を製造することに成功
した。
The present inventors generally produced a material containing appropriate amounts of Al, N, and Ti under the conditions of reducing the amount of S, Se, or their composite in molten steel to a certain amount or less, and reducing the amount of solid solution S or Se. The final plate thickness is achieved in one or two cold rolling steps, followed by decarburization annealing, application of an annealing separator, and final annealing, and the temperature is increased from the final cold rolling to the start of secondary recrystallization in the final annealing. By performing nitriding treatment between the steps, we succeeded in producing unidirectional silicon steel sheets with stable and high magnetic flux density.

本発明を特徴づける構成条件について説明する。The structural conditions that characterize the present invention will be explained.

S又はSe量が多くなると成品長手方向に線状2成典結
晶不良が増加し安定生産が出来ない。この傾向は特にS
iが3.2%(以下%は全て重量%である)を超えた高
Si範囲で、又0.23gn (9mil成品)以下の
薄手成品で顕著になる。この様な線状二次再結晶不良が
全く発生しないS+Seの含有量の上限値として0.0
12%を限定した。この限定範囲の中でも本発明では従
来有効であるとされていたS又はSe量が多くなるとむ
しろ磁束密度は劣化し、少ないもの程良好な磁束密度と
なるが、現状の溶製技術ではコストを高くせずに下げ得
る範囲としてて0.0003%以上が一般的である。次
に本発明ではコストを下げるため熱延および冷延時の圧
延割れを皆無にすることを狙っており、固溶S又はSe
による割れを防ぐためMn / S + 36≧4とす
ることにより鋼中に存在するwits。
When the amount of S or Se increases, linear binary crystal defects increase in the longitudinal direction of the product, making stable production impossible. This tendency is especially true for S
It becomes noticeable in a high Si range where i exceeds 3.2% (all percentages are by weight) and in thin products of 0.23 gn (9 mil products) or less. The upper limit of the S+Se content at which such linear secondary recrystallization defects do not occur is 0.0.
Limited to 12%. Even within this limited range, in the present invention, if the amount of S or Se, which was conventionally considered to be effective, increases, the magnetic flux density actually deteriorates, and the smaller the amount, the better the magnetic flux density becomes.However, with the current melting technology, the cost increases. The range that can be lowered without causing damage is generally 0.0003% or more. Next, in order to reduce costs, the present invention aims to completely eliminate rolling cracks during hot rolling and cold rolling.
wits present in the steel by setting Mn/S+36≧4 to prevent cracking due to

Seを出来るだけMnS 、 ’lInSeとして固着
することにしである。
It was decided to fix Se as MnS or 'lInSe as much as possible.

次にTiの効果について説明する。Next, the effect of Ti will be explained.

C:  0.048%、Si:3.3%、Mn:0.1
4%、S二0.009%、P :  0.030%、C
r:O,12%、酸可溶性AA :  0.028%、
を基本成分としNをlO〜130ppmの範囲で変化さ
せかつTiを12〜160ppmの範囲で添加した50
kg0kgインゴット50℃で熱延し2、0 am厚の
熱延板を造った。この熱延板を1120”c×2.5分
+900℃×2分の焼鈍をした後酸洗し0.2(hmま
で冷延した。その後830℃〜850°Cの温度で90
秒の脱炭焼鈍を湿水素、窒素ガス中で行なった。この後
NgOとTiO□とMnNを混合した焼鈍分離剤を塗布
し1200℃X 20hrの仕上げ焼鈍を行なった。
C: 0.048%, Si: 3.3%, Mn: 0.1
4%, S2 0.009%, P: 0.030%, C
r: O, 12%, acid-soluble AA: 0.028%,
was the basic component, N was varied in the range of lO to 130 ppm, and Ti was added in the range of 12 to 160 ppm.
A 0 kg ingot was hot rolled at 50°C to produce a hot rolled plate with a thickness of 2.0 am. This hot-rolled sheet was annealed at 1120"c x 2.5 minutes + 900°C x 2 minutes, then pickled and cold rolled to 0.2 (hm). Thereafter, it was heated at a temperature of 830°C to 850°C to
Decarburization annealing for 2 seconds was performed in wet hydrogen and nitrogen gas. Thereafter, an annealing separator containing a mixture of NgO, TiO□, and MnN was applied, and final annealing was performed at 1200° C. for 20 hours.

第1図はNとTiの含有量と磁束密度の関係を示したも
のである。Bs  : 1.907以上の高磁束密度の
得られた範囲はTi  : 20〜150ppm、 N
 : 10〜120ppmの範囲でかつTi /N (
at%比):0.06〜0.6で得られた。この様な理
由からTi、N。
FIG. 1 shows the relationship between the N and Ti contents and the magnetic flux density. Bs: The range in which a high magnetic flux density of 1.907 or more was obtained is Ti: 20 to 150 ppm, N
: in the range of 10 to 120 ppm and Ti/N (
at% ratio): 0.06 to 0.6. For this reason, Ti and N.

Ti/Nを限定した。Ti/N was limited.

次にA1はNと結合してAlNとなるが、本発明は後工
程で窒化によりAj’を含む化合物を形成させることを
必須としているためそのフリーのAlが一定量以上必要
である。そのために必要な、適正なAlの範囲は0.0
12〜0.050%である。
Next, A1 is combined with N to become AlN, but since the present invention requires the formation of a compound containing Aj' by nitriding in a subsequent step, a certain amount or more of the free Al is required. The appropriate Al range required for this is 0.0
It is 12 to 0.050%.

なお、以上の成分の他にCは0.025〜0.075%
の範囲が好ましい。C含有量が0.025%未満では二
次再結晶が不安定になりかつ二次再結晶した場合でも製
品の磁束密度が低い。一方C含有量が0.075%を超
えると、脱炭焼鈍時間が長くなり、生産性を阻害する。
In addition to the above components, C is 0.025 to 0.075%.
A range of is preferred. If the C content is less than 0.025%, secondary recrystallization becomes unstable and even when secondary recrystallization occurs, the magnetic flux density of the product is low. On the other hand, if the C content exceeds 0.075%, the decarburization annealing time becomes longer, which impedes productivity.

また、Mnの含有量はSの含有量との関係においてMn
/S≧4で急激に割れが減少し、特にMnSを固溶させ
ない1150℃の低温スラブ加熱材ではほとんど割れは
発生しない。第2図にこれを示す。
In addition, the Mn content is related to the S content.
/S≧4, the number of cracks decreases rapidly, and in particular, cracks hardly occur in a material heated to a low temperature slab at 1150° C. in which MnS is not dissolved as a solid solution. This is shown in Figure 2.

耳割れを防止するという観点からはMn/S≧4で十分
であるがMnの上限は0.45%が好ましい。
From the viewpoint of preventing edge cracking, Mn/S≧4 is sufficient, but the upper limit of Mn is preferably 0.45%.

スラブ加熱温度については、従来のようにインヒビター
を固溶する高温スラブ加熱でも、また殆んど従来では無
理と考えられていた普通銅皿の低温スラブ加熱でも二次
再結晶は行なわれる。しかし第2図に示した様に熱延の
割れが少なく出来る事、又当然の事として熱エネルギー
が少ない低温スラブ加熱が有利である事がらノロの発生
しない1200℃以下が好ましい。
Regarding the slab heating temperature, secondary recrystallization can be carried out either by high-temperature slab heating to dissolve the inhibitor as in the past, or by low-temperature slab heating using an ordinary copper plate, which was considered almost impossible in the past. However, as shown in FIG. 2, the temperature is preferably 1200° C. or lower, since cracks in the hot rolling can be reduced, and low-temperature slab heating, which requires less thermal energy, is advantageous, but no slag occurs.

熱延以降の工程においては、最も高いB8を得るために
短時間の焼鈍後80%以上の高圧延率の冷延によって最
終板厚にする方法が望ましい。
In the steps after hot rolling, in order to obtain the highest B8, it is desirable to perform short-time annealing and then cold rolling at a high rolling reduction of 80% or more to achieve the final thickness.

なお特性はやや劣るが低コストとするために熱延板焼鈍
を省略してもよい。又最終成品の結晶粒を小さくするた
め中間焼鈍を含む工程でも可能である。
Although the properties are slightly inferior, the hot rolled sheet annealing may be omitted in order to reduce the cost. It is also possible to use a process that includes intermediate annealing to reduce the grain size of the final product.

次に湿水素或いは湿水素、窒素混合雰囲気ガス中で脱炭
焼鈍をする。このときの温度は特にこだわらないが80
0℃〜900℃が好ましい範囲である。
Next, decarburization annealing is performed in wet hydrogen or a mixed atmosphere of wet hydrogen and nitrogen. The temperature at this time is not particularly important, but it is 80
The preferred range is 0°C to 900°C.

なお、雰囲気ガスの露点は30℃以上が好ましい。Note that the dew point of the atmospheric gas is preferably 30° C. or higher.

次いで焼鈍分離剤を塗布し高温(通常1100″C〜1
200℃)長時間の仕上げ焼鈍を行なう。本願の窒化に
おける最も好ましい実施態様は、上記仕上げ焼鈍の昇温
過程において窒化する事であり、これにより二次再結晶
に必要なインヒビターを作り込む事ができる。これを達
成するために焼鈍分離剤中に窒化能のある化合物、例え
ばMnN、  CrN等を適当量添加するか或いはNH
ff等の窒化能のある気体を雰囲気ガス中に添加する。
Next, an annealing separator is applied and heated to a high temperature (usually 1100"C~1
(200°C) long-term final annealing. The most preferred embodiment of nitriding in the present application is to perform nitriding during the temperature raising process of the final annealing, thereby making it possible to create an inhibitor necessary for secondary recrystallization. To achieve this, an appropriate amount of a compound with nitriding ability, such as MnN, CrN, etc., is added to the annealing separator, or NH
A gas capable of nitriding, such as ff, is added to the atmospheric gas.

なお、本発明における窒化の他の実施態様として、脱炭
焼鈍時均熱以降で窒化能のある気体の雰囲気で窒化する
か、又は、脱炭焼鈍後別途設けたNH3等の雰囲気を有
する熱処理炉に通過せしめて窒化してもよく、以上の手
段の組合せでもよい。
In addition, as another embodiment of nitriding in the present invention, nitriding is carried out in an atmosphere of a gas capable of nitriding after soaking during decarburization annealing, or after decarburization annealing, a heat treatment furnace having a separately provided atmosphere such as NH3 is used. The method may be passed through the nitriding method, or a combination of the above methods may be used.

二次再結晶完了後は水素雰囲気中において純化焼鈍を行
なう。
After completion of secondary recrystallization, purification annealing is performed in a hydrogen atmosphere.

〔実施例〕〔Example〕

実施例I C:  0.048%、Si:3.3%、Mn:0.1
5%、P:0.030%、S :  0.007%、C
r  : 0.10%、A1:0.028%、N : 
0.0080%を基本成分とし、Tiを(a N0pp
a+、  (b )25ppm、  (c )50pp
m、  (d ) 80ppmの4水準のインゴットを
造った。これを1200℃で加熱熱延し、2.0鶴の熱
延板とした。これを1100℃×2分の焼鈍をし、1回
の冷延で0.20■lとし、830℃×90秒の脱炭焼
鈍を露点60℃の、温水素窒素混合ガス中で行なった。
Example I C: 0.048%, Si: 3.3%, Mn: 0.1
5%, P: 0.030%, S: 0.007%, C
r: 0.10%, A1: 0.028%, N:
0.0080% as the basic component, Ti (a N0pp
a+, (b) 25ppm, (c) 50pp
m, (d) Four levels of 80 ppm ingots were made. This was hot-rolled at 1200°C to obtain a hot-rolled sheet of 2.0 mm. This was annealed at 1100° C. for 2 minutes, one cold rolling to 0.20 μl, and decarburized at 830° C. for 90 seconds in a warm hydrogen-nitrogen mixed gas with a dew point of 60° C.

次にMgO中にTi0□3重量%とフェロ窒化7757
5重量%を添加した焼鈍分離剤を塗布し、10℃/hr
の昇温速度で1200℃に加熱し、20時間の焼鈍をし
た。この時の雰囲気ガスは1200℃までの昇温過程で
はN225%と8275%の混合ガスを使用し、120
0°Cの均熱時はHz100%とした。結果を次に示す
Next, in MgO, Ti0□3% by weight and ferronitride 7757
Apply an annealing separator containing 5% by weight and heat at 10°C/hr.
The sample was heated to 1200° C. at a heating rate of 1,200° C., and annealed for 20 hours. At this time, a mixed gas of 225% N2 and 8275% N2 was used in the process of increasing the temperature to 1200°C.
When soaking at 0°C, the frequency was 100%. The results are shown below.

実施例2 C:  0.050%、Si:3.25%、Mn  :
 0.12%、P:0.0025%、Cr:0.12%
、A7!:  0.027%、N:0.0075%、T
i  : 0.0060%を含む珪素鋼のSの含有量を
(a )0.003%、(b)0.008%、(c)0
.018%に変えたスラブを1150℃で加熱し、1.
8鰭の熱延板を造った。これを1100℃×2分の焼鈍
をし1回の冷延で0.18 u+とし、830℃×90
秒の脱炭焼鈍を露点55℃の湿水素窒素混合ガス中で行
い、次いでMgO中に7重量%のフェロ窒化マンガンを
添加した焼鈍分離剤を塗布し、15℃/hrの昇温速度
で1200℃に加熱し20時間の焼鈍を行なった。
Example 2 C: 0.050%, Si: 3.25%, Mn:
0.12%, P: 0.0025%, Cr: 0.12%
,A7! : 0.027%, N: 0.0075%, T
i: S content of silicon steel containing 0.0060% (a) 0.003%, (b) 0.008%, (c) 0
.. The slab changed to 018% was heated at 1150°C, and 1.
A hot-rolled plate with 8 fins was made. This was annealed at 1100°C for 2 minutes and cold-rolled once to 0.18 u+, then 830°C x 90
Decarburization annealing for 2 seconds was carried out in a wet hydrogen-nitrogen mixed gas with a dew point of 55°C, and then an annealing separator containing 7% by weight of ferromanganese nitride in MgO was applied, and the heating rate was 1200°C at a heating rate of 15°C/hr. It was heated to ℃ and annealed for 20 hours.

この時の雰囲気ガスは実施例1と同じであった。The atmospheric gas at this time was the same as in Example 1.

実施例3 C:  0.048%、Si:3.4%、Mn:0.1
3%、P:0.003%、Al :  0.030%、
N : 0.0080%、Se :0.0100%、T
i  : 0.0080%を含んだスラブを1200℃
で加熱熱延し、2.0鶴の熱延板を造った。これを11
50℃×2分+900℃×2分の熱延板焼鈍をした後急
冷却し、酸洗し、0.20mまで冷延した。この後83
0℃×90秒の脱炭焼鈍をし、MgOに5重量%のフェ
ロ窒化マンガンを添加した焼鈍分離剤を塗布し、10℃
/hrの昇温速度で1200℃に加熱し、20時間の焼
鈍を行なった。この時の雰囲気ガスは1200℃までの
昇温過程ではN250%、N250%の混合ガスを使用
し、1200℃の均熱時はH2100%とした。
Example 3 C: 0.048%, Si: 3.4%, Mn: 0.1
3%, P: 0.003%, Al: 0.030%,
N: 0.0080%, Se: 0.0100%, T
i: Slab containing 0.0080% at 1200℃
The material was heated and hot-rolled to produce a 2.0 Tsuru hot-rolled sheet. This is 11
The hot-rolled sheet was annealed at 50°C x 2 minutes + 900°C x 2 minutes, then rapidly cooled, pickled, and cold rolled to 0.20 m. After this 83
Decarburization annealing was performed at 0°C for 90 seconds, and an annealing separator containing 5% by weight of ferromanganese nitride was applied to MgO.
It was heated to 1200° C. at a temperature increase rate of /hr and annealed for 20 hours. At this time, the atmospheric gas used was a mixed gas of 250% N and 250% during the heating process up to 1200°C, and 100% H2 during soaking at 1200°C.

磁気特性は次の如くであった。The magnetic properties were as follows.

磁束密度 Be(T) 1.94 実施例4 C: 0.043%、Si:3.2%、Mn:0.14
%、S:0.009%、P :  0.030%、A1
:  0.027%、N・=0.0070%、Ti  
: 0.0010%を4j ’the kスラブ(a)
とTiを0.0090%添加したスラブ(b)を115
0℃で加熱熱延し2.3 mmの熱延板を造った。これ
を酸洗し1回冷延で0.30snとし830℃×150
秒の脱炭焼鈍をしMgOにTiO□とCrNを添加した
焼鈍分離剤を塗布し15℃/hrの昇温速度で1200
℃に加熱し20時間の仕上焼鈍をした。この昇温過程の
雰囲気ガスには窒素50%、水素50%の混合ガスを使
用し、1200℃の均熱時は水素ガスのみに切替え純化
した。磁気特性は次の如くであった。
Magnetic flux density Be(T) 1.94 Example 4 C: 0.043%, Si: 3.2%, Mn: 0.14
%, S: 0.009%, P: 0.030%, A1
: 0.027%, N・=0.0070%, Ti
: 0.0010% to 4j 'the k slab (a)
and slab (b) with 0.0090% Ti added to 115
A 2.3 mm hot rolled sheet was produced by heating and hot rolling at 0°C. This was pickled and cold rolled once to 0.30sn at 830°C x 150
After decarburization annealing for 2 seconds, apply an annealing separator containing MgO with TiO
It was heated to ℃ and final annealed for 20 hours. A mixed gas of 50% nitrogen and 50% hydrogen was used as the atmospheric gas during this heating process, and during soaking at 1200° C., only hydrogen gas was used for purification. The magnetic properties were as follows.

スラブ    Be(T) (a)     1.85 (b )     1.89 Tiを添加したものが高Bが得られた。Slab Be(T) (a) 1.85 (b) 1.89 High B was obtained with the addition of Ti.

実施例5 c :  0.050%、Si:3.5%、Mn:0.
14%、S:0.007%、P :  0.030%、
AN : 0.031%、N・:0.0075%、Ti
  : 0.0065%を含んだスラブを1150°C
で加熱熱延し2.5 wIと1.6龍の熱延板を造った
Example 5 c: 0.050%, Si: 3.5%, Mn: 0.
14%, S: 0.007%, P: 0.030%,
AN: 0.031%, N: 0.0075%, Ti
: Slab containing 0.0065% at 1150°C
Hot-rolled sheets of 2.5 wI and 1.6 wI were produced by heating and hot rolling.

2、5 mmの熱延板は酸洗後1.6鰭まで冷延し、1
.61鳳の熱延板と同時に1120℃×2.5分の焼鈍
後急冷処理をした。
After pickling, the 2.5 mm hot-rolled sheet was cold-rolled to 1.6 fins.
.. At the same time as the hot-rolled sheet of No. 61 Otori, it was annealed at 1120° C. for 2.5 minutes and then rapidly cooled.

これを0.150mmまで冷延し、830℃X70秒の
脱炭焼鈍をし、MgOにTi0zとMnNを添加した焼
鈍分離剤を塗布し、1200℃、20時間の仕上げ焼鈍
を行なった。
This was cold rolled to 0.150 mm, decarburized annealed at 830°C for 70 seconds, coated with an annealing separator containing MgO with Ti0z and MnN added, and final annealed at 1200°C for 20 hours.

この昇温過程の雰囲気ガスにはN225%、N275%
の混合ガスを用い、1200℃の均熱時は水素ガスのみ
に切替え純化した。磁気特性は次の如くであった。
The atmospheric gas in this heating process contains 225% N2 and 75% N2.
A mixed gas was used, and during soaking at 1200° C., only hydrogen gas was used for purification. The magnetic properties were as follows.

実施例6 C:  0.053%、Si:3.35%、Mn:Q、
14%、S二0.006%、P :  0.030%、
A7!:  0.032%、N:0.0073%、Ti
  : 0.0060%を含むスラブを1150℃で加
熱後に1.8 amの熱延板とし、1120℃×2′の
焼鈍後に1回の冷間圧延で0.20mmとし、850℃
×70″だけ湿水素中で脱炭焼鈍し、この脱炭焼鈍板を
5%N11.を含む窒素中で650℃×3′の加熱後に
、焼鈍分離剤としてMgOを塗布し、10℃/hrの昇
温温度で1200℃に加熱し20時間焼鈍した。
Example 6 C: 0.053%, Si: 3.35%, Mn:Q,
14%, S2 0.006%, P: 0.030%,
A7! : 0.032%, N: 0.0073%, Ti
: A slab containing 0.0060% was heated at 1150°C and then made into a 1.8 am hot rolled plate, annealed at 1120°C x 2' and then cold rolled once to 0.20mm, and then heated at 850°C.
The decarburized annealed plate was heated in nitrogen containing 5% N11 at 650°C x 3', then coated with MgO as an annealing separator, and heated at 10°C/hr. It was heated to 1200° C. and annealed for 20 hours.

この時の磁性は下記表のとおりであり、良好な磁性が得
られた。
The magnetism at this time was as shown in the table below, and good magnetism was obtained.

磁束密度 Bg(T)  1゜94 〔発明の効果〕 本発明は上述した如く、昔通綱並の低温スラブ加熱で圧
延割れの少ない、しかも高磁束密度を得ることができる
のでその工業的価値は極めて高い。
Magnetic flux density Bg (T) 1゜94 [Effects of the invention] As mentioned above, the present invention has low rolling cracks and can obtain high magnetic flux density by heating the slab at a low temperature comparable to that of old conventional steel, so its industrial value is high. Extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はN(!:Tiの含有量と磁束密度との関係を示
す図、 第2図はMn/Sと端部割れ深さとの関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between N(!:Ti content and magnetic flux density), and FIG. 2 is a diagram showing the relationship between Mn/S and end crack depth.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、Si:1.5〜4.8%、Al:0.
012〜0.050%、N:0.0010〜0.012
0%、Ti;0.0020〜0.0150%、S又はS
eの1種又は2種を合計で0.012%以下を含み、T
i/N(at%比):0.06〜0.6の範囲にあり、
さらにMn/(S+Se):(重量比)≧4.0であり
、残部Fe及び不可避的不純物から成る珪素鋼熱延板を
1回又は2回以上の冷延工程により最終板厚とし、次い
で湿水素雰囲気中で脱炭焼鈍し、焼鈍分離剤を塗布し、
次いで上記鋼板の二次再結晶と純化を目的とする最終仕
上焼鈍を行う工程において、該最終仕上焼鈍における二
次再結晶開始までの間に上記鋼板に窒化処理を行うこと
を特徴とする磁束密度の高い一方向性珪素鋼板の製造方
法。
(1) In weight%, Si: 1.5-4.8%, Al: 0.
012-0.050%, N: 0.0010-0.012
0%, Ti; 0.0020-0.0150%, S or S
Contains a total of 0.012% or less of one or two types of e, T
i/N (at% ratio): in the range of 0.06 to 0.6,
Further, a silicon steel hot-rolled sheet with Mn/(S+Se): (weight ratio) ≧ 4.0 and consisting of Fe and unavoidable impurities is subjected to one or more cold rolling processes to obtain a final thickness, and then Decarburize annealing in a hydrogen atmosphere, apply an annealing separator,
Next, in the step of performing final finish annealing for the purpose of secondary recrystallization and purification of the steel plate, a magnetic flux density characterized in that the steel plate is subjected to nitriding treatment before the start of secondary recrystallization in the final finish annealing. A method for manufacturing a unidirectional silicon steel sheet with high
(2)スラブ加熱温度を1200℃以下の温度で加熱し
た後熱延する事を特徴とする請求項1記載の方法。
(2) The method according to claim 1, characterized in that the slab is heated at a temperature of 1200° C. or lower and then hot rolled.
JP63134503A 1988-02-03 1988-06-02 Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density Expired - Lifetime JPH0686632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134503A JPH0686632B2 (en) 1988-02-03 1988-06-02 Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2186488 1988-02-03
JP63-21864 1988-02-03
JP63134503A JPH0686632B2 (en) 1988-02-03 1988-06-02 Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH01301820A true JPH01301820A (en) 1989-12-06
JPH0686632B2 JPH0686632B2 (en) 1994-11-02

Family

ID=26358990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134503A Expired - Lifetime JPH0686632B2 (en) 1988-02-03 1988-06-02 Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0686632B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294428A (en) * 1989-05-09 1990-12-05 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH0417617A (en) * 1990-05-11 1992-01-22 Nippon Steel Corp Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH09118920A (en) * 1995-10-25 1997-05-06 Nippon Steel Corp Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
WO2011102456A1 (en) * 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
WO2011102455A1 (en) * 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294428A (en) * 1989-05-09 1990-12-05 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH0417617A (en) * 1990-05-11 1992-01-22 Nippon Steel Corp Production of grain-oriented electrical steel sheet having high magnetic flux density
JPH0730398B2 (en) * 1990-05-11 1995-04-05 新日本製鐵株式会社 Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JPH09118920A (en) * 1995-10-25 1997-05-06 Nippon Steel Corp Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
WO2011102456A1 (en) * 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
WO2011102455A1 (en) * 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
JP4943559B2 (en) * 2010-02-18 2012-05-30 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
CN102762752A (en) * 2010-02-18 2012-10-31 新日本制铁株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
CN102762751A (en) * 2010-02-18 2012-10-31 新日本制铁株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
US9175362B2 (en) 2010-02-18 2015-11-03 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH0686632B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JPS6245285B2 (en)
EP0420238B1 (en) Process for preparing unidirectional silicon steel sheet having high magnetic flux density
JPH032324A (en) Manufacture of grain-oriented silicon steel sheet having excellent magnetic characteristics and film characteristics
US4994120A (en) Process for production of grain oriented electrical steel sheet having high flux density
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
JPH01283324A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density
EP0539858B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH01230721A (en) Manufacture of grain-oriented silicon steel sheet having high saturation magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH01301820A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPS602624A (en) Manufacture of grain-oriented silicon steel sheet having superior surface property and magnetic characteristic
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR102438480B1 (en) Manufacturing method of grain oriented electrical steel sheet
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
KR970007161B1 (en) Making method of oriented electrical steel sheet having low iron loss
JPH04329830A (en) Production of thin grain-oriented silicon steel sheet reduced in iron loss
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JP3324616B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14