JPH01274582A - Transmission system for picture signal - Google Patents

Transmission system for picture signal

Info

Publication number
JPH01274582A
JPH01274582A JP10479588A JP10479588A JPH01274582A JP H01274582 A JPH01274582 A JP H01274582A JP 10479588 A JP10479588 A JP 10479588A JP 10479588 A JP10479588 A JP 10479588A JP H01274582 A JPH01274582 A JP H01274582A
Authority
JP
Japan
Prior art keywords
signal component
signal
circuit
area
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10479588A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Okuda
義行 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP10479588A priority Critical patent/JPH01274582A/en
Publication of JPH01274582A publication Critical patent/JPH01274582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To prevent generation of cross color disturbance by providing a band shift circuit, extracting a part where a color signal component in a luminance signal component exists overlappingly on the area and transmitting the component while transferring it to other area. CONSTITUTION:A Y signal outputted from a television camera 1 is fed to band limit circuits 2, 3. The circuits 2, 3 are formed by two-dimension digital filters having a frequency characteristic passing through the component in separate areas in the two areas of the two-dimension frequency plane. A luminance signal component exists on one area and fed to a mixer circuit 4 via the circuit 2. A color signal component subject to balanced modulation exists on the other area and is supplied to the circuit 4 via a band shift circuit 5. The circuit 5 has a two-dimension frequency conversion circuit to transfer the luminance signal component in the color signal subjected to balanced modulation to a 3rd area. Then the luminance signal component and the color signal component are separated completely and cross color disturbance or dot disturbance caused by crosstalk between the luminance signal component and the chrominance signal component is eliminated.

Description

【発明の詳細な説明】 技術分野 本発明は、画像信号の伝送方式に関する。[Detailed description of the invention] Technical field The present invention relates to an image signal transmission method.

背景技術 画像信号の伝送方式のうちの1つとして周知のNTSC
方式においては、色信号(以下、C信号と称す)のうち
I幀と称される色信号のベクトルの座標軸に対応するい
わゆるI信号を1. 5MH2に帯域制限し、Q軸と称
される色信号のベクトルの座標軸に対応するいわゆるQ
信号を0.5MHzに帯域制限し、帯域制限したI信号
及びQ信号によって3.58MHzのカラーサブキャリ
ヤを平衡変調して得た搬送色信号を輝度信号(以下、Y
信号と称す)に混合している。NTSC方式による画像
信号の帯域分布を2次元周波数平面に示すと、第12図
に示す如くなる。第12図において、fxは水平方向の
2次元周波数すなわち水平方向空間周波数であり、fy
は垂直方向の2次元周波数すなわち垂直方向空間周波数
である。Y信号は領域G内に存在し、C信号は領域Gに
含まれている領域H内に存在し、Y信号とC信号とが重
なっている部分が存在する。尚、NTSC方式において
はY信号は4.2MHzに帯域が制限されているので実
際の帯域分布は第12図と若干異なっている。
Background Art NTSC is well-known as one of the image signal transmission systems.
In this method, a so-called I signal corresponding to a coordinate axis of a vector of a color signal (hereinafter referred to as a C signal), which is called an I signal, is 1. The band is limited to 5MH2, and the so-called Q-axis corresponds to the coordinate axis of the color signal vector called the Q-axis.
The carrier color signal obtained by band-limiting the signal to 0.5 MHz and balanced modulating the 3.58 MHz color subcarrier with the band-limited I signal and Q signal is called a luminance signal (hereinafter referred to as Y
signal). When the band distribution of the image signal according to the NTSC system is shown on a two-dimensional frequency plane, it becomes as shown in FIG. In FIG. 12, fx is a horizontal two-dimensional frequency, that is, a horizontal spatial frequency, and fy
is a vertical two-dimensional frequency, that is, a vertical spatial frequency. The Y signal exists in area G, the C signal exists in area H included in area G, and there is a portion where the Y signal and C signal overlap. Note that in the NTSC system, the band of the Y signal is limited to 4.2 MHz, so the actual band distribution is slightly different from that shown in FIG.

以上の如(NTSC方式においては、2次元周波数平面
上でY信号帯域とC信号帯域とが重なり合っているので
、クロスカラー、ドツト妨害が発生する。
As described above, in the NTSC system, since the Y signal band and the C signal band overlap on the two-dimensional frequency plane, cross color and dot interference occur.

そこで、YC分離方式によってNTSC方式による画像
信号のY信号帯域とC信号帯域とが重なり合わないよう
に分離して画像信号を伝送する方式が考えられている。
Therefore, a method has been considered in which the Y-C separation method is used to separate the Y signal band and C signal band of an image signal based on the NTSC method so that they do not overlap, and then transmit the image signal.

このYC分離方式においては帯域分布は第13図に示す
如くなり、Y信号は領域■内に存在し、C信号は領域J
に存在することとなり、9向の2次元周波数が3.58
MH21垂直方向の2次元周波数が525本/4となる
ような斜め縞模様のY信号は再生できないという欠点が
あった。
In this YC separation method, the band distribution is as shown in Fig. 13, where the Y signal exists in the area J, and the C signal exists in the area J.
Therefore, the two-dimensional frequency in 9 directions is 3.58
MH21 had a drawback in that it could not reproduce a Y signal with a diagonal striped pattern in which the two-dimensional frequency in the vertical direction was 525 lines/4.

発明の概要 本発明は、上記した点に鑑みてなされたものであって、
クロスカラー、ドツト妨害が生じることなく画像信号を
伝送することができる画像信号の伝送方式を提供するこ
とを目的とする。
Summary of the Invention The present invention has been made in view of the above points, and includes:
An object of the present invention is to provide an image signal transmission system that can transmit image signals without causing cross color or dot interference.

本発明による画像信号の伝送方式は、画像情報の水平方
向空間周波数の基準となる第1座標軸及び垂直方向空間
周波数の基準となる第2座標軸によって表わされる2次
元周波数平面又は第1及び第2座標軸並びに時間方向周
波数の基準となる第3座標軸によって表わされる3次元
周波数空間において輝度信号成分のうちの色信号成分が
占める領域に重なって存在する部分を抜き出して色信号
成分が占める領域以外の他の領域に移し変えて伝送する
ことを特徴としている。
The image signal transmission method according to the present invention includes a two-dimensional frequency plane or first and second coordinate axes represented by a first coordinate axis serving as a reference for horizontal spatial frequency of image information and a second coordinate axis serving as a reference for vertical spatial frequency. In addition, in the three-dimensional frequency space represented by the third coordinate axis that serves as the reference for the temporal frequency, a portion of the luminance signal component that overlaps with the area occupied by the color signal component is extracted and other areas other than the area occupied by the color signal component are extracted. It is characterized by being transferred to another area and transmitted.

実施例 以下、本発明の実施例につき第1図乃至第11図を参照
して詳細に説明する。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to FIGS. 1 to 11.

第1図において、1はテレビカメラである。テレビカメ
ラ1は、例えばRSG、Bの3つの原色信号をそれぞれ
出力する3本の撮像管、これら3本の撮像管の出力から
Y信号並びに!信号及びQ信号を形成するマトリクス回
路、同期信号及びカラーバースト信号を発生する回路等
からなっている。このテレビカメラ1から出力されたY
信号は、帯域制限回路2及び3に供給される。帯域制限
回路2は、例えば第2図に示す如き2次元周波数平面上
の領域A内の成分のみを通過させるような周波数特性を
有する2次元ディジタルフィルタと、この2次元ディジ
タルフィルタの入力及び出力をそれぞれディジタル信号
及びアナログ信号に変換するA/D変換器及びD/A変
換器とからなっている。また、帯域制限回路3は、例え
ば第3図に示す如き2次元周波数平面上の領域B内の成
分のみを通過させるような周波数特性を有する2次元デ
ィジタルフィルタと、この2次元ディジタルフィルタの
入力及び出力をそれぞれディジタル信号及びアナログ信
号に変換するA/D変換器及びD/A変換器とからなっ
ている。
In FIG. 1, 1 is a television camera. The television camera 1 includes, for example, three image pickup tubes that output three primary color signals, RSG and B, respectively, and Y signals and ! from the outputs of these three image pickup tubes. It consists of a matrix circuit that forms signals and Q signals, a circuit that generates synchronization signals and color burst signals, etc. Y output from this TV camera 1
The signals are supplied to band limiting circuits 2 and 3. The band limiting circuit 2 includes, for example, a two-dimensional digital filter having a frequency characteristic that passes only components within a region A on a two-dimensional frequency plane as shown in FIG. 2, and an input and an output of this two-dimensional digital filter. It consists of an A/D converter and a D/A converter that convert into digital and analog signals, respectively. The band limiting circuit 3 also includes a two-dimensional digital filter having a frequency characteristic that passes only the components within a region B on a two-dimensional frequency plane as shown in FIG. It consists of an A/D converter and a D/A converter that convert the output into a digital signal and an analog signal, respectively.

帯域制限回路2の出力は、加算器等からなる混合回路4
に供給される。また、帯域制限回路3の出力は、帯域移
行回路5に供給される。帯域移行回路5は、例えば水平
方向の2次元周波数fxを3.58MHz/2だけ変化
させる周波数変換回路と、垂直方向の2次元周波数ry
を525本/8だけ変化させる周波数変換回路とからな
っており、第3図に示す如き2次元周波数平面上の領域
B内の成分を領域C内に移行させる構成となっている。
The output of the band limiting circuit 2 is sent to a mixing circuit 4 consisting of an adder, etc.
supplied to Further, the output of the band limiting circuit 3 is supplied to the band shifting circuit 5. The band shifting circuit 5 includes, for example, a frequency conversion circuit that changes the two-dimensional frequency fx in the horizontal direction by 3.58 MHz/2, and a two-dimensional frequency ry in the vertical direction.
The frequency conversion circuit changes the frequency by 525 lines/8, and is configured to shift components in region B on a two-dimensional frequency plane to region C as shown in FIG.

この帯域移行回路5の出力は、混合回路4に供給される
The output of this band shifting circuit 5 is supplied to a mixing circuit 4.

一方、テレビカメラ1から出力されたI信号及びQ信号
の各々は、帯域制限回路6.7の各々を介してクロマ平
衡変調回路8に供給される。帯域制限回路6.7は、例
えば第4図に示す如き2次元周波数平面上の領域り内の
成分のみを通過させるような周波数特性を有する2次元
ディジタルフィルタと、この2次元ディジタルフィルタ
の入力及び出力をそれぞれディジタル信号及びアナログ
信号に変換するA/D変換器及びD/A変換器とからな
っている。クロマ平衡変調回路8において、互いに位相
が90@異なる2つの3.58MHzの副搬送波をl信
号及びQ信号によってそれぞれ振幅変調して得られる信
号の両側波帯成分のみが取り出されて出力される。この
クロマ平衡変調回路8の出力は、混合回路4に供給され
て帯域制限されたY信号と混合される。混合回路4の出
力は、同期及びバースト信号付加回路9に供給されてテ
レビカメラ1から出力される同期信号及びバースト信号
が挿入される。
On the other hand, each of the I signal and Q signal output from the television camera 1 is supplied to the chroma balance modulation circuit 8 via each of the band limiting circuits 6.7. The band limiting circuit 6.7 includes, for example, a two-dimensional digital filter having a frequency characteristic that passes only components within a region on a two-dimensional frequency plane as shown in FIG. It consists of an A/D converter and a D/A converter that convert the output into a digital signal and an analog signal, respectively. In the chroma balance modulation circuit 8, only the double sideband components of the signal obtained by amplitude modulating two 3.58 MHz subcarriers whose phases are different from each other by 90@ with the l signal and the Q signal are extracted and output. The output of this chroma balance modulation circuit 8 is supplied to the mixing circuit 4 and mixed with the band-limited Y signal. The output of the mixing circuit 4 is supplied to a synchronization and burst signal addition circuit 9, into which the synchronization signal and burst signal output from the television camera 1 are inserted.

以上の如き送信装置によって得られる信号の各成分の帯
域分布を2次元周波数平面に示すと第5図に示す如くな
る。第5図において領域Aには輝度信号成分が存在し、
領域Bには平衡変調された色信号成分が存在し、領域C
には領域Bから移行された輝度信号成分が存在する。従
って、Y信号とC信号とが完全に分離され、クロスカラ
ーやドツト妨害等のY信号とC信号間のクロストークに
起因する妨害が生じないこととなる。また、水平方向の
2次元周波数が3.58MHz、垂直方向の2次元周波
数が525本/4のY信号成分は領域Cに移行されて伝
送されるので、該Y信号を妨害なしに再生することがで
きる。
The band distribution of each component of the signal obtained by the above-mentioned transmitting device is shown on a two-dimensional frequency plane as shown in FIG. In FIG. 5, a luminance signal component exists in area A,
Region B contains balanced modulated color signal components, and region C
There is a luminance signal component transferred from area B. Therefore, the Y signal and the C signal are completely separated, and interference caused by crosstalk between the Y signal and the C signal, such as cross color or dot interference, does not occur. Furthermore, since the Y signal component with a two-dimensional frequency in the horizontal direction of 3.58 MHz and a two-dimensional frequency in the vertical direction of 525 lines/4 is transferred to area C and transmitted, the Y signal can be reproduced without interference. I can do it.

また、NTSC方式においてはC信号はl信号が1.5
MHzSQ信号が0.5MHzまでしか伝送できないの
に対して、本発明による方式においてはC信号の帯域を
水平方向に1.79MHzまで確保できる。
In addition, in the NTSC system, the C signal has an l signal of 1.5
While the MHz SQ signal can only be transmitted up to 0.5 MHz, the method according to the present invention can secure the C signal band up to 1.79 MHz in the horizontal direction.

また、NTSC方式による画像信号の再生処理のみが行
なえるモニタテレビ等の画像再生装置に本発明によって
得られる信号を供給した場合、色帯域と重なるようなY
信号成分は含まれていないので、クロスカラー妨害は発
生しない。
Furthermore, when the signal obtained by the present invention is supplied to an image reproduction device such as a monitor television that can only reproduce image signals according to the NTSC system, Y
Since no signal components are included, cross-color interference does not occur.

次に、本発明による受信装置を第6図に示す。Next, a receiving apparatus according to the present invention is shown in FIG.

同図において、入力信号はY分離回路11.12及びC
分離回路13に供給される。Y分離回路11は、例えば
第7図に示す如き2次元周波数平面上の領域A内の成分
のみを通過させるような周波数特性を有する2次元ディ
ジタルフィルタと、この2次元ディジタルフィルタの入
力及び出力をそれぞれディジタル信号及びアナログ信号
に変換するA/D変換器及びD/A変換器とからなって
いる。また、Y分離回路12は、例えば第8図に示す如
き2次元周波数平面上の領域C内の成分のみを通過させ
るような周波数特性を有する2次元ディジタルフィルタ
と、この2次元ディジタルフィルタの入力及び出力をそ
れぞれディジタル信号及びアナログ信号に変換するA/
D変換器及びD/A変換器とからなっている。また、C
分離回路13は、例えば第9図に示す如き2次元周波数
平面上の領域B内の成分のみを通過させるような周波数
特性を有する2次元ディジタルフィルタと、この2次元
ディジタルフィルタの入力及び出力をそれぞれディジタ
ル信号及びアナログ信号に変換するA/D変換器及びD
/A変換器とからなっている。
In the same figure, input signals are input to Y separation circuits 11 and 12 and C
It is supplied to the separation circuit 13. The Y separation circuit 11 includes, for example, a two-dimensional digital filter having a frequency characteristic that passes only the components within a region A on a two-dimensional frequency plane as shown in FIG. 7, and the input and output of this two-dimensional digital filter. It consists of an A/D converter and a D/A converter that convert into digital and analog signals, respectively. Further, the Y separation circuit 12 includes a two-dimensional digital filter having a frequency characteristic that passes only the components within a region C on a two-dimensional frequency plane as shown in FIG. A/A converting the output into digital and analog signals, respectively.
It consists of a D converter and a D/A converter. Also, C
The separation circuit 13 includes, for example, a two-dimensional digital filter having a frequency characteristic that passes only the components in region B on a two-dimensional frequency plane as shown in FIG. 9, and an input and output of this two-dimensional digital filter, respectively. A/D converter and D to convert into digital signal and analog signal
/A converter.

Y分離回路11の出力は、加算器等からなる混合回路1
4に供給される。また、Y分離回路12の出力は、帯域
移行回路15に供給される。帯域移行回路15は、例え
ば水平方向の2次元周波数fxを−3,58MHz/2
だけ変化させる周波数変換回路と、垂直方向の2次元周
波数fyを一525本/8だけ変化させる周波数変換回
路とからなっており、第8図に示す如き2次元周波数平
面上の領域C内の成分を領域B内に移行させる構成とな
っている。この帯域移行回路15の出力は、混合回路1
4に供給されてY分離回路11の出力と混合され、輝度
信号Yが形成される。また、C分離回路13の出力は、
同期検波回路等からなる復調回路16に供給される。こ
の復調回路16によってl信号及びQ信号が復調される
The output of the Y separation circuit 11 is sent to a mixing circuit 1 consisting of an adder, etc.
4. Further, the output of the Y separation circuit 12 is supplied to a band shifting circuit 15. For example, the band shifting circuit 15 changes the horizontal two-dimensional frequency fx to −3,58 MHz/2.
It consists of a frequency conversion circuit that changes the two-dimensional frequency fy in the vertical direction by 1525 lines/8, and a frequency conversion circuit that changes the two-dimensional frequency fy in the vertical direction by 1525 lines/8. is configured to move into area B. The output of this band shifting circuit 15 is the output of the mixing circuit 1
4 and is mixed with the output of the Y separation circuit 11 to form a luminance signal Y. Moreover, the output of the C separation circuit 13 is
The signal is supplied to a demodulation circuit 16 consisting of a synchronous detection circuit and the like. This demodulation circuit 16 demodulates the l signal and the Q signal.

以上、画像信号を2次元構造として処理する場合につい
て説明したが、画像信号を3次元構造として処理する場
合は、平衡変調された色信号は第10図及び第11図に
それぞれ示す如き3次元周波数空間の領域り内に存在す
る。第10図及び第11図において、ftは時間方向の
3次元周波数、fxは水平方向の3次元周波数、fyは
垂直方向の3次元周波数である。領域りは、3次元周波
数空間内の各点を(ft、fxS fy)で表わすとき
、点p(15Hz、3.58MHz、525本/4)を
中心とする正八面体の領域である。この領域りの6個の
頂点a−fのうち点a及びbは、中心点0をfx軸方向
に±3.58MHz/2だけ移動させた位置に存在する
。また、点C及びdは、中心点0をfy軸方向に±52
5本/8だけ移動した位置に存在する。また、点e及び
fは、中心点0をft軸方向に±15Hz/2だけ移動
した位置に存在する。
The case where the image signal is processed as a two-dimensional structure has been described above, but when the image signal is processed as a three-dimensional structure, the balanced modulated color signal has a three-dimensional frequency as shown in FIGS. 10 and 11, respectively. Exists within the realm of space. In FIGS. 10 and 11, ft is a three-dimensional frequency in the time direction, fx is a three-dimensional frequency in the horizontal direction, and fy is a three-dimensional frequency in the vertical direction. The region is a regular octahedral region centered on the point p (15 Hz, 3.58 MHz, 525 lines/4), where each point in the three-dimensional frequency space is represented by (ft, fxS fy). Points a and b among the six vertices a to f in this area are located at positions where the center point 0 is moved by ±3.58 MHz/2 in the fx axis direction. Also, points C and d are ±52 in the fy axis direction from the center point 0.
It exists at a position moved by 5/8. Further, points e and f exist at positions where the center point 0 is moved by ±15 Hz/2 in the ft-axis direction.

領域りに重なるY信号成分は、例えば第10図に示す如
く領域りに線分a−cを境界線にして接する領域Eに移
行させるか又は第11図に示す如く領域りと面a−c−
eを境界にして接する領域Fに移行させることにより第
1図の装置と同様の効果が得られる。
For example, the Y signal component that overlaps the area may be transferred to the area E, which is in contact with the area using the line segment a-c as a boundary line, as shown in FIG. −
The same effect as that of the device shown in FIG. 1 can be obtained by moving the area F to the adjacent area F with e as the boundary.

以上、NTSC方式の画像信号の伝送について説明した
が、本発明は、PAL、SECAM等の他の方式の画像
信号の伝送にも適用することができる。
Although the transmission of image signals of the NTSC system has been described above, the present invention can also be applied to the transmission of image signals of other systems such as PAL and SECAM.

また、本発明はビデオディスク等の記録媒体により画像
信号を伝送する場合、或いは衛星放送等の如く帯域を広
くすることができる伝送媒体により画像信号を伝送する
場合にも適用することができる。
Furthermore, the present invention can be applied to the case where an image signal is transmitted by a recording medium such as a video disk, or the case where an image signal is transmitted by a transmission medium capable of widening the band such as satellite broadcasting.

発明の効果 以上詳述した如く本発明による画像信号の伝送方式は、
画像情報の水平方向空間周波数の基準となる第1座標軸
及び垂直方向空間周波数の基準となる第2座標軸によっ
て表わされる2次元周波数平面又は第1及び第2座標軸
並びに時間方向周波数の基準となる第3座標軸によって
表わされる3次元周波数空間において輝度信号成分のう
ちの色信号成分が占める領域に重なって存在する部分を
抜き出して色信号成分が占める領域以外の他の領域に移
し変えて伝送するので、輝度信号と色信号とが完全に分
離され、クロスカラーやドツト妨害等の輝度信号と色信
号間のクロストークに起因する妨害が生じないこととな
る。また、色信号帯域と重なり合う水平方向の2次元周
波数が3.58M Hz 、垂直方向の2次元周波数が
525本/4の輝度信号成分は色信号成分が占める領域
以外の他の領域に移し変えて伝送されるので、該輝度信
号を妨害なしに再生することができる。
Effects of the Invention As detailed above, the image signal transmission method according to the present invention has the following effects:
A two-dimensional frequency plane represented by a first coordinate axis serving as a reference for the horizontal spatial frequency of image information and a second coordinate axis serving as the reference for the vertical spatial frequency, or the first and second coordinate axes and a third coordinate axis serving as the reference for the temporal frequency. In the three-dimensional frequency space represented by the coordinate axes, the portion of the luminance signal component that overlaps the area occupied by the color signal component is extracted and transferred to another area other than the area occupied by the color signal component for transmission. The signal and color signal are completely separated, and interference caused by crosstalk between the luminance signal and the color signal, such as cross color or dot interference, does not occur. In addition, the luminance signal component with a horizontal two-dimensional frequency of 3.58 MHz and a vertical two-dimensional frequency of 525 lines/4, which overlaps with the color signal band, is transferred to an area other than the area occupied by the color signal component. Since the luminance signal is transmitted, the luminance signal can be reproduced without interference.

また、NTSC方式においては色信号は工信号が1.5
MHz%Q信号が0.5MHzまでしか伝送できないの
に対して、本発明による方式においては色信号の帯域を
水平方向に1.79MHzまで確保できる。
In addition, in the NTSC system, the color signal has an engineering signal of 1.5
While the MHz%Q signal can only be transmitted up to 0.5 MHz, the method according to the present invention can secure a color signal band up to 1.79 MHz in the horizontal direction.

また、NTSC方式による画像信号の再生処理のみが行
なえる従来のモニタテレビ等の画像再生装置に本発明に
よって得られる信号を供給した場合、色帯域と重なるよ
うな輝度信号成分は含まれていないので、クロスカラー
妨害は発生しないのである。
Furthermore, when the signal obtained by the present invention is supplied to an image reproduction device such as a conventional monitor television that can only reproduce image signals according to the NTSC system, it does not contain luminance signal components that overlap with the color band. , no cross-color interference occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による送信装置の一例を示すブロック
図、第2図、第3図及び第4図は、第1図の装置の各部
の動作を示す図、第5図は、第1図の装置の出力の帯域
分布を示す図、第6図は、本発明による受信装置の一例
を示すブロック図、第7図、第8図及び第9図は、第6
図の装置の各部の動作を示す図、第10図及び第11図
は、本発明の他の実施例を示す図、第12図は、NTS
C方式の信号の帯域分布を示す図、第13図は、適応Y
C分離方式による信号の帯域分布を示す図である。 出願人   パイオニア株式会社 、 代理人   弁理士 藤村元彦
FIG. 1 is a block diagram showing an example of a transmitting device according to the present invention, FIGS. 2, 3, and 4 are diagrams showing the operation of each part of the device in FIG. 1, and FIG. FIG. 6 is a block diagram showing an example of the receiving device according to the present invention, and FIGS.
10 and 11 are diagrams showing other embodiments of the present invention, and FIG. 12 is a diagram showing the operation of each part of the device shown in FIG.
FIG. 13 is a diagram showing the band distribution of the signal of the C method.
FIG. 3 is a diagram showing the band distribution of signals according to the C separation method. Applicant: Pioneer Corporation, agent: Motohiko Fujimura, patent attorney

Claims (2)

【特許請求の範囲】[Claims] (1)輝度信号成分と平衡変調された色信号成分とから
なる画像信号の伝送方式であって、画像情報の水平方向
空間周波数の基準となる第1座標軸と、垂直方向空間周
波数の基準となる第2座標軸とによって表わされる2次
元周波数平面において前記輝度信号成分のうちの前記色
信号成分が占める領域に重なって存在する部分を抜き出
して前記色信号成分が占める領域以外の他の領域に移し
変えて伝送することを特徴とする画像信号の伝送方式。
(1) A transmission method for an image signal consisting of a luminance signal component and a balanced modulated color signal component, in which the first coordinate axis serves as a reference for the horizontal spatial frequency of image information, and the first coordinate axis serves as a reference for the vertical spatial frequency. In the two-dimensional frequency plane represented by the second coordinate axis, a portion of the luminance signal component that overlaps with the area occupied by the color signal component is extracted and transferred to another area other than the area occupied by the color signal component. An image signal transmission method characterized by transmitting an image signal.
(2)輝度信号成分と平衡変調された色信号成分とから
なる画像信号の伝送方式であって、画像情報の水平方向
空間周波数の基準となる第1座標軸と、垂直方向空間周
波数の基準となる第2座標軸と、時間方向周波数の基準
となる第3座標軸によって表わされる3次元周波数空間
において前記輝度信号成分のうちの前記色信号成分が占
める領域に重なって存在する部分を抜き出して前記色信
号成分が占める領域以外の他の領域に移し変えて伝送す
ることを特徴とする画像信号の伝送方式。
(2) A transmission method for an image signal consisting of a luminance signal component and a balanced modulated color signal component, in which the first coordinate axis serves as a reference for the horizontal spatial frequency of image information, and the first coordinate axis serves as a reference for the vertical spatial frequency. A portion of the luminance signal component that overlaps with a region occupied by the color signal component is extracted from the luminance signal component in a three-dimensional frequency space represented by a second coordinate axis and a third coordinate axis serving as a reference for the temporal frequency, and the color signal component is extracted. An image signal transmission method characterized by transferring and transmitting an image signal to an area other than the area occupied by the image signal.
JP10479588A 1988-04-27 1988-04-27 Transmission system for picture signal Pending JPH01274582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10479588A JPH01274582A (en) 1988-04-27 1988-04-27 Transmission system for picture signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10479588A JPH01274582A (en) 1988-04-27 1988-04-27 Transmission system for picture signal

Publications (1)

Publication Number Publication Date
JPH01274582A true JPH01274582A (en) 1989-11-02

Family

ID=14390381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10479588A Pending JPH01274582A (en) 1988-04-27 1988-04-27 Transmission system for picture signal

Country Status (1)

Country Link
JP (1) JPH01274582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233292A (en) * 1988-07-22 1990-02-02 Matsushita Electric Ind Co Ltd Television signal processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233292A (en) * 1988-07-22 1990-02-02 Matsushita Electric Ind Co Ltd Television signal processor

Similar Documents

Publication Publication Date Title
US4907218A (en) Multiplex signal processing apparatus
US4605951A (en) Apparatus for converting field video signals into frame video signals
JPH01274582A (en) Transmission system for picture signal
US4266241A (en) Color signal encoding methods and apparatus for video recording and playback
JP3407556B2 (en) Video coding converter
US3921203A (en) Trisequential color video record-playback method and circuits
JPS6012883A (en) High precision signal converting device of television signal
US4472746A (en) Chrominance channel bandwidth modification system
JPS61285894A (en) Chrominance signal and luminance signal processing system of television signal
JP2516004B2 (en) Color-video signal conversion method and apparatus thereof
JPS6032493A (en) Converter for high precision television signal
JP2638175B2 (en) A color-image chrominance signal multiplex transmission system with compatibility
CA1322044C (en) Television signal processing apparatus
JPS6238390Y2 (en)
JP2569735B2 (en) Standard method conversion method
JPH04122191A (en) Video signal transmission system and reproducing device
JPH02100494A (en) Regenerative device for fm modulated video signal
JPS63191496A (en) High-definition television signal transmission system and its transmitter-receiver
JPH01194789A (en) Burst signal processing circuit
JPS63107289A (en) Television signal processing system
JPH0251988A (en) System for transmitting color video signal
JPS6397085A (en) Transmitting device for high definition television signal
JPH03154594A (en) Transmission system for television signal and receiver
JPS6382190A (en) Transmission equipment for television signal
JPH0744695B2 (en) High-definition television signal processing method