JPS63191496A - High-definition television signal transmission system and its transmitter-receiver - Google Patents

High-definition television signal transmission system and its transmitter-receiver

Info

Publication number
JPS63191496A
JPS63191496A JP62023937A JP2393787A JPS63191496A JP S63191496 A JPS63191496 A JP S63191496A JP 62023937 A JP62023937 A JP 62023937A JP 2393787 A JP2393787 A JP 2393787A JP S63191496 A JPS63191496 A JP S63191496A
Authority
JP
Japan
Prior art keywords
frequency
luminance information
color
component
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62023937A
Other languages
Japanese (ja)
Inventor
Noriyuki Yamaguchi
山口 典之
Seiji Yao
八尾 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62023937A priority Critical patent/JPS63191496A/en
Publication of JPS63191496A publication Critical patent/JPS63191496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)
  • Television Systems (AREA)

Abstract

PURPOSE:To prevent even an animation from having crosstalk by shifting the frequency of a luminance signal component in a horizontal high frequency range and multiplexing it, and transmitting a luminance signal component of frequency with which chrominance components are multiplexed and a luminance signal component of frequency which is not multiplexed by orthogonal two-phase modulation. CONSTITUTION:Areas wherein lateral lines are drawn are areas used to multiplex chrominance signals and an area represented by an octahedron having its center at an origin of the area of the low-frequency component YL of a luminance signal. Further, areas where longitudinal lines are drawn are areas used to multiplex a horizontal high-frequency component YH1 and a dotted area is an area wherein a luminance signal YH2 having the frequency of the dotted areas and longitudinal-line areas and a luminance signal component YH3 having the frequency component in the lateral-line area used to multiplex the chrominance signals are multiplexed by orthogonal two-phase modulation. Thus, the high-frequency component of a high-definition television signal is put in the band of a current television signal by the frequency shifting and orthogonal two-phase modulation and transmitted, and the luminance signal and chrominance signals are reproduced on a reception side without any crosstalk.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、現行のテレビ受像機でも受信できる(完全
交信性)高精細テレビジョン信号の伝送装置に関し、詳
しくは静止画、動画共に高精細信号を現行のテレビジョ
ン信号の帯域内で伝送しうるように構成した伝送装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a transmission device for high-definition television signals that can be received by current television receivers (complete communication). The present invention relates to a transmission device configured to transmit signals within the current television signal band.

[従来の技術] 現在、テレビジョン信号の伝送方式として用いられてい
るNTSC方式は、白黒テレビジョン受像機との互換性
の点から、明るさを表わす信号(輝度信号)と、色あい
を表わす信号(色差信号)を作り、これらを周波数多重
して伝送している。
[Prior Art] The NTSC system currently used as a television signal transmission system has two signals: a signal representing brightness (luminance signal) and a signal representing color tone, for compatibility with black-and-white television receivers. (color difference signals) are created, and these signals are frequency-multiplexed and transmitted.

第21図および第22図は現行のテレビジョン信号のス
ペクトル図を示すもので、第21図は輝度信号Yに2つ
の色差信号CI、C2が、副搬送波fscで直交2相変
調された色信号が多重されている様子を示す。これらを
詳細に示すと、第22図のように輝度信号Yのスペクト
ルの谷間に、色信号Cのスペクトルが間挿されたものと
なっている。
Fig. 21 and Fig. 22 show spectrum diagrams of current television signals. Fig. 21 is a chrominance signal in which two chrominance signals CI and C2 are added to a luminance signal Y and quadrature two-phase modulation is performed on a subcarrier fsc. This shows how the images are multiplexed. To show these in detail, as shown in FIG. 22, the spectrum of the color signal C is interpolated between the valleys of the spectrum of the luminance signal Y.

色差信号の副搬送波(色副搬送波)の周波数fscと水
平走査周波数fHとの関係が、となるようにfscが選
ばれているので、色副搬送波の位相は、1フイールド内
の走査線ごとに反転する。さらに走査線の分数が525
木であるからフレーム間でもその位相は反転する。した
がって画面の垂直方向と時間方向で見た色副搬送波の位
相は、第23図のようになる。第23図において、右上
りの実線は、色副搬送波が同位相である走査線を結んだ
ものである。
Since fsc is selected such that the relationship between the frequency fsc of the color difference signal subcarrier (color subcarrier) and the horizontal scanning frequency fH is as follows, the phase of the color subcarrier is changed for each scanning line within one field. Invert. Furthermore, the number of scan lines is 525
Since it is a tree, its phase is also reversed between frames. Therefore, the phase of the color subcarrier as viewed in the vertical direction of the screen and in the time direction is as shown in FIG. In FIG. 23, the solid line in the upper right corner connects scanning lines whose color subcarriers are in the same phase.

第23図かられかるように、色副搬送波の周波15Hz
  (fr  :フレーム周波数)であるから、テレビ
ジョン信号を3次元周波数空間で表現すると第24図の
ようになる。第24図において、ル、ν、fはそれぞれ
画面の水平方向、垂直方向9時間方向の周波数を表わす
。第25図は第24図をル軸の正の方向から見た図、第
26図は第24図をf軸の負の方向から見た図である。
As shown in Figure 23, the frequency of the color subcarrier is 15Hz.
(fr: frame frequency) Therefore, when a television signal is expressed in a three-dimensional frequency space, it becomes as shown in FIG. In FIG. 24, ru, ν, and f represent frequencies in the horizontal and vertical directions of the screen, respectively. 25 is a view of FIG. 24 viewed from the positive direction of the r axis, and FIG. 26 is a view of FIG. 24 viewed from the negative direction of the f axis.

第24図、第25図、第26図の中で、横線を施した8
面体で表わされた領域は、色信号の多重に費やされる領
域、また原点を中心とした8面体で表わされた領域は輝
度信号の領域である。
In Figures 24, 25, and 26, 8 with horizontal lines
The area represented by a face is an area used for multiplexing color signals, and the area represented by an octahedron centered at the origin is a brightness signal area.

入力信号が静止画である場合は、輝度信号のスペクトル
はf=0の平面に存在している。またその時の色信号の
スペクトルはf−±15H2の平面に存在している。し
たがって3次元時空間フィルタを用いれば完全にY/C
分離を行なうことができ、また入力信号の周波数成分に
応じて適応的に切り換えるフィルタを用いてもY/C分
離を行なうことができる。
When the input signal is a still image, the spectrum of the luminance signal exists on the plane of f=0. Further, the spectrum of the color signal at that time exists on the plane of f-±15H2. Therefore, if a three-dimensional spatiotemporal filter is used, Y/C is completely
Y/C separation can also be performed using a filter that is adaptively switched according to the frequency components of the input signal.

しかし、入力信号が動画である場合には、輝度信号のス
ペクトルはf=oの平面からf軸に平行に広がってゆく
。同様に色信号のスペクトルもf=±15Hzの平面か
ら、f軸に平行に広がってゆく。動画の動きが7.5 
Hz以下のゆっくりした動きであれば、理想的にはY/
C分離は可能であるが、それ以上の速い動きの場合には
、いかなるフィルタを用いても完全なY/C分離は不可
能で、必ず輝度信号と色信号の漏話が発生して妨害とな
る。これを防ぐには送信側にて、色信号を多重する前に
、ブリフィルタにより輝度信号1色信号共に帯域制限す
る必要があるが、帯域制限による解像度の劣化はまぬが
れることはできない。
However, when the input signal is a moving image, the spectrum of the luminance signal spreads from the plane of f=o in parallel to the f-axis. Similarly, the spectrum of the color signal also spreads from the plane of f=±15 Hz in parallel to the f axis. Video movement is 7.5
If the movement is slow, below Hz, ideally Y/
C separation is possible, but if the movement is faster than that, complete Y/C separation is impossible no matter what filter is used, and crosstalk between the luminance signal and color signal will always occur and cause interference. . To prevent this, on the transmitting side, before multiplexing the color signals, it is necessary to band-limit both the luminance signal and the color signal using a Buri filter, but deterioration of resolution due to band-limiting cannot be avoided.

[発明が解決しようとする問題点] 現行NTSC方式のテレビジョン信号伝送方式では、動
画を伝送する場合には輝度信号と色信号との漏話が発生
し、またこれを防ぐためにブリフィルタをかけると、動
画の解像度が劣化するという問題点があった。
[Problems to be solved by the invention] In the current NTSC television signal transmission system, crosstalk between luminance signals and color signals occurs when transmitting moving images, and in order to prevent this, a bristle filter is applied. , there was a problem that the resolution of the video deteriorated.

この発明は上記のような問題点を解消するためになされ
たもので、現行NTSC方式と完全両立性を有し、入力
信号が、静止画であれ、動画であれ、クロスカラーなし
に垂直解像度、および水平解像度の向上が図れるととも
に、静止画ではさらに高精細信号を伝送できる高精細テ
レビジョン信号伝送方式を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is fully compatible with the current NTSC system, and regardless of whether the input signal is a still image or a moving image, it can maintain vertical resolution without cross color. Another object of the present invention is to obtain a high-definition television signal transmission system that can improve horizontal resolution and transmit even higher-definition signals for still images.

[問題点を解決するための手段] この発明は、送信号側において、NTSCテレビジョン
信号の輝度情報から分離した低域輝度情報と、当該テレ
ビジョン信号の輝度情報から分離した静止画における水
平高域輝度情報および動画における高域輝度情報を色副
搬送波周波数だけ低域側に周波数シフトさせた高域輝度
情報と、上記動画における高域輝度情報のうち色情報が
多重される周波数領域の成分および色情報が多重されな
い周波数領域の成分で色副搬送波を直交2相変調した第
1の2相変調高域輝度情報成分と、上記動画における高
域輝度情報のうち色情報が多重されない周波数領域の極
性が反転された成分および色情報が多重される周波数領
域の成分で色副搬送波を直交2相変調した第2の2相変
調高域輝度情報成分と、色差信号で色副搬送波を直交2
相変調した色信号とを加算した信号を作成して伝送し、
受信側でNTSCテレビジョン信号に復調するように構
成したものである。
[Means for Solving the Problems] This invention provides low-frequency luminance information separated from the luminance information of an NTSC television signal and horizontal height information in a still image separated from the luminance information of the television signal on the transmission signal side. high-range brightness information and high-range brightness information in the video that is frequency-shifted by the color subcarrier frequency to the lower frequency side, components of the frequency domain where the color information is multiplexed among the high-range brightness information in the video, and A first two-phase modulated high-frequency luminance information component obtained by orthogonal two-phase modulation of a color subcarrier with a frequency domain component in which color information is not multiplexed, and the polarity of the frequency domain in which color information is not multiplexed among the high-frequency luminance information in the above video. A second two-phase modulated high-frequency luminance information component obtained by orthogonal two-phase modulation of the color subcarrier with a frequency domain component in which color information is multiplexed and an inverted component of
Create and transmit a signal by adding the phase-modulated color signal,
It is configured to demodulate into an NTSC television signal on the receiving side.

[作用] この発明における高精細テレビジョン信号伝送方式は、
周波数シフトと直交2相変調により高精細テレビジョン
信号の高域成分を現行テレビジョン信号の帯域内に収め
て伝送することができ、受信側では輝度信号と色信号と
の漏話がなく再生することができる。
[Function] The high-definition television signal transmission system in this invention is as follows:
By using frequency shift and orthogonal two-phase modulation, it is possible to transmit the high-frequency components of high-definition television signals within the band of current television signals, and on the receiving side, it can be reproduced without crosstalk between luminance and color signals. Can be done.

[発明の実施例] 以下、この発明の一実施例を図について説明する。第1
図は、この実施例における送信装置の一構成例を示すブ
ロック図である。図において、(1)は輝度信号Yから
その低周波数成分YL と水平高周波数成分Y)IIを
取り出す3次元時空間低域フィルタ(以下、「時空間L
PFJという)、(2)は輝度信号Yから、その低周波
数成分YL と水平高周波数成分MHIとを引算するこ
とにより、高周波数成分YH2+YH3を得る減算器で
ある。ここでYl2は現行NTSC方式で色信号成分が
多重されない周波数の輝度信号の高周波数成分、すなわ
ち第25図における第1象限と第3象限の斜め方向の高
周波数成分であり、またYl3は現行のNTSC方式で
色信号成分が多重される周波数の輝度信号の高周波数成
分、すなわち第25図における第2象限と第4象限の斜
め方向の高周波数成分である。(3)は通過域が4.2
MHz以上である1次元高域通過フィルタ(以下、rH
PFJという)で、MHIだけを通過させるフィルタ、
(4)は時空間L P F (1)の出力から、HPF
(3)の出力YHIを引算してytを得る減算器、(5
)はYl(+の符号を反転させる符号反転回路、(8)
は色副搬送波fscの位相を1800(π)遅らせる遅
延器、(7)はフィールドごとに切り替わるスイッチ、
(8)はスイッチ(7)を通過した搬送波用0を、lラ
イン(1H)遅延させるlライン遅延器、(8)はスイ
ッチ(7)を通過した搬送波でy+++を変調する乗算
器、(10)は符号反転回路(5)を通過した信号MH
I (: −Y+++)を1H遅延した搬送波(ルo−
H)で変調する乗算器、(11)は乗算器(9)  、
 (10)でそれぞれ変調された信号Yl−11゜MH
Iを加算する加算器、(12)はYl+2+Yl(3を
色副搬送波の周波数fscだけシフトする乗算器、(1
3)はYH2+YH3をスイッチ(7)を通過した搬送
波poの周波数fscだけシフトする乗算器、(14)
は乗算器(12)と(13)で周波数シフトされたp−
oで直交2相変調する乗算器、(15)は乗算器(12
)の出力である”l’H2の符号を反転させる符号反転
回路、(1B)は符号反転回路(15)で符号が反転さ
ス れたYB2 (= −YB2)と乗算器(13)の出力
であるYB3とを、1H遅延した搬送波Cgo−H)で
直交2相変調する乗算器、(17)は乗算器(14)と
(16)の出力を加算する加算器、(18)は色副搬送
波fscで色差信号成分CI  * C2を直交2相変
調する乗算器、(19)は加算器(11)と加算器(1
7)と乗算器(18)の出力を加算する加算器、(20
)は加算器(13)の出力からYLによって使用される
領域に入る低周波数成分を取り出す3次元時空間低域フ
ィルタ(以下、「時空間LPFJという) 、 (21
)は加算器(19)の出力から3次元時空間フィルタ(
20)の出力を減算する減算器、(22)は加算器(4
)の出力と加算器(21)の出力とを多重して、現行N
TSC方式との完全両立性を有する高精細テレビジョン
伝送信号を出力する加算器である。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1st
The figure is a block diagram showing an example of the configuration of a transmitting device in this embodiment. In the figure, (1) is a three-dimensional spatiotemporal low-pass filter (hereinafter referred to as "spatiotemporal L
PFJ), (2) is a subtracter that obtains a high frequency component YH2+YH3 by subtracting the low frequency component YL and the horizontal high frequency component MHI from the luminance signal Y. Here, Yl2 is a high frequency component of the luminance signal at a frequency at which color signal components are not multiplexed in the current NTSC system, that is, a high frequency component in the diagonal direction of the first and third quadrants in FIG. This is a high frequency component of a luminance signal at a frequency at which color signal components are multiplexed in the NTSC system, that is, a high frequency component in the diagonal direction of the second and fourth quadrants in FIG. (3) has a passing range of 4.2
A one-dimensional high-pass filter (hereinafter referred to as rH
PFJ) is a filter that allows only MHI to pass through.
(4) is the output of space-time L P F (1), HPF
A subtractor that obtains yt by subtracting the output YHI of (3), (5
) is a sign inversion circuit that inverts the sign of Yl(+, (8)
is a delay device that delays the phase of the color subcarrier fsc by 1800 (π), (7) is a switch that switches for each field,
(8) is an l-line delay device that delays the carrier wave 0 that has passed through switch (7) by l lines (1H), (8) is a multiplier that modulates y+++ with the carrier wave that has passed through switch (7), and (10 ) is the signal MH that has passed through the sign inversion circuit (5)
I (: -Y+++) delayed by 1H carrier wave (ruo-
H) is a multiplier that modulates, (11) is a multiplier (9),
(10) respectively modulated signal Yl-11゜MH
An adder that adds I, (12) is a multiplier that shifts Yl+2+Yl(3 by the frequency fsc of the color subcarrier, (1
3) is a multiplier that shifts YH2+YH3 by the frequency fsc of the carrier wave po that has passed through the switch (7); (14)
is frequency-shifted p− by multipliers (12) and (13).
o is a multiplier that performs orthogonal two-phase modulation, (15) is a multiplier (12
), the sign inversion circuit inverts the sign of "l'H2" which is the output of (17) is an adder that adds the outputs of multipliers (14) and (16), (18) is a color sub A multiplier that performs orthogonal two-phase modulation of the color difference signal component CI*C2 using the carrier wave fsc, (19) is an adder (11) and an adder (1
7) and an adder that adds the outputs of the multiplier (18), (20
) is a three-dimensional spatiotemporal low-pass filter (hereinafter referred to as "spatiotemporal LPFJ") that extracts low frequency components falling in the region used by YL from the output of the adder (13), (21
) is a three-dimensional spatiotemporal filter (
A subtracter subtracts the output of (20), (22) is an adder (4
) and the output of the adder (21) to obtain the current N
This is an adder that outputs a high-definition television transmission signal that is fully compatible with the TSC system.

第3図は、第1図に示した実施例で作られる現行NTS
C方式と完全両立性を有する高精細テレビジョン伝送信
号を3次元周波数空間で表現したものである。また第4
図は第3図をt軸の正の方向から見た図、第5図は第3
図をf軸の負の方向から見た図である。第3図において
横線を引いた領域は色信号の多重に用いられる領域、原
点を中心とした8面体で表わされた領域は輝度信号の低
域成分Yしの領域である。また縦線を引いた領域は水平
高周波数成分y+++の多重に用いられる領域であり、
さらに斑点のついた領域は元来斑点のついた領域と縦線
を引いた領域の周波数成分を持った輝度信号成分YH2
と色信号が多重されるために用いられる横線を引いた領
域の周波数成分を持った輝度信号成分YH3とを直交2
相変調して多重される領域である。第3図および第5図
において、伝送される信号は現行NTSC方式と同様4
.2MH7に帯域制限されており、図示した各領域のう
ち−4,2MHz≦ル≦+4.2MHzに信号成分が存
在する。
Figure 3 shows the current NTS made with the embodiment shown in Figure 1.
This is a high-definition television transmission signal that is fully compatible with the C format, expressed in a three-dimensional frequency space. Also the fourth
The figure is a view of Figure 3 viewed from the positive direction of the t-axis, and Figure 5 is a view of Figure 3.
It is a figure seen from the negative direction of the f axis. In FIG. 3, the horizontally lined area is the area used for multiplexing the color signals, and the area represented by an octahedron centered on the origin is the area containing the low frequency component Y of the luminance signal. The area marked with vertical lines is the area used for multiplexing the horizontal high frequency component y++.
Furthermore, the spotted area is a luminance signal component YH2 that originally has the frequency components of the spotted area and the vertically lined area.
and the luminance signal component YH3, which has the frequency component of the horizontally lined area used for multiplexing the color signal, by orthogonal 2
This is an area that is phase modulated and multiplexed. In Figures 3 and 5, the transmitted signal is the same as the current NTSC system.
.. The band is limited to 2MH7, and signal components exist in -4, 2MHz≦R≦+4.2MHz in each region shown.

つぎにこの実施例における多重化の動作について説明す
る。3次元時空間フィルタ(1)と減算器(2)により
輝度信号Yを、YL+YHIとYH2+YH3に分離す
る。さらに4.2MH2以上を通過域とするH P F
 (3)と減算器(4)によりYLとMHIを分離する
。まず、Y旧成分の多重化のための変調について説明す
る。色副搬送波fscは遅延器(6)で1800位相が
反転し、もとの色副搬送波fscと反転した搬送波をス
イッチ(7)でフィールドごとに切り替えることにより
、第23図に示す同位相の走査線を1点鎖線で結ぶよう
な搬送波ル0を作ることができる。乗算器(9)により
youを搬送波11.0で変調して変調出力をY旧を得
る。画面の水平方向の軸をX軸、垂直方向の軸をy軸、
時間軸をt軸として、a=2πpo  x  、  b
 = tc  (fr/2*  t  +ft/2− 
 y)  と−おくと、 Y)ll= YHICO5acos bと表わされる。
Next, the multiplexing operation in this embodiment will be explained. A three-dimensional spatiotemporal filter (1) and a subtracter (2) separate the luminance signal Y into YL+YHI and YH2+YH3. Furthermore, H P F with a pass range of 4.2 MH2 or more
(3) and subtractor (4) to separate YL and MHI. First, modulation for multiplexing the Y old component will be explained. The phase of the color subcarrier fsc is inverted by 1800 degrees using a delay device (6), and by switching between the original color subcarrier fsc and the inverted carrier wave for each field using a switch (7), scanning of the same phase as shown in FIG. 23 is achieved. A carrier wave 0 can be created by connecting the lines with a dashed line. A multiplier (9) modulates you with a carrier wave 11.0 to obtain a modulated output Y old. The horizontal axis of the screen is the X axis, the vertical axis is the y axis,
With the time axis as the t axis, a=2πpo x, b
= tc (fr/2* t +ft/2−
y), it is expressed as Y)ll= YHICO5acos b.

また1ライン遅延器(8)では搬送波#Loが1ライン
分遅延されることにより、X。
Further, in the one-line delay device (8), carrier wave #Lo is delayed by one line, so that X.

y、を軸のそれぞれの方向に位相が反転する。この位相
が反転した搬送波JLo(=−#Lo)で符号反転回路
(5)の出力YHI (= −YHI)を変調してYH
1=−MHIsin  asjn  bと表わされる。
The phase is inverted in each direction of the y axis. This phase-inverted carrier wave JLo (=-#Lo) is used to modulate the output YHI (=-YHI) of the sign inversion circuit (5) to generate YH
1=-MHIsin asjn b.

加算器(11)によりY’HlとyZ百士加算され、そ
の出力は、 Yu++Y+H=YHi(cosacos b−sin
asin b)=YH+cos  (a+b) となり、YHI成分の変調が完了する。第6図は変調す
る前のyu+が含まれる領域を3次元周波数空間で表現
したものである。また第7図は第6図をt軸の正の方向
から見た図、第8図は第6図をf軸の負の方向から見た
図である。上述のような手順により変調されたMHI成
分は、第9図に示す領域に入る。第10図は第9図をt
軸の正の方向から見た図、第11図は第9図をf軸の負
の方向から見た図である。
The adder (11) adds Y'Hl and yZ, and the output is Yu++Y+H=YHi(cosacos b-sin
asin b)=YH+cos (a+b), and the modulation of the YHI component is completed. FIG. 6 is a three-dimensional frequency space representation of the region including yu+ before modulation. 7 is a diagram of FIG. 6 viewed from the positive direction of the t-axis, and FIG. 8 is a diagram of FIG. 6 viewed from the negative direction of the f-axis. The MHI component modulated by the procedure described above falls into the region shown in FIG. Figure 10 is the same as Figure 9.
FIG. 11 is a view of FIG. 9 viewed from the negative direction of the f axis.

次にYH2成分とYH3成分の多重化のための変調につ
いて述べる。第1図において、乗算器(12)によりY
H2+YH3はfscの周波数だけシフトされる。乗算
器(12)ではMHI2がベースバンドとなるようにシ
フトされる。第12図は変調する前のY112成分が含
まれる領域を3次元周波数空間で表現したものである。
Next, modulation for multiplexing the YH2 component and the YH3 component will be described. In FIG. 1, the multiplier (12)
H2+YH3 is shifted by the frequency of fsc. The multiplier (12) shifts MHI2 to the baseband. FIG. 12 is a three-dimensional frequency space representation of a region including the Y112 component before modulation.

第13図は第12図をμ軸の正の方向から見た図、第1
4図は第12図をf軸の負の方向から見た図である。ベ
ースバンドにシフトされたYl2をYH2で表わす、他
方、乗算器(13)によりYH2+YH3はル0の周波
数だけシフトされる。乗算器(13)ではYl3がベー
スバンドとなるようにシフトされる。第15図は変調す
る前のYl−13成分が含まれる領域を3次元周波数空
間で表現したものである。第16図は第15図をp軸の
正の方向から見た図、第17図は第15図をf軸の負の
方向から見た図である。ベースバンドにシフトされたY
113をYl3で表わす。第1図において乗算器(14
)はYl2とYH3を川0で直交2相変調して、その出
力をYl2・3とする・Yl2・3とYH21YH3と
の関係は、 YH2◆3= YH2CO3acos b + Yu3
sin acos bと表わされる。また符号反転回路
(15)により^ Yl2の符号が反転され、その出力なYl2とする。
Figure 13 is a diagram of Figure 12 viewed from the positive direction of the μ axis.
FIG. 4 is a diagram of FIG. 12 viewed from the negative direction of the f axis. Yl2 shifted to baseband is denoted by YH2, while YH2+YH3 is shifted by the frequency of l0 by the multiplier (13). The multiplier (13) shifts Yl3 to the baseband. FIG. 15 is a three-dimensional frequency space representation of the region containing the Yl-13 component before modulation. 16 is a diagram of FIG. 15 viewed from the positive direction of the p-axis, and FIG. 17 is a diagram of FIG. 15 viewed from the negative direction of the f-axis. Y shifted to baseband
113 is represented by Yl3. In Figure 1, the multiplier (14
) performs orthogonal two-phase modulation on Yl2 and YH3 with the river 0, and the output is Yl2・3.・The relationship between Yl2・3 and YH21YH3 is YH2◆3= YH2CO3acos b + Yu3
It is expressed as sin acos b. Further, the sign of Yl2 is inverted by the sign inverting circuit (15), and its output is set as Yl2.

乗算器(18)はYl2とYl3を1ライン遅延器(8
)によりIl、oの位相が反転した搬送波;0で直交2
相変調して、その出力をY 12−3とする。Y82.
3とと表わされる。乗算器(14) 、 (1B)の出
力は加算器(17)により加算され、その結果、 り Y H2+3 +  Y H2−3=  Y H2co
s(a+b)+  Y o3sin(a+b)となり、
YH2成分とYH3成分の変調が完了する。
The multiplier (18) connects Yl2 and Yl3 to a one-line delayer (8
), the phase of Il, o is inverted by the carrier wave; orthogonal at 0
Phase modulate the output and make it Y 12-3. Y82.
It is expressed as 3. The outputs of the multipliers (14) and (1B) are added by the adder (17), resulting in Y H2+3 + Y H2-3= Y H2co
s(a+b)+ Y o3sin(a+b),
Modulation of the YH2 component and YH3 component is completed.

第18図は上述のような手順により変調されたYl2と
Yl3が入る領域である。第19図は第18図をμ軸の
正の方向から見た図、第20図は第18図をf軸の負の
方向から見た図である。
FIG. 18 shows a region where Yl2 and Yl3 modulated by the procedure described above enter. 19 is a diagram of FIG. 18 viewed from the positive direction of the μ axis, and FIG. 20 is a diagram of FIG. 18 viewed from the negative direction of the f axis.

また色差信号cl、c2の多重は、現行NTSC方式と
完全両立性を有するという点から、現行NTSC方式と
同じ方法で行なう。
Furthermore, the color difference signals cl and c2 are multiplexed using the same method as the current NTSC system, since it is completely compatible with the current NTSC system.

第1図において乗算器(18)で、色副搬送波fscで
色差信号ClIC2が直交2相変調されて色信号Cが得
られる。
In FIG. 1, a multiplier (18) performs orthogonal two-phase modulation of the color difference signal ClIC2 using the color subcarrier fsc to obtain a color signal C.

つぎに加算器(11) 、 (17)および乗算器(1
8)の出力が、加算器(19)で加算される。3次元時
空間低域通過フィルタ(20)および加算器(21)は
、加算器(19)の出力に含まれている低域輝度情報y
tが入る領域の成分を除去するためのもので、3次元時
空間低域通過フィルタ(20)で漏洩低域成分が抽出さ
れ、加算器(21)で減算されて漏洩低域成分が除去さ
れたのち、加算器(22)で加算器(4)の出力YL 
と加算され、第3図に示すような3次元周波数空間分布
をもつ高精細テレビジョン伝送信号が出力される。
Next, adders (11), (17) and multiplier (1
8) are added by an adder (19). The three-dimensional spatiotemporal low-pass filter (20) and the adder (21) use the low-pass luminance information y included in the output of the adder (19).
This is to remove the components in the region where t enters, and the leaky low-frequency components are extracted by the three-dimensional spatiotemporal low-pass filter (20), and subtracted by the adder (21) to remove the leaky low-frequency components. After that, the adder (22) outputs YL from the adder (4).
A high-definition television transmission signal having a three-dimensional frequency spatial distribution as shown in FIG. 3 is output.

以上のような手順で、現行NTSC方式の帯域内で、現
行NTSC方式と完全両立性を有する高精細テレビジョ
ン信号伝送が可能となる。ただし、Yl2とYl3の直
交2相変調において搬送波周波数の水平成分をfsc 
 (=3.58MHz )としているので、Yl2とY
l3について水平方向に帯域制限を加える必要がある。
Through the above-described procedure, high-definition television signal transmission that is fully compatible with the current NTSC system becomes possible within the band of the current NTSC system. However, in orthogonal two-phase modulation of Yl2 and Yl3, the horizontal component of the carrier frequency is
(=3.58MHz), so Yl2 and Y
It is necessary to add a horizontal band limit to l3.

第2図は、この実施例における受信装置の一構成例を示
すブロック図である。図において、(23)は送信側か
ら伝送されてきた第3図に示す時空間構成をもつ高精細
テレビジョン信号から輝度信号の低周波数成分YLを取
り出す3次元時空間フィルタ、(24)は入力されたテ
レビジョン信号からYLを除いた変調された輝度信号の
高周波数成分YHI+YHI+YH2・3+Ys2+3
と、変調された色信号成分Cとを得る減算器、(25)
は減算器(24)の出力からY旧+YHI+YH2+3
+YH2弓を取り出す時空間帯域フィルタl、(26)
は減算器(24)の出力から色信号Cを取り出す時空間
帯域フィルタ2、(27)は色間搬送波fscの位相を
1800遅らせる遅延器、(28)はフィールドごとに
切替わるスイッチ、(28)は時空間帯域フィルタ1 
(25)の出力から復調されたYH1+YH2の振幅を
4倍する乗算器、(31)は復調されたYl3の振幅を
4倍する乗算器、(32)は乗算器(30)の出力から
YHIだけを取り出す1次元HPF、(33)は乗算器
(30)の出力からHP F (32)の出力を減じて
Yl2を取り出す減算器、(30は減算器(33)の出
力であるYl2を搬送波#Loの周波数だけシフトする
乗算器、(35)は乗算器(31)の出力であるYl3
をfscの周波数だけシフトする乗算器、(36)は乗
算器(34)の出方を4倍する乗算器、(37)は乗算
器(35)の出力を4倍する乗算器、(38)は時空間
帯域フィルタ2 (213)の出力からC1とC2を同
期復調する乗算器、 (311)はYlに復調されたY
HI 、 Yl2 、 Yl3を加算し、輝度信号Yを
出力する加算器である。
FIG. 2 is a block diagram showing an example of the configuration of the receiving device in this embodiment. In the figure, (23) is a three-dimensional spatio-temporal filter that extracts the low frequency component YL of the luminance signal from the high-definition television signal having the spatio-temporal configuration shown in Figure 3 transmitted from the transmitting side, and (24) is the input High frequency component of the modulated luminance signal YHI+YHI+YH2・3+Ys2+3
and a subtracter for obtaining the modulated color signal component C, (25)
is Y old + YHI + YH2 + 3 from the output of the subtracter (24)
+YH2 spatio-temporal band filter l to extract the bow (26)
(27) is a delay device that delays the phase of the intercolor carrier fsc by 1800 degrees; (28) is a switch that changes for each field; (28) is the spatiotemporal bandpass filter 1
(25) is a multiplier that quadruples the amplitude of demodulated YH1+YH2 from the output, (31) is a multiplier that quadruples the amplitude of demodulated Yl3, and (32) is a multiplier that quadruples the amplitude of demodulated YH1+YH2 from the output of multiplier (30). (33) is a subtracter that subtracts the output of HP F (32) from the output of multiplier (30) to obtain Yl2, (30 is the output of subtracter (33) Yl2, which is the carrier wave # A multiplier that shifts by the frequency of Lo, (35) is the output of the multiplier (31) Yl3
(36) is a multiplier that quadruples the output of multiplier (34); (37) is a multiplier that quadruples the output of multiplier (35); (38) is a multiplier that synchronously demodulates C1 and C2 from the output of the spatiotemporal bandpass filter 2 (213), and (311) is the Y demodulated to Yl.
This is an adder that adds HI, Yl2, and Yl3 and outputs a luminance signal Y.

次に第2図に示した受信装置の動作について説明する。Next, the operation of the receiving apparatus shown in FIG. 2 will be explained.

伝送された現行NTSC方式と完全両立性を有するテレ
ビジョン信号から、3次元時空間フィルタ(23)と減
算器(24)により、YL とY++++Y++ +Y
H2・3+YH2・3+Cに分離する・減算器(24)
の出力に時空間帯域フィルタl (25)をかけること
により、第3図〜第5図の斑点を施した領域にあるMH
Iと、縦線を施した領域にあるYl2とYl3の直交2
相変調された成分MHIとが取り出される。また時空間
帯域フィルタ2 (2B)により、第3図〜第5図の横
線を施した領域にあるC1 とC2の直交2相変調され
た成分Cが取り出される。時空間帯域フィルタ(25)
の出力は、乗算器(28)で同期復調され、Yl2とY
l3が原点付近の低域に、またMHIは水平高域にシフ
トされる。乗算器(29)における同期復調の搬送波J
Loは、色副搬送波fscと1800遅延器(27)テ
fscの位相を180°反転させたものをスイッチ(2
8)でフィールドごとに切り替えて作られる。同期復調
されたYlll+YH2とYl3は乗算器(30) 、
 (31)によりそれぞれ振幅が4倍される。乗算器(
30)の出力から1次元HP F (32)と減算器(
33)によりMHIと△ Yl2を分離する。Yl2は乗算器(34)によりスイ
ッチ(28)を通過した搬送波fscの周波数だけシフ
トされ、乗算器(3B)で振幅が4倍されてYl2が再
生される。また乗算器(31)の出力Y113は、乗算
器(35)によりfscだけシフトされ、乗算器(37
)で振幅が4倍されてYl3が再生される。加算器(3
9)によりYL  + YHI、Y++2およびYl3
が加算され、高精細情報をもった輝度信号Yが得られる
。他方。
From the transmitted television signal, which is fully compatible with the current NTSC system, YL and Y++++Y++ +Y are extracted using a three-dimensional spatiotemporal filter (23) and a subtractor (24).
Separate into H2・3+YH2・3+C・Subtractor (24)
By applying a spatio-temporal bandpass filter l (25) to the output of
I and the orthogonal 2 of Yl2 and Yl3 in the area marked with vertical lines
The phase modulated component MHI is extracted. Further, the spatio-temporal bandpass filter 2 (2B) extracts the orthogonal two-phase modulated component C of C1 and C2 in the area indicated by horizontal lines in FIGS. 3 to 5. Spatio-temporal band filter (25)
The output is synchronously demodulated by a multiplier (28), and Yl2 and Y
l3 is shifted to the low range near the origin, and MHI is shifted to the horizontal high range. Carrier wave J of synchronous demodulation in multiplier (29)
Lo is a switch (2
8) is created by switching each field. The synchronously demodulated Ylll+YH2 and Yl3 are multipliers (30),
(31), each amplitude is multiplied by four. Multiplier (
From the output of 30), one-dimensional HP F (32) and subtractor (
33) to separate MHI and ΔYl2. Yl2 is shifted by the multiplier (34) by the frequency of the carrier wave fsc that has passed through the switch (28), and the amplitude is multiplied by 4 in the multiplier (3B) to reproduce Yl2. Further, the output Y113 of the multiplier (31) is shifted by fsc by the multiplier (35), and the output Y113 of the multiplier (31) is shifted by fsc by the multiplier (35).
), the amplitude is multiplied by 4 and Yl3 is reproduced. Adder (3
9) by YL + YHI, Y++2 and Yl3
are added, and a luminance signal Y having high-definition information is obtained. On the other hand.

時空間帯域フィルタ(26)の出力Cは、乗算器(38
)で搬送波fscで同期復調され、色差信号CI  *
 C2が再生される。
The output C of the spatiotemporal bandpass filter (26) is sent to the multiplier (38
) is synchronously demodulated with the carrier wave fsc, and the color difference signal CI*
C2 is played.

以上のような手順で、現行NTSC方式の帯域内で伝送
された高精細テレビジョン信号が再生される。
Through the above-described procedure, a high-definition television signal transmitted within the band of the current NTSC system is reproduced.

なお上記実施例ではYl2とYl3の直交2相変調にお
いて搬送波周波数の水平成分をfscをしたが、この搬
送波周波数の水平成分を小さくすることにより直交2相
変調できる帯域を広げることができる。
In the above embodiment, the horizontal component of the carrier frequency is subjected to fsc in the orthogonal two-phase modulation of Yl2 and Yl3, but by reducing the horizontal component of the carrier frequency, the band in which the orthogonal two-phase modulation can be performed can be expanded.

[発明の効果] 以上のように、この発明によれば水平高域の輝度信号成
分を周波数シフトして多重し、また色信号成分を多重す
べき周波数の輝度信号成分を、色信号成分を多重しない
周波数の輝度信号成分と直交2相変調して伝送するよう
に構成したので、静止画と同様、動画でも漏話がなく、
しかも現行方式の帯域内で伝送できる現行方式と完全両
立性を有する高精細テレビジョン伝送信号が得られる効
果がある。
[Effects of the Invention] As described above, according to the present invention, horizontal high-frequency luminance signal components are frequency-shifted and multiplexed, and luminance signal components at frequencies at which color signal components should be multiplexed are multiplexed with color signal components. Since the structure is configured to transmit orthogonal two-phase modulation with the luminance signal component of a frequency that does not occur, there is no crosstalk in videos as well as in still images.
Furthermore, it is possible to obtain a high-definition television transmission signal that is completely compatible with the current system and can be transmitted within the band of the current system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の送信側のブロック図、第
2図はこの発明の一実施例の受信側のブロック図、第3
図はこの発明によるテレビジョン信号のスペクトルを3
次元周波数空間で表現した図、第4図は第3図をp軸の
正の方向から見た図、第5図は第3図をf軸の負の方向
から見た図、第6図は変調する前の水平高域の輝度信号
成分を3次元周波数空間で表現した図、第7図は第6図
をル軸の正の方向から見た図、第8図は第6図をf軸の
負の方向から見た図、第9図は変調された水平高域の輝
度信号成分を3次元周波数空間で表現した図、第1O図
は第9図をル軸の正の方向から見た図、第11図は第9
図をf軸の負の方向から見た図、第12図は変調する前
のNTSC方式では伝送されない高域輝度信号成分を3
次元周波数空間で表現した図、第13図は第12図をル
軸の正の方向から見た図、第14図は第12ri!Jを
f軸の負の方向から見た図、第15図は変調する前のN
TSC方式で色信号成分が多重される帯域の輝度信号成
分を3次元周波数空間で表現した図、第16図は第15
図をp軸の正の方向から見た図、第17図は第15図を
f軸の負の方向から見た図、第18図はNTSC方式で
は伝送されない高域輝度信号成分と、色信号が多重され
る帯域の輝度信号成分とを直交2相変調したものを3次
元周波数空間で表現した図、第19図は第18図を用軸
の正の方向から見た図、第20図は第18図をf軸の負
の方向から見た図、第21図は現行のテレビジョン信号
のスペクトル図、第22図は第21図の詳細図、第23
図は垂直一時間平面上での色副搬送波の位相を表わす図
、第24図は現行のテレビジョン信号のスペクトルを3
次元周波数空間で表現した図、第25図は第24図をw
軸の正の方向から見た図、第26図は第24図をf軸の
負の方向から見た図である。 (1)  、 (20) 、 (23)・・・3次元時
空間低域フィルタ、(2)  、 (4)  、 (2
1) 、 (24) 、 (33)・・・減算器、(3
)  、 (32)・・・1次元高域フィルタ、(5)
  、 (15)・・・符号反転回路、(8)  、 
(27)・・・180°遅延器、(7)  、 (28
)・・・スイッチ、(8)・・・lライン遅延器、(9
)  、 (10)、 (12)、 (13)、 (1
4)、 (1B)、 (1B)。 (29) 、 (30) 、 (31) 、 (34)
 、 (35) 、 (38) 、 (37) 。 (38)・・・乗算器、(11) 、 (17) 、 
(19) 、 (22) 、 (39)・・・加算器、
(25)・・・時空間帯域フィルタ1、(26)・・・
時空間帯域フィルタ2゜ なお、各図中、同一符号は同一、または相当部分を示す
FIG. 1 is a block diagram of a transmitting side according to an embodiment of the present invention, FIG. 2 is a block diagram of a receiving side according to an embodiment of this invention, and FIG.
The figure shows the spectrum of a television signal according to this invention.
Diagrams expressed in dimensional frequency space, Figure 4 is a diagram of Figure 3 viewed from the positive direction of the p-axis, Figure 5 is a diagram of Figure 3 viewed from the negative direction of the f-axis, and Figure 6 is a diagram of Figure 3 viewed from the negative direction of the f-axis. A diagram expressing the horizontal high-frequency luminance signal component before modulation in a three-dimensional frequency space. Figure 7 is a diagram of Figure 6 viewed from the positive direction of the r axis, and Figure 8 is a diagram of Figure 6 viewed from the positive direction of the f axis. Figure 9 is a diagram expressing the modulated horizontal high-frequency luminance signal component in a three-dimensional frequency space, and Figure 1O is a diagram of Figure 9 viewed from the positive direction of the Le axis. Figure 11 is the 9th
The figure is viewed from the negative direction of the f-axis.
A diagram expressed in a dimensional frequency space, Figure 13 is a diagram of Figure 12 viewed from the positive direction of the r axis, and Figure 14 is a diagram of 12ri! Figure 15 is a diagram of J seen from the negative direction of the f axis, and N before modulation.
Figure 16 is a diagram representing the luminance signal component of the band in which the color signal component is multiplexed in the TSC method in a three-dimensional frequency space.
Figure 17 is a diagram of Figure 15 viewed from the negative direction of the f-axis, and Figure 18 shows the high-frequency luminance signal component that is not transmitted in the NTSC system and the color signal. Figure 19 is a diagram of Figure 18 viewed from the positive direction of the usage axis, and Figure 20 is a diagram representing orthogonal two-phase modulation of the luminance signal component of the band where is multiplexed. Fig. 18 is a diagram viewed from the negative direction of the f-axis, Fig. 21 is a spectrum diagram of the current television signal, Fig. 22 is a detailed diagram of Fig. 21, and Fig. 23 is a diagram of the spectrum of the current television signal.
The figure shows the phase of the color subcarrier on the vertical time plane, and Figure 24 shows the spectrum of the current television signal.
A diagram expressed in dimensional frequency space, Figure 25 is the same as Figure 24.
FIG. 26 is a view of FIG. 24 viewed from the negative direction of the f axis. (1), (20), (23)...Three-dimensional spatiotemporal low-pass filter, (2), (4), (2
1), (24), (33)...subtractor, (3
), (32)...1-dimensional high-pass filter, (5)
, (15)... sign inversion circuit, (8) ,
(27)...180° delay device, (7), (28
)...Switch, (8)...L line delay device, (9
), (10), (12), (13), (1
4), (1B), (1B). (29), (30), (31), (34)
, (35), (38), (37). (38)...multiplier, (11), (17),
(19), (22), (39)...adder,
(25)...Spatio-temporal band filter 1, (26)...
Spatio-temporal bandpass filter 2 In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)NTSCテレビジヨンにおいて、このテレビジヨ
ンを水平−垂直−時間の3次元周波数空間で表現した場
合に色信号成分が垂直−時間周波数領域で占める位置と
共役な2つの対をなす位置のうち、一方の対をなす位置
に静止画における水平高域輝度情報を変調して多重化し
、他方の対をなす位置に動画における高域輝度情報を変
調して多重化しかつ伝送するようにしたことを特徴とす
る高精細テレビジヨン信号伝送方式。
(1) In NTSC television, when this television is expressed in a three-dimensional frequency space of horizontal-vertical-time, one of two pairs of positions that are conjugate to the position occupied by the color signal component in the vertical-time frequency domain. , the horizontal high-range luminance information of a still image is modulated and multiplexed at one pair of positions, and the high-range brightness information of a moving image is modulated and multiplexed at the other pair of positions, and then transmitted. High-definition television signal transmission system.
(2)NTSCテレビジヨン信号の輝度情報Yから低域
輝度情報Y_Lを分離する低域輝度情報分離手段と、上
記輝度情報Yから静止画における水平高域輝度情報Y_
H_1および動画における高域輝度情報Y_H_2+Y
_H_3を分離する高域輝度情報分離手段と、この分離
した高域輝度情報Y_H_2+Y_H_3をそれぞれ色
副搬送波周波数fscシフトする周波数変換手段と、フ
イールドごとに位相が180°切換わる色副搬送波μ_
0を発生する手段と、この色副搬送波μ_0を1H遅延
させる手段と、上記分離した動画における高域輝度情報
のうち色情報が多重される周波数領域の成分Y_H_3
と色情報が多重されない周波数領域の上記周波数変換手
段によつて周波数シフトされた成分Y_H_2とで上記
色副搬送波μ_0を直交2相変調する変調手段と、上記
分離した動画にける高域輝度情報のうち色情報が多重さ
れる周波数領域の成分Y_H_2と色情報が多重されな
い周波数領域の成分Y_H_3の極性を反転した成分Y
_H_3とで上記1H遅延された色副搬送波μ_0−H
を直交2相変調する変調手段と、色差信号C_1、C_
2で色副搬送波fscを直交2相変調する変調手段と、
上記低域輝度情報、上記2種類の高域輝度情報変調手段
の出力および上記直交2相変調された色情報とを周波数
多重する加算手段とを有する送信装置、ならびに上記送
信装置から伝送されたテレビジヨン信号から低域輝度情
報、静止画における水平高域輝度情報、動画における高
域輝度情報および色情報をそれぞれ分離する手段と、上
記分離した動画における高域輝度情報および色情報をそ
れぞれ同期復調する復調手段と、上記分離された静止画
における水平高域輝度情報および同期復調された動画に
おける高域輝度情報をそれぞれ上記送信装置における周
波数変換手段におけるシフトとは逆方向に所定周波数シ
フトする周波数変換手段と、この周波数変換手段の出力
と上記分離手段で分離された低減輝度情報とを加算する
加算手段とを有する受信装置を備えた高精細テレビジヨ
ン信号送受信装置。
(2) Low-frequency luminance information separation means for separating low-frequency luminance information Y_L from luminance information Y of an NTSC television signal, and horizontal high-frequency luminance information Y_L in a still image from the luminance information Y.
H_1 and high-range luminance information in the video Y_H_2+Y
_H_3, a frequency converter that shifts the separated high-range luminance information Y_H_2+Y_H_3 by the color subcarrier frequency fsc, and a color subcarrier μ_ whose phase is switched by 180° for each field.
0, means for delaying the color subcarrier μ_0 by 1H, and a frequency domain component Y_H_3 on which color information is multiplexed among the high-range luminance information in the separated video.
modulation means for orthogonal two-phase modulation of the color subcarrier μ_0 with a component Y_H_2 whose frequency has been shifted by the frequency conversion means in a frequency domain in which color information is not multiplexed; A component Y that is the inverted polarity of the frequency domain component Y_H_2 where color information is multiplexed and the frequency domain component Y_H_3 where color information is not multiplexed.
The color subcarrier μ_0-H delayed by 1H with _H_3
modulation means for orthogonal two-phase modulation, and color difference signals C_1, C_
2, a modulation means for orthogonal two-phase modulation of the color subcarrier fsc;
a transmitting device comprising an adding means for frequency multiplexing the low-frequency luminance information, the outputs of the two types of high-frequency luminance information modulating means, and the orthogonal two-phase modulated color information; and a television transmitted from the transmitting device. Means for separating low-range luminance information, horizontal high-range luminance information in a still image, high-range luminance information and color information in a moving image from the digital signal, and synchronously demodulating the high-range luminance information and color information in the separated moving image, respectively. demodulation means; and frequency conversion means for shifting horizontal high-frequency luminance information in the separated still image and high-frequency luminance information in the synchronized demodulated moving image by a predetermined frequency in a direction opposite to the shift in the frequency conversion means in the transmitting device. 1. A high-definition television signal transmitting and receiving apparatus, comprising: a receiving apparatus having: and an adding means for adding the output of the frequency converting means and the reduced luminance information separated by the separating means.
JP62023937A 1987-02-04 1987-02-04 High-definition television signal transmission system and its transmitter-receiver Pending JPS63191496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62023937A JPS63191496A (en) 1987-02-04 1987-02-04 High-definition television signal transmission system and its transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62023937A JPS63191496A (en) 1987-02-04 1987-02-04 High-definition television signal transmission system and its transmitter-receiver

Publications (1)

Publication Number Publication Date
JPS63191496A true JPS63191496A (en) 1988-08-08

Family

ID=12124442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023937A Pending JPS63191496A (en) 1987-02-04 1987-02-04 High-definition television signal transmission system and its transmitter-receiver

Country Status (1)

Country Link
JP (1) JPS63191496A (en)

Similar Documents

Publication Publication Date Title
US4944032A (en) Multiplex signal processing apparatus
US4907218A (en) Multiplex signal processing apparatus
US5278637A (en) Apparatus and a method for quadrature-phase encoding and transmitting a digital signal in a video signal
JPS63191496A (en) High-definition television signal transmission system and its transmitter-receiver
JPS6012883A (en) High precision signal converting device of television signal
JP2692157B2 (en) Television signal processing method and television signal processing device
JPS61285894A (en) Chrominance signal and luminance signal processing system of television signal
JPS6382190A (en) Transmission equipment for television signal
JP2658021B2 (en) Television signal processing method
JPS5831795B2 (en) Color television program
JPH04502995A (en) Compatible frequency multiplexed television system
CA1322044C (en) Television signal processing apparatus
JPH02114790A (en) Video chrominance signal transmission reception system and transmitter-receiver
JP2715407B2 (en) Television signal processing method
JPS62250779A (en) Television signal multiplexing system
JPH0514931A (en) Transmitting device and reproducing device for television signal
JPS63123295A (en) Television signal device
JPH04122191A (en) Video signal transmission system and reproducing device
JPH01229584A (en) Multiplexing signal receiving device
JPS6382189A (en) High definition television signal transmission equipment
JPS647555B2 (en)
JPH03154594A (en) Transmission system for television signal and receiver
JPH0759072B2 (en) Television signal processing device
JPH0740748B2 (en) Television signal processing device
JPH0720267B2 (en) High-definition TV signal conversion device