JPS6397085A - Transmitting device for high definition television signal - Google Patents

Transmitting device for high definition television signal

Info

Publication number
JPS6397085A
JPS6397085A JP61242608A JP24260886A JPS6397085A JP S6397085 A JPS6397085 A JP S6397085A JP 61242608 A JP61242608 A JP 61242608A JP 24260886 A JP24260886 A JP 24260886A JP S6397085 A JPS6397085 A JP S6397085A
Authority
JP
Japan
Prior art keywords
signal
color difference
frequency
ntsc
definition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61242608A
Other languages
Japanese (ja)
Inventor
Yousuke Suzuki
陽輔 鈴木
Hiroshi Kayashima
茅嶋 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61242608A priority Critical patent/JPS6397085A/en
Publication of JPS6397085A publication Critical patent/JPS6397085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)

Abstract

PURPOSE:To transmit a high definition color difference signal keeping a communicatability to an existing NTSC signal by dividing the color difference signal of a broad band into the ones of a high and a low frequency band, and multiplexing them after shifting the each high frequency component to the low frequency band and after orthogonal-modulating. CONSTITUTION:The high frequency components IH, QH of the color difference signals I+IH, Q+QH are extracted by high pass filters 1, 6. The color difference signals I,Q are obtained by the subtraction of subtractors 2, 7, and they are converted into the NTSC signal together with a luminance signal Y by an NTSC encoder 13. The signals IH,QH are shifted to the low frequency band by modulators 3, 8, and the high frequency components IH'', QH'' are obtained by low pass filteers 4, 9. A color subcarrier wave fsc is made to be 0.9= by a synchronous oscillator 17, and enters into a phase invertor 18, while a high definition signal subcarrier wave mu0 enters into a modulator 5, and also enters into the modulator 10 through a phase shifter 19. The IH'', IQ'' are modulated by the modulators 5, 10 and are orthogonal two phase modulated by an adder 11, and are synthesized with the output of the encoder 13 by the adder 14 after passing through the high pass filter 12, and an NTSC' is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、現行のNTSC方式と交信性を有する高精
細テレビシロン信号伝送方式で高精細色信号の多重方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-definition color signal multiplexing system in a high-definition television signal transmission system having communication characteristics with the current NTSC system.

〔従来の技術〕[Conventional technology]

現行のテレビジョン信号(NTSC)と完全交信性を有
するテレビジョンの高精細信号多重方式がいくつか提案
されている。第3図は例えば電子通信学会、技術研究報
告C383−61r完全交信性を有する高精IITV方
式の提案」 (昭和58年7月29日)で述べられてい
る高精細信号多重方式による従来の高精細情報挿入回路
の例であり、第4図は同様に高精細情報再生回路の例で
ある。
Several high-definition television signal multiplexing systems that are fully compatible with current television signals (NTSC) have been proposed. Figure 3 shows, for example, the conventional high-definition signal multiplexing system based on the high-definition signal multiplexing system described in Technical Research Report C383-61r, "Proposal of a high-definition IITV system with complete communication" (July 29, 1982) published by the Institute of Electronics and Communication Engineers. This is an example of a high-definition information insertion circuit, and FIG. 4 is an example of a high-definition information reproducing circuit.

第3図において、Y+YHは高域成分を含んだ輝度信号
、I、Qは色差信号、fscは色副搬送波であり、輝度
信号Y及び色差信号1. QはNTSCエンコーダ13
に入力され、NTSC信号に変換される。また輝度信号
Y+YHは、高域フィルタ36に入力されて高精細輝度
信号YHが分離され、変調器37に入力される。この変
調器37は、色副搬送波fscを分周器39で周波数を
zしたものを移相器18とスイッチSによりフィールド
毎に反転し、これを搬送波としている。変調器37の出
力は帯域フィルタ38に入力され、周波数シフトした高
精細輝度信号YH’が抽出される。このYH’ と前記
NTSCエンコーダ13の出力とは加算器14により合
成され、伝送信号NTSC″が得られる。
In FIG. 3, Y+YH is a luminance signal containing high-frequency components, I and Q are color difference signals, fsc is a color subcarrier, and luminance signal Y and color difference signals 1. Q is NTSC encoder 13
and is converted to an NTSC signal. Further, the luminance signal Y+YH is input to a high-pass filter 36 to separate a high-definition luminance signal YH, which is input to a modulator 37. This modulator 37 uses a color subcarrier fsc whose frequency is z by a frequency divider 39 and inverts it for each field by a phase shifter 18 and a switch S, and uses this as a carrier wave. The output of the modulator 37 is input to a bandpass filter 38, and a frequency-shifted high-definition luminance signal YH' is extracted. This YH' and the output of the NTSC encoder 13 are combined by an adder 14 to obtain a transmission signal NTSC''.

一方受信側では、第4図に示す様に伝送されてきたNT
SC’信号は時空間フィルタ20に入力され、周波数シ
フトされた高精細輝度信号YH″が抽出される。そして
この信号YH’ は復調器36に入力され、その出力は
高域フィルタ37に入力されて高精細輝度信号YHが再
生される。一方、伝送信号NTSC’より前記時空間フ
ィルタ20の出力を滅罪器2工により差引いてNTSC
信号を得る。このNTSC信号は、NTSCデコーダ2
8によって輝度信号Yと色差信号r、 Qに分離され、
輝度信号Yに前記高精細輝度信号YHを加算器38によ
って加算し、再生輝度信号Y+YHが再生される。
On the other hand, on the receiving side, as shown in Figure 4, the transmitted NT
The SC' signal is input to the spatiotemporal filter 20, and a frequency-shifted high-definition luminance signal YH'' is extracted. This signal YH' is then input to the demodulator 36, and its output is input to the high-pass filter 37. On the other hand, the output of the spatio-temporal filter 20 is subtracted from the transmission signal NTSC' by a decimator 2 to reproduce the NTSC signal YH.
Get a signal. This NTSC signal is sent to the NTSC decoder 2.
8 into a luminance signal Y and color difference signals r and Q,
The high-definition luminance signal YH is added to the luminance signal Y by an adder 38 to reproduce a reproduced luminance signal Y+YH.

次に゛動作について説明する。第5図で横軸は時間周波
数f、縦軸は垂直方向の空間周波数νを示し、図中Cは
色信号成分である。図から明らかなように現行NTSC
方式では第1象限と第3象限とが空いており、ここに高
精細輝度信号Y Hを周波数シフトして挿入する。第6
図はこの周波数シフトを示しており、輝度信号の高域成
分(4〜6MHz )を色副搬送周波数fscの%の周
波数の搬送波で振幅変調することによって、2.2〜4
.2MHzに周波数シフトを行なう。いまYHの信号を
EH(tlとすると、 E H’ (tl = E H(t)・cos2πfc
t      ・・・■簡単のためE H(tlを周波
数fHの正弦波と仮定すると E  H’  (t)=cos  (2πfHt十 ψ
)   ・ cos2 yr fct= 2 [cos
(2yr(fc+fH)t+ψ)4  cos(2π(
fc−fH)t 十ψ) ]・・・■ と表わせる。これより下側波帯をとることによっつ低域
へ周波数シフトすることができる。
Next, the operation will be explained. In FIG. 5, the horizontal axis shows the temporal frequency f, the vertical axis shows the vertical spatial frequency ν, and C in the figure is the color signal component. As is clear from the figure, the current NTSC
In this method, the first and third quadrants are vacant, and the high-definition luminance signal YH is frequency-shifted and inserted into these quadrants. 6th
The figure shows this frequency shift, and by amplitude modulating the high-frequency component (4 to 6 MHz) of the luminance signal with a carrier wave whose frequency is % of the color subcarrier frequency fsc, the frequency shift is 2.2 to 4 MHz.
.. Frequency shift to 2MHz. Now, if the signal of YH is EH (tl), E H' (tl = E H(t)・cos2πfc
t ... ■For simplicity, E H (assuming tl is a sine wave with frequency fH, E H' (t) = cos (2πfHt + ψ
) ・ cos2 yr fct= 2 [cos
(2yr(fc+fH)t+ψ)4 cos(2π(
It can be expressed as fc−fH)t ψ) ]...■. By taking a sideband below this, it is possible to shift the frequency to a lower range.

ところで第7図はテレビジョン信号の各フィールドにお
ける副搬送波の位相を示しており、現行NTSC方式の
色副搬送波(fsc =3.58MHz )の同一位相
の走査線を結ぶと、フィールド毎に上るように設定され
ている。一方、第5図で示した高精細情報挿入位置(Y
H’ の位置)に信号を多重するためには、フィールド
毎に下がる副搬送波μ0を設定する必要がある。このμ
0は色副搬送波fscに対してフィールド毎に位相が反
転したものである。このことは0式を3次元フーリエ変
換することによって証明できるが、ここでは省略する。
By the way, Fig. 7 shows the phase of the subcarrier in each field of the television signal, and if you connect the scanning lines of the same phase of the color subcarrier (fsc = 3.58MHz) of the current NTSC system, the phase will increase for each field. is set to . On the other hand, the high-definition information insertion position (Y
In order to multiplex signals at the position H', it is necessary to set a subcarrier μ0 that decreases for each field. This μ
0 is a color subcarrier fsc whose phase is inverted for each field. This can be proven by performing three-dimensional Fourier transform on Equation 0, but this is omitted here.

第3図において、変g器37の搬送波入力端子には、色
副搬送波fscを2分周したものをフィールド毎に反転
した高精細情報副搬送波μ0が入力され、YHを周波数
シフトしている。
In FIG. 3, a high-definition information subcarrier μ0, which is obtained by dividing the frequency of the color subcarrier fsc by two and inverting it for each field, is input to the carrier wave input terminal of the g converter 37, and YH is frequency-shifted.

第4図において入力されたNTSC”信号は、時空間フ
ィルタ20によって第5図で示したYH!の部分の信号
を抽出し、復調器36によって送信側と同様にfsc/
2をフィールド毎に反転した高精細情報副搬送波μ0に
よってYH’を同期検波し、高精細輝度信号YHを得て
いる。
From the input NTSC" signal in FIG. 4, the signal of the YH! portion shown in FIG.
YH' is synchronously detected using a high-definition information subcarrier μ0 obtained by inverting 2 for each field to obtain a high-definition luminance signal YH.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方式は以上のように構成されており、現行NTS
C方式と完全交信性を有しつつ高精細輝度信号の伝送を
行なうことができる。しかし現行NTSC方式において
、伝送色信号の帯域は色差信号■が1.5MHz、 Q
が0.5MHzであり、輝度信号Yの帯域に比べ半分以
下の狭帯域である。従って色解像度の不足が問題となっ
ており、この点においては、上記従来の方式でも解消さ
れていない。
The conventional system is configured as described above, and the current NTS
It is possible to transmit high-definition luminance signals while maintaining complete communication with the C method. However, in the current NTSC system, the transmission color signal band is 1.5MHz for the color difference signal ■, Q
is 0.5 MHz, which is a narrow band less than half the band of the luminance signal Y. Therefore, the lack of color resolution has become a problem, and this problem has not been solved even with the above-mentioned conventional methods.

この発明は上記のような問題点を解消するためになされ
たもので、色信号の高精細情報を伝送する高精細テレビ
ジョン信号伝送装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a high-definition television signal transmission device that transmits high-definition information of color signals.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る高精細テレビジョン信号伝送装置は、広
帯域色差信号鳳 Qをそれぞれ高域周波数成分と低域周
波数成分とに分割する手段と、上記各信号の高域周波数
成分を周波数シフトする手段と、これらの周波数シフト
した信号を現行NTSC方式の時空間スペクトルのすき
間に直交変調多重する手段とを設けたものである。
A high-definition television signal transmission device according to the present invention includes means for dividing a wideband color difference signal Q into high frequency components and low frequency components, and means for frequency shifting the high frequency components of each of the signals. , means for orthogonally modulating and multiplexing these frequency-shifted signals in the space-time spectrum gap of the current NTSC system.

〔作用〕[Effect]

この発明においては、広帯域色差信号T、Qをそれぞれ
高域と低域とに分割し、その高域成分を低域へ周波数シ
フトして直交変調多重を行うから、高精細色差信号を現
行NTSC信号と交信性を有しつつ伝送でき、色解像度
の高い高精細テレビジョン信号が得られる。
In this invention, the wideband color difference signals T and Q are divided into high and low frequencies, and the high frequency components are frequency-shifted to the low frequency range to perform orthogonal modulation multiplexing. It is possible to transmit high-definition television signals with high color resolution.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、■は広帯域な色差信号1+IHを入力
とする高域フィルタ、2はこの高域フィルタ1の入力と
出力に接続された減算器、3は前記高域フィルタ1の出
力に接続された第1の変tII器、4は第1の変調器3
の出力に接続された低域フィルタ、5は低域フィルタ4
の出力に接続された第3の変調器である。また、6は広
帯域な色差信号Q+QHを入力とする高域フィルタ、7
はこの高域フィルタ6の入力と出力に接続された減算器
、8は前記高域フィルタ6の出力に接続された第2の変
調器、9は第2の変調器8の出力に接続された低域フィ
ルタ、10は低域フィルタ9の出力に接続された第4の
変調器である。1)は前記第3の変調B5と第4の変調
器10の出力に接続された加算器、12は加算器1)の
出力に接続された高域フィルタ、13は前記減算器2と
減算器7の出力と輝度信号Yが入力されたNTSCエン
コーダ、14は前記高域フィルタ12とNTSCエンコ
ーダ1の出力が接続された加算器である。
In FIG. 1, ■ is a high-pass filter that receives the broadband color difference signal 1+IH, 2 is a subtracter connected to the input and output of this high-pass filter 1, and 3 is connected to the output of the high-pass filter 1. 4 is the first modulator 3
A low-pass filter 5 is connected to the output of the low-pass filter 4.
a third modulator connected to the output of the modulator. In addition, 6 is a high-pass filter that receives the broadband color difference signal Q+QH, and 7
is a subtractor connected to the input and output of this high-pass filter 6, 8 is a second modulator connected to the output of the high-pass filter 6, and 9 is connected to the output of the second modulator 8. Low-pass filter 10 is a fourth modulator connected to the output of low-pass filter 9. 1) is an adder connected to the third modulation B5 and the output of the fourth modulator 10; 12 is a high-pass filter connected to the output of adder 1); 13 is the subtracter 2 and the subtracter 7 is an NTSC encoder to which the luminance signal Y is input, and 14 is an adder to which the high-pass filter 12 and the output of the NTSC encoder 1 are connected.

また、15は色副搬送波fscが入力され前記第1の変
1!1器3に接続された同期発振器、16は色副搬送波
fscが入力され前記第2の変調器8に接続された同期
発ti器、17は色副搬送波が入力される同期発振器、
18は同期発振器17の出力に接続された位相反転器、
スイッチSは位相反転器18の入出力に接続されフィー
ルド毎に反転した搬送波を前記第3の変調器5に供給す
るものである。19はスイッチSに接続され、前記第4
の変調器10に搬送波を供給する90°移相器である。
Further, 15 is a synchronous oscillator to which the color subcarrier fsc is inputted and connected to the first modulator 3, and 16 is a synchronous oscillator to which the color subcarrier fsc is inputted and connected to the second modulator 8. 17 is a synchronous oscillator into which the color subcarrier is input;
18 is a phase inverter connected to the output of the synchronous oscillator 17;
The switch S is connected to the input and output of the phase inverter 18 and supplies the third modulator 5 with a carrier wave inverted for each field. 19 is connected to the switch S, and the fourth
This is a 90° phase shifter that supplies a carrier wave to the modulator 10 of.

第2図は受信側の構成を示し、図において、2Oは時空
間フィルタ、21は時空間フィルタ20の入力と出力に
接続された減算器、22は時空間フィルタ20の出力に
接続された第1の復調器、23は同様に時空間フィルタ
20の出力に接続された第2の復調器、24は第1の復
調器22の出力に接続された第3の復調器、25は第3
の復調器24の出力に接続された帯域フィルタ、26は
第2の復調器23の出力に接続された第4の復調器、2
7は第4の復調器26の出力に接続された帯域フィルタ
である。28は前記減算器21の出力に接続されたNT
SCデコーダ、29はNTSCデコーダ28と帯域フィ
ルタ25に接続された加算器、30はNTSCデコーダ
28と帯域フィルタ27に接続された加算器である。
FIG. 2 shows the configuration of the receiving side. In the figure, 2O is a spatio-temporal filter, 21 is a subtracter connected to the input and output of the spatio-temporal filter 20, and 22 is a subtracter connected to the output of the spatio-temporal filter 20. 1 demodulator, 23 a second demodulator connected to the output of the spatio-temporal filter 20, 24 a third demodulator connected to the output of the first demodulator 22, 25 a third demodulator
a bandpass filter 26 connected to the output of the demodulator 24 of the second demodulator 23;
7 is a bandpass filter connected to the output of the fourth demodulator 26. 28 is an NT connected to the output of the subtracter 21.
The SC decoder 29 is an adder connected to the NTSC decoder 28 and the bandpass filter 25, and 30 is an adder connected to the NTSC decoder 28 and the bandpass filter 27.

また、31は色副搬送波fscを入力とする同期発振器
、32は同期発振器31の出力に接続された位相反転器
、スイッチSは位相反転器32の入出力に接続されフィ
ールド毎に反転した搬送波を前記第1の復調器22に供
給するものである。33はスイッチSに接続され前記第
2の復調器23に搬送波を供給する90”移相器、34
は色副搬送波fscを入力とし前記第3の復調器24に
搬送波を供給する同期発振器、35は色副搬送波fsc
を入力とし前記第4の復調器26に搬送波を供給する同
期発振器である。
Further, 31 is a synchronous oscillator which inputs the color subcarrier fsc, 32 is a phase inverter connected to the output of the synchronous oscillator 31, and switch S is connected to the input/output of the phase inverter 32 and outputs the carrier wave inverted for each field. It is supplied to the first demodulator 22. 33 is a 90" phase shifter connected to switch S and supplying a carrier wave to the second demodulator 23; 34
35 is a synchronous oscillator which receives the color subcarrier fsc and supplies a carrier wave to the third demodulator 24; 35 is a color subcarrier fsc;
This is a synchronous oscillator that receives as input and supplies a carrier wave to the fourth demodulator 26.

次に動作について説明する。第8図は現行NTSC方式
の色差信号■、Qの多重方式を示す周波数スペクトル図
であり、色差信号1.Qをそれぞれ1.5MH!、 0
.5MH2に帯域制限し直交2相変調を行なうことによ
って周波数多重を行なっている。本方式においては、色
差信号の高域成分IH,QHについても直交2相変調を
行ない、第5図に示した様な時空間周波数スペクトルの
すき間に挿入するものである。
Next, the operation will be explained. FIG. 8 is a frequency spectrum diagram showing a multiplexing method for color difference signals 1 and 1 of the current NTSC system. Each Q is 1.5MH! , 0
.. Frequency multiplexing is performed by limiting the band to 5MH2 and performing orthogonal two-phase modulation. In this method, the high frequency components IH and QH of the color difference signal are also subjected to orthogonal two-phase modulation and inserted into the gap in the spatio-temporal frequency spectrum as shown in FIG.

第9図は本方式による高精細色差信号(IH:1.5〜
2.5MIIZ、 QH: 0.5〜1.5MHz)の
挿入方法の一例を示す周波数スペクトル図であり、同図
(a)は、色差信号I、Qとその高域成分IH,QHの
ベースバンド帯域を示している。この色差信号高域成分
IH,QHを周波数変換することによって同図(b)に
示す様に一旦低域へ周波数シフトを行なう。このとき周
波数O〜−I MHzは下側波帯である。
Figure 9 shows a high-definition color difference signal (IH: 1.5~
2.5 MIIZ, QH: 0.5 to 1.5 MHz) is a frequency spectrum diagram showing an example of an insertion method; FIG. Indicates the band. By frequency converting the color difference signal high-frequency components IH and QH, the frequency is once shifted to the lower frequency range as shown in FIG. 2(b). At this time, the frequency O to -I MHz is the lower sideband.

この色差信号高域成分IH’”、QH”をフィールド毎
に反転した高精81)I信号副搬送波(ここでは0゜9
fsc)μ0で直交2相変調すると同図(C)に示す様
に周波数多重することができる。
High-precision 81) I signal subcarrier (in this case, 0°9
fsc) By performing orthogonal two-phase modulation with μ0, frequency multiplexing can be performed as shown in FIG.

第1図において、色差信号1+IH,Q+QHは高域成
分を含んだ信号であり、それぞれ高域フィルタ1.6に
入力されてそれぞれの高域成分(帯域IMHz)が抽出
され、IH,QHとなる。減算器2によってI+IH−
IHが行なわれて色差信号Iが得られ、同様に減算器7
によって色差信号Qが得られる。この色差信号I、Qと
輝度信号YはNTSCエンコーダ13に入力され、NT
SC信号に変換される。一方、IH,QHはそれぞれ第
1の変調器3.第2の変調器8によって低域ヘシフトさ
れ、低域フィルタ4,9によって不要高域成分が除かれ
て色差信号高域成分IH”Z QHl 1が得られる。
In Fig. 1, color difference signals 1+IH and Q+QH are signals containing high-frequency components, and are each input to a high-pass filter 1.6 to extract their respective high-frequency components (bandwidth IMHz), resulting in IH and QH. . I+IH- by subtracter 2
IH is performed to obtain a color difference signal I, and the subtracter 7
A color difference signal Q is obtained. These color difference signals I, Q and luminance signal Y are input to the NTSC encoder 13,
It is converted into an SC signal. On the other hand, IH and QH are each connected to the first modulator 3. The second modulator 8 shifts the signal to a lower frequency band, and the low-pass filters 4 and 9 remove unnecessary high-frequency components to obtain a color difference signal high-frequency component IH''Z QHl 1.

一方、色副搬送波fscは同期発振器17によって周波
数が0.9fscとされ、位相反転器18へ入力される
。スイッチSによってフィールド毎に反転された高精細
信号副搬送波μ0は第3の変調235に入力される。ま
たμ0は移相器19によって90°移和され、第4の変
調器10に入力される。前記第3の変調器5にはI H
”、前記第4の変調器10にはQH”が入力され、互い
に90”位相が異なる搬送波で振幅変調を受けた後加算
器1)によって加算され、I H”とQH”とは直交2
相変調される。この直交2相変調された信号は高域フィ
ルタ12によって不要低域成分が除かれ、前記NTSC
エンコーダ13の出力と加算器14によって合成され、
伝送信号NTSC’を得る。
On the other hand, the color subcarrier fsc has a frequency of 0.9 fsc by the synchronous oscillator 17 and is input to the phase inverter 18 . The high-definition signal subcarrier μ0 inverted field by field by the switch S is input to the third modulation 235. Further, μ0 is shifted by 90° by a phase shifter 19 and input to the fourth modulator 10. The third modulator 5 has an IH
", QH" is input to the fourth modulator 10, and after being amplitude modulated with carrier waves having a phase difference of 90", they are added by an adder 1), and IH" and QH" are orthogonal 2
Phase modulated. This orthogonal two-phase modulated signal is filtered by a high-pass filter 12 to remove unnecessary low-frequency components.
The output of the encoder 13 and the adder 14 are combined,
A transmission signal NTSC' is obtained.

次に受信側においては、伝送信号NTSC’ は時空間
フィルタ20に入力され、これにより直交2相変調され
た高精細色差信号が抽出され、第1送信号NTSC’か
ら高精細色差信号が差引かれて高精細情報が多重されて
いないNTSC信号をえる。このNTSC信号はNTS
Cデコーダ28に入力され、色差信号1.Qと輝度信号
Yとに分離される。一方、色副搬送波fscが入力され
た同期発振器31からの周波数0.9fscの搬送波を
位相反転器32とスイッチSによりフィールド反転し、
高精細信号副搬送波μ0を得る。このμOは前記第1の
復調器22に供給され、これにより同期検波を行なう。
Next, on the receiving side, the transmission signal NTSC' is input to a spatiotemporal filter 20, which extracts a high-definition color difference signal subjected to orthogonal two-phase modulation, and subtracts the high-definition color difference signal from the first transmission signal NTSC'. to obtain an NTSC signal on which high-definition information is not multiplexed. This NTSC signal is
The color difference signals 1. Q and luminance signal Y. On the other hand, the carrier wave with a frequency of 0.9 fsc from the synchronous oscillator 31 into which the color subcarrier fsc is input is field inverted by the phase inverter 32 and the switch S.
Obtain high-definition signal subcarrier μ0. This μO is supplied to the first demodulator 22, thereby performing synchronous detection.

これによって直交変調された信号よりIH’”が分離さ
れる。同様に、移相器3.3によって+90°移和され
た搬送波は前記第2の復ill器23に入力され、同期
検波が行なわれてQH”が分離される。IH”、QH”
はそれぞれ第3の復調器24.第4の復調器26に入力
され、それぞれ0.42fsc 、 0.14fscの
搬送波周波数によって周波数シフトされる。前記第3の
復調器24の出力は帯域フィルタ25によって伝送前の
IHの帯域が取り出される。同様に帯域フィルタ27に
よってQHが抽出される。これらIH,QHはそれぞれ
前記NTSCデコーダ28の出力の色差信号I。
This separates IH''' from the orthogonally modulated signal.Similarly, the carrier wave shifted by +90° by the phase shifter 3.3 is input to the second demodulator 23, where synchronous detection is performed. QH'' is separated. IH", QH"
are the third demodulators 24 . The signals are input to a fourth demodulator 26 and frequency shifted by carrier frequencies of 0.42 fsc and 0.14 fsc, respectively. The IH band before transmission is extracted from the output of the third demodulator 24 by a bandpass filter 25. Similarly, QH is extracted by bandpass filter 27. These IH and QH are color difference signals I output from the NTSC decoder 28, respectively.

Qと加算器29.加算器30によって合成され、再生色
差信号1+IHとQ+QHとを得る。
Q and adder 29. They are combined by an adder 30 to obtain reproduced color difference signals 1+IH and Q+QH.

ここで、本方式の高精細テレビジョン信号伝送方式では
、多重された高精細信号は比較的レベルが小さい。また
、高精細信号副搬送波μ0は第7図に示した様にライン
反転、フィールド反転するので、本方式の信号を現行N
TSC方式テレビ受信機で再生しても妨害は目立たない
In this high-definition television signal transmission system, the multiplexed high-definition signal has a relatively low level. In addition, since the high-definition signal subcarrier μ0 is line inverted and field inverted as shown in Figure 7, the signal of this method can be
Even when played back on a TSC TV receiver, the interference is not noticeable.

なお、上記説明では特にことわらなかったが、実施例は
現在の技術ではディジタル回路で構成するのが一般的で
ある。
Although not particularly mentioned in the above description, the embodiments are generally constructed using digital circuits in the current technology.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、広帯域な色差信号1
.Qをそれぞれ高域、低域に分割し、その各高域成分を
低域へ周波数シフトして直交変調し多重するようにした
ので、高精細色差信号を現行NTSC信号と交信性を有
しつつ伝送することができ、色解像度の高い高精細テレ
ビジョン信号伝送装置が得られる効果がある。
As described above, according to the present invention, the broadband color difference signal 1
.. Q is divided into high and low frequencies, and each high frequency component is frequency shifted to the low frequency range, orthogonally modulated, and multiplexed, allowing high-definition color difference signals to be communicated with current NTSC signals while maintaining communication performance. This has the effect of providing a high-definition television signal transmission device that can transmit high-definition television signals and has high color resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による高精細色差信号挿入
回路を示すブロック図、第2図はこの発明の一実施例に
よる高精細色差信号再生回路を示すブロック図、第3図
は従来の高精細テレビジョン信号挿入回路を示すブロッ
ク図、第4図は従来の高精細テレビジョン信号再生回路
を示すブロック図、第5図は垂直一時間領域の高精細情
報挿入位置を示す時空間スペクトル図、第6図は従来の
高精細情報多重方式を示す1次元スペクトル図、第7図
はテレビジョン信号のフィールド毎の搬送波の位相を示
す説明図、第8図は現行NTSC方式の色差信号多重方
式を示す1次元スペクトル図、第9図は本発明による高
精細色差信号多重方式を示す1次元スペクトル図である
。 1.6.12・・・高域フィルタ、2,7.21・・・
減算器、3・・・第1の変調器、4.9・・・低域フィ
ルタ、5・・・第3の変調器、8・・・第2の変調器、
10・・・第4の変調器、1),14,29.30・・
・加算器、13・・・NTSCエンコーダ、15〜17
,31.34.35・・・同期発振器、18.32・・
・位相反転器、19.33・・・移相器、20・・・時
空間フィルタ、22・・・第1の復調器、23・・・第
2の復調器、24・・・第3の復調器、25.27・・
・帯域フィルタ、26・・・第4の復−器、28・・・
NTSCデコーダ。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing a high-definition color difference signal insertion circuit according to an embodiment of the present invention, FIG. 2 is a block diagram showing a high-definition color difference signal reproducing circuit according to an embodiment of the invention, and FIG. 3 is a block diagram showing a high-definition color difference signal reproducing circuit according to an embodiment of the present invention. A block diagram showing a high-definition television signal insertion circuit, FIG. 4 is a block diagram showing a conventional high-definition television signal reproducing circuit, and FIG. 5 is a spatio-temporal spectrum diagram showing high-definition information insertion positions in the vertical temporal domain. , Fig. 6 is a one-dimensional spectrum diagram showing the conventional high-definition information multiplexing system, Fig. 7 is an explanatory diagram showing the phase of the carrier wave for each field of a television signal, and Fig. 8 is the color difference signal multiplexing system of the current NTSC system. FIG. 9 is a one-dimensional spectrum diagram showing the high-definition color difference signal multiplexing method according to the present invention. 1.6.12...High-pass filter, 2,7.21...
Subtractor, 3... First modulator, 4.9... Low pass filter, 5... Third modulator, 8... Second modulator,
10... Fourth modulator, 1), 14, 29.30...
・Adder, 13...NTSC encoder, 15 to 17
, 31.34.35...Synchronous oscillator, 18.32...
- Phase inverter, 19.33... Phase shifter, 20... Space-time filter, 22... First demodulator, 23... Second demodulator, 24... Third demodulator Demodulator, 25.27...
- Bandpass filter, 26... Fourth decoder, 28...
NTSC decoder. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)現行NTSC方式テレビジョン信号と完全交信性
を有する高精細テレビジョン信号の伝送装置であって、 広帯域な2つの色差信号をそれぞれ高域周波数成分と低
域周波数成分とに分割する信号分割手段と、 前記2つの色差信号の高域周波数成分をそれぞれ低域へ
所定周波数シフトする周波数変換手段と、この2つの周
波数変換された信号を直交2相変調する変調手段と、 この変調手段の出力を現行NTSC方式テレビジョン信
号に多重化する多重化手段とを備えたことを特徴とする
高精細テレビジョン信号伝送装置。
(1) A high-definition television signal transmission device that is fully compatible with the current NTSC television signal, and is a signal splitting device that divides two broadband color difference signals into high frequency components and low frequency components, respectively. means, frequency conversion means for shifting the high frequency components of the two color difference signals to a lower frequency by a predetermined frequency, modulation means for performing orthogonal two-phase modulation of the two frequency-converted signals, and an output of the modulation means. 1. A high-definition television signal transmission device comprising: multiplexing means for multiplexing a current NTSC television signal into a current NTSC television signal.
JP61242608A 1986-10-13 1986-10-13 Transmitting device for high definition television signal Pending JPS6397085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61242608A JPS6397085A (en) 1986-10-13 1986-10-13 Transmitting device for high definition television signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61242608A JPS6397085A (en) 1986-10-13 1986-10-13 Transmitting device for high definition television signal

Publications (1)

Publication Number Publication Date
JPS6397085A true JPS6397085A (en) 1988-04-27

Family

ID=17091580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61242608A Pending JPS6397085A (en) 1986-10-13 1986-10-13 Transmitting device for high definition television signal

Country Status (1)

Country Link
JP (1) JPS6397085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053858A (en) * 1989-12-22 1991-10-01 General Electric Company Chrominance signal processing appartus for widescreen television system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053858A (en) * 1989-12-22 1991-10-01 General Electric Company Chrominance signal processing appartus for widescreen television system

Similar Documents

Publication Publication Date Title
JPS647554B2 (en)
CS235051B2 (en) Method of complete colour television signal record and reproduction and device for application of this method
JPS6397085A (en) Transmitting device for high definition television signal
JPS587112B2 (en) Color television program
JPS6032493A (en) Converter for high precision television signal
US5061999A (en) Multiplex signal processing apparatus
JPS6170891A (en) High resolution signal converting device of television signal
JPS5831795B2 (en) Color television program
JPS6382189A (en) High definition television signal transmission equipment
JPH04502995A (en) Compatible frequency multiplexed television system
US4161748A (en) Mixing of SECAM color-T.V. signals
JP2649254B2 (en) FM transmission receiver for color television signal
JPS61285894A (en) Chrominance signal and luminance signal processing system of television signal
JP2529948B2 (en) Image signal transmission system
JPS6397084A (en) Transmitting device for high definition television signal
JP2683533B2 (en) Broadcast receiver and receiving system, and color signal recording / reproducing device and recording / reproducing system
JPH02114790A (en) Video chrominance signal transmission reception system and transmitter-receiver
JPS62173886A (en) Device generating high precision signal from television signal
JPS6132682A (en) Tv signal processing device
JPH04248796A (en) Television system compatible with pal system
JPS58223983A (en) Signal converter
JPS6336692A (en) Television signal synthesizer
JPH01261979A (en) Superimposed circuit for significant information for video signal
JPS6336690A (en) Television signal processing unit
JPS62173883A (en) Device for converting television signal into high precision signal