JPH01273804A - Two stage reheating steam turbine plant having turbine bypass device - Google Patents

Two stage reheating steam turbine plant having turbine bypass device

Info

Publication number
JPH01273804A
JPH01273804A JP10130488A JP10130488A JPH01273804A JP H01273804 A JPH01273804 A JP H01273804A JP 10130488 A JP10130488 A JP 10130488A JP 10130488 A JP10130488 A JP 10130488A JP H01273804 A JPH01273804 A JP H01273804A
Authority
JP
Japan
Prior art keywords
turbine
pressure turbine
pipe
steam
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10130488A
Other languages
Japanese (ja)
Inventor
Toshiaki Nishiyama
西山 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10130488A priority Critical patent/JPH01273804A/en
Publication of JPH01273804A publication Critical patent/JPH01273804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To facilitate the temp. control of a reheating steam by providing the bypass pipe going round the respective extra-high pressure, high pressure, medium and low pressure turbine and providing the turbine exhaust connecting pipe connecting a low temp. and high temp. reheating steam pipes. CONSTITUTION:The title plant performs work with the steam generated by a boiler 1 being passed in order through an extra-high pressure turbine 23, a 1st stage reheater 30, high pressure turbine 2, 2nd stage reheater 37 and medium and low pressure turbines 10, 11, driving a generator 22. In this case, the bypass pipe 26 reaching to a 1st stage reheater 30 by going round an extra-high pressure turbine 23, the bypass pipe 33 reaching to a 2nd stage reheater 37 by going round the high pressure turbine 2 and the bypass pipe 14 reaching to a steam condensor 12 by going round the medium and low pressure turbines 10, 11 are respectively provided. The 1st turbine exhaust connecting pipe 45 connecting 1st low temp. and high temp. reheating steam pipes 25, 31 and the 2nd turbine exhaust connecting pie 47 connecting 2nd low temp. and high temp. reheating steam pipes 32, 38 are also provided.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はタービンバイパス装置を有する。二段再熱式蒸
気タービンプラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention has a turbine bypass device. Relating to a two-stage reheat steam turbine plant.

(従来の技術) タービンバイパス系はボイラと蒸気タービンの相互の制
約を解消または緩和することによってプランド運転の柔
軟性を高める目的で、設置されるもので、次の様な機能
がある。一つは起動特性の向上であり、起動時に再熱器
の蒸気冷却を行うことによって再熱器の焼損を防止しな
からボイラ燃焼率を高めると共に、蒸気タービン通気時
のメタルマツチングを容易に行えることである0次の機
能としては、ボイラ負荷とタービン負荷の差の吸収であ
り、ボイラの負荷応答性を越える急激な負荷変化に対応
してその時の応答遅れを吸収すると共に、送電事故等に
より所内単独負荷運転に移行する場合の余剰蒸気を排出
する機能を持ちあわせている。さらにもう一つの機能と
しては過熱器安全弁および再熱器安全弁としての機能を
果4まし、特に変圧運転プラントと組合せる場合の圧力
上昇を抑えることができる。
(Prior Art) A turbine bypass system is installed for the purpose of increasing the flexibility of planned operation by eliminating or relaxing the mutual constraints between the boiler and the steam turbine, and has the following functions. One is to improve the startup characteristics. By cooling the reheater with steam at startup, it prevents burnout of the reheater, increases the boiler combustion rate, and facilitates metal matching when venting the steam turbine. The zero-order function that can be performed is to absorb the difference between the boiler load and the turbine load, and to respond to sudden load changes that exceed the boiler's load response, absorbing the response delay at that time, and preventing power transmission accidents, etc. It also has a function to discharge excess steam when the plant shifts to single-load operation. Furthermore, it functions as a superheater safety valve and a reheater safety valve, and can suppress pressure rises, especially when combined with a variable voltage operation plant.

従来のタービンバイパス系は第2図に示す如く、高圧タ
ービンバイパス装置として、ボイラ1より発生した蒸気
を高圧タービン2をバイパスして流すための主蒸気管3
と、低温再熱蒸気管4とを結ぶ高圧タービンバイパス管
5と、高圧タービンバイパス管5の蒸気流量を制御する
ためのバイパスするための減温器7とで構成され、低温
再熱、Ip4には高圧タービン逆止弁8が設置されてい
る。また、低圧タービンバイパス装置として、ボイラー
の再熱器9を通過した蒸気を中圧タービン10および低
圧タービン11をバイパスして復水812ヘダンプする
ための高温再熱蒸気管13と復水器12とを結ぶ中、低
圧タービンバイパス管14と中、低圧ターフ ビンバイパス管14の蒸気流量を制御するためのバイパ
ス制御弁15とバイパス制御弁15の出口温度を制御す
るための減温器】6とで構成されている。復水器12で
凝縮した水は復水ポンプ17.低圧ヒーター8.脱気器
19.給水ポンプ20.高圧ヒータ21を各々を通って
ボイラーに送られ、再び高圧タービン2、中圧タービン
10.低圧タービン11を通して循環される。発電機2
2は高圧タービン2.中圧タービン10および低圧ター
ビン11によって駆動される。
As shown in FIG. 2, a conventional turbine bypass system is a high-pressure turbine bypass device that includes a main steam pipe 3 for passing steam generated from a boiler 1 bypassing a high-pressure turbine 2.
The high-pressure turbine bypass pipe 5 connects the high-pressure turbine bypass pipe 5 to the low-temperature reheat steam pipe 4, and the desuperheater 7 for bypassing the high-pressure turbine bypass pipe 5 to control the steam flow rate. A high pressure turbine check valve 8 is installed. Also, as a low-pressure turbine bypass device, a high-temperature reheat steam pipe 13 and a condenser 12 are used to dump the steam that has passed through the reheater 9 of the boiler to the condensate 812 by bypassing the intermediate-pressure turbine 10 and the low-pressure turbine 11. and a bypass control valve 15 for controlling the steam flow rate of the medium and low pressure turbine bypass pipe 14 and the medium and low pressure turf bin bypass pipe 14, and a desuperheater for controlling the outlet temperature of the bypass control valve 15. It is configured. The water condensed in the condenser 12 is transferred to the condensate pump 17. Low pressure heater8. Deaerator19. Water pump 20. It is sent to the boiler through each of the high-pressure heaters 21, and again to the high-pressure turbine 2, intermediate-pressure turbine 10. It is circulated through the low pressure turbine 11. generator 2
2 is a high pressure turbine 2. It is driven by an intermediate pressure turbine 10 and a low pressure turbine 11.

この従来のタービンバイパス系を有する蒸気タービンプ
ラントでは、中圧、および低圧タービン10、11で起
動、昇速しさらに低負荷を制御する場合と高圧タービン
2あるいは高圧、中圧、低圧タービン2.10.11を
同時に起動、昇速しさらに低負荷を制御する場合とがあ
る。
In this conventional steam turbine plant having a turbine bypass system, there are cases in which the intermediate pressure and low pressure turbines 10 and 11 are started, the speed is increased, and further the low load is controlled, and the high pressure turbine 2 or the high pressure, intermediate pressure, and low pressure turbines 2.10 .11 may be started and accelerated at the same time, and furthermore, a low load may be controlled.

いづれの場合も、起動時、特にコールドスタートあるい
はウオームスタートにおいて、タービンロータの蒸気−
メタルマツチングが厳しい環境になる(ミスマツチが大
きくなる)問題があり、起動時の制御も高圧、中圧、低
圧タービン2,10゜11を同時に考慮しなければなら
ないという繋雑さがある。
In either case, during start-up, especially during a cold start or warm start, the steam in the turbine rotor
There is a problem that metal matching becomes a harsh environment (mismatch becomes large), and control at startup is also complicated in that high pressure, intermediate pressure, and low pressure turbines 2, 10, 11 must be taken into consideration at the same time.

一方、この従来のタービンバイパス系を、二段の再熱器
を有するボイラと組合せた二段再熱式蒸気タービンに適
用すると、事態はさらに複雑になる。
On the other hand, when this conventional turbine bypass system is applied to a two-stage reheat steam turbine in combination with a boiler having two stages of reheaters, the situation becomes even more complicated.

二段の再熱器を有するボイラと組合ぜた二段再熱式蒸気
タービンに前述した従来のタービンバイパス系を適用す
ると第3図に示すようになる。超高圧タービンバイパス
装置として、ボイラ1より発生した超高圧高温の主蒸気
を超高圧タービン23をバイパスして流すための超高圧
主蒸気管24と第一低温再熱蒸気管25とを結ぶ超高圧
タービンバイパス管26と、超高圧タービンバイパス管
26の蒸気流量を制御するためのバイパス制御弁27と
、バイパス制御弁27の出口温度を制御するための減温
器28とで構成され、第一低温再熱蒸気管25には超高
圧タービン排気逆止弁29が設置されている。また、高
圧タービンバイパス装置として、ボイラ1の第一段再熱
器30を通過した蒸気を高圧タービン2をバイパスして
流すための第一高温再熱蒸気管31と第二低温再熱管3
2とを結ぶ高圧タービンバイパス管33と、高圧タービ
ンバイパス管33の蒸気流量を制御するためのバイパス
弁制御34と、バイパス制御弁34の出口温度を制御す
るための減温器35とで構成され、第二低温再熱蒸気管
32には高圧タービン排気逆止弁36が設置されている
。さらに低圧タービンバイパス装置として、ボイラ1の
第二段再熱器37を通過した蒸気を中圧タービン10お
よび低圧タービン11をバイパスして復水器12ヘダン
プするための第二高温再熱蒸気管38と復水器12とを
結ぶ中、低圧タービンバイパス管14と、中、低圧ター
ビンバイパス管14の蒸気流量を制御するためのバイパ
ス制御弁15と、バイパス制御弁15の出口温度を制御
するための減温器1Gとで構成されている。
When the above-described conventional turbine bypass system is applied to a two-stage reheat steam turbine combined with a boiler having a two-stage reheater, the result is as shown in FIG. 3. As an ultra-high-pressure turbine bypass device, an ultra-high-pressure turbine connects an ultra-high-pressure main steam pipe 24 and a first low-temperature reheat steam pipe 25 for flowing ultra-high-pressure, high-temperature main steam generated from the boiler 1 bypassing the ultra-high-pressure turbine 23. The first low temperature An ultra-high pressure turbine exhaust check valve 29 is installed in the reheat steam pipe 25 . Also, as a high-pressure turbine bypass device, a first high-temperature reheat steam pipe 31 and a second low-temperature reheat pipe 3 are used to flow steam that has passed through the first stage reheater 30 of the boiler 1 while bypassing the high-pressure turbine 2.
2, a bypass valve control 34 for controlling the steam flow rate of the high pressure turbine bypass pipe 33, and a desuperheater 35 for controlling the outlet temperature of the bypass control valve 34. A high-pressure turbine exhaust check valve 36 is installed in the second low-temperature reheat steam pipe 32 . Further, as a low-pressure turbine bypass device, a second high-temperature reheat steam pipe 38 is used to dump the steam that has passed through the second stage reheater 37 of the boiler 1 to the condenser 12, bypassing the intermediate-pressure turbine 10 and the low-pressure turbine 11. and the condenser 12, a low pressure turbine bypass pipe 14, a bypass control valve 15 for controlling the steam flow rate of the middle and low pressure turbine bypass pipe 14, and a bypass control valve 15 for controlling the outlet temperature of the bypass control valve 15. It consists of a desuperheater 1G.

復水器12で凝縮した水は復水ポンプ17.低圧ヒータ
18.脱気器19.給水ポンプ20.高圧ヒータ21を
各々を通ってボイラ1に送られ、再び超高圧タービン2
3.高圧タービン2、中圧タービン10および低圧ター
ビン11を通して循環する1発電機22は超高圧タービ
ン23.高圧タービン2.中圧タービン10および低圧
タービン11によって駆動される。
The water condensed in the condenser 12 is transferred to the condensate pump 17. Low pressure heater 18. Deaerator19. Water pump 20. It passes through each high pressure heater 21 and is sent to the boiler 1, and then again to the ultra high pressure turbine 2.
3. 1 generator 22 circulates through the high-pressure turbine 2, the intermediate-pressure turbine 10 and the low-pressure turbine 11, the ultra-high pressure turbine 23. High pressure turbine 2. It is driven by an intermediate pressure turbine 10 and a low pressure turbine 11.

(発明が解決しようとする課題) ところで、化石燃料の不足に伴う蒸気タービンプラント
の性能向上の重要開発機種として主蒸気圧力、温度を従
来の機種より高めた超高圧高温タービンの開発が進んで
いる0国内では従来の主蒸気入口条件である246kg
f/ad、 538℃を上回る316kgf/ad、 
566℃の超高圧高温タービンの開発が完了し、すでに
建設が進んでおり、世界的には316kgf/ci、 
593℃級あるいは3501g(f/a& 、 593
℃級のタービンの開発が進められている。これらの超高
圧高温タービンは基本的には二段の再熱器を有する二段
再熱式の蒸気タービンプラントである。この二段再熱式
超高圧高温タービンの場合、起動時のタービン制御が前
述した一段再熱式タービンに比し一段と複雑になり、起
動時の蒸気−メタルミスマツチングもタービンバイパス
系があることによるボイラ負荷上昇率(蒸気温度上昇率
)の向上とあいまって超高圧高温タービンの各タービン
ロータはミスマツチングによる影響を強く受けることに
なる。さらに、超高圧高温タービンの場合。
(Problem to be solved by the invention) By the way, as an important development model for improving the performance of steam turbine plants due to the shortage of fossil fuels, the development of ultra-high pressure and high temperature turbines with higher main steam pressure and temperature than conventional models is progressing. 0 In Japan, the conventional main steam inlet condition is 246 kg.
f/ad, 316kgf/ad over 538℃,
The development of a 566℃ ultra-high-pressure, high-temperature turbine has been completed and construction is already underway, with worldwide production capacity of 316kgf/ci,
593℃ class or 3501g (f/a&, 593
℃ class turbines are being developed. These ultra-high pressure, high temperature turbines are essentially two-stage reheat steam turbine plants with two-stage reheaters. In the case of this two-stage reheat type ultra-high-pressure, high-temperature turbine, turbine control at startup is more complicated than that of the single-stage reheat turbine described above, and steam-metal mismatching at startup is also caused by the presence of a turbine bypass system. Coupled with the increase in boiler load increase rate (steam temperature increase rate), each turbine rotor of an ultra-high pressure and high temperature turbine will be strongly affected by mismatching. Additionally, for ultra-high pressure and high temperature turbines.

蒸気タービンの部品材料にマルテンサイト系ステンレス
鋼やオーステナイト系ステンレス鋼が使用されるため、
タービンの伸び差に対しては従来以上の厳しい設計が要
求される。この点でも従来のタービンバイパス系をその
まま適用することは非常に困薙である。
Martensitic stainless steel and austenitic stainless steel are used as materials for steam turbine parts.
A stricter design than before is required to deal with the difference in turbine expansion. In this respect as well, it is extremely difficult to apply the conventional turbine bypass system as it is.

本発明の目的はタービン起動時、高圧タービンおよび中
圧タービンへ温度調節された再熱蒸気を流すことにより
これらの高圧タービンおよび中圧タービンにおける風損
による発熱を防止し得るようにしたタービンバイパス装
置を有する二段再熱式蒸気タービンプラントを提供する
ことにある。
An object of the present invention is to provide a turbine bypass device that prevents heat generation due to wind damage in a high-pressure turbine and an intermediate-pressure turbine by flowing temperature-controlled reheated steam to the high-pressure turbine and intermediate-pressure turbine when the turbine is started. An object of the present invention is to provide a two-stage reheat steam turbine plant having the following features.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は上記課題を解決するために二段の再熱器を有す
るボイラで発生した蒸気が超高圧主蒸気管を経て超高圧
タービンに導かれ、この超高圧タービンからボイラの第
一段再熱器に第一低温再熱蒸気管を通して送られて加熱
され、さらに第一高温再熱蒸気管を経て高圧タービンに
導かれ、この高圧タービンからボイラの第二段再熱器に
第二低温再熱蒸気管を通して送られ、さらに第二高温再
熱蒸気管を経て中圧タービンおよび低圧タービンに順次
導かれるようになっている二段再熱式蒸気タービンプラ
ントにおいて、超高圧主蒸気管から分岐されて超高圧タ
ービンをバイパスして第−段再熱鼎に至るバイパス制御
弁を備えた超高圧タービンバイパス管、第一高温再熱蒸
気管から分岐されて高圧タービンをバイパスして第二段
再熱器に至るバイパス制御弁を有する高圧タービンバイ
パス管、第二高温再熱蒸気管から分岐されて中圧タービ
ンおよび低圧タービンをバイパスして復水器に至るバイ
パス制御弁を備えた中、低圧タービンバイパス管をそれ
ぞれ設けると共に、超高圧タービン排気側と第一高温再
熱蒸気管とを連絡する第一タービン排気連絡管を排気制
御弁を介して、また高圧タービンの排気側と第二高温再
熱蒸気管とを連絡する第二タービン排気連絡管を排気制
御弁を介して各々設けたことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides that steam generated in a boiler having a two-stage reheater is guided to an ultra-high pressure turbine via an ultra-high pressure main steam pipe, and the ultra-high pressure The steam is sent from the turbine to the first stage reheater of the boiler through the first low-temperature reheat steam pipe, where it is heated, and further led to the high-pressure turbine through the first high-temperature reheat steam pipe, and from this high-pressure turbine to the second stage of the boiler. In a two-stage reheat steam turbine plant, the steam is sent to a reheater through a second low-temperature reheat steam pipe, and then sequentially to an intermediate-pressure turbine and a low-pressure turbine via a second high-temperature reheat steam pipe, An ultra-high-pressure turbine bypass pipe branched from the ultra-high-pressure main steam pipe and equipped with a bypass control valve to bypass the ultra-high-pressure turbine and reach the first stage reheating pipe; an ultra-high-pressure turbine bypass pipe that is branched from the first high-temperature reheat steam pipe and connected to the high-pressure turbine; A high-pressure turbine bypass pipe having a bypass control valve that bypasses and leads to the second stage reheater, and a bypass control valve that is branched from the second high-temperature reheat steam pipe and bypasses the intermediate-pressure turbine and the low-pressure turbine and leads to the condenser. A first turbine exhaust connecting pipe connecting the ultra-high pressure turbine exhaust side and the first high-temperature reheat steam pipe is connected to the high-pressure turbine exhaust side via an exhaust control valve. The present invention is characterized in that second turbine exhaust communication pipes are provided to communicate the side and the second high-temperature reheat steam pipes via exhaust control valves.

(作  用) タービン起動時に高圧タービンと中圧タービンの風損に
よる温度上昇を減少させる手段として超高圧タービンの
排気側と第一高温再熱蒸気管とを連絡する第一タービン
排気連絡管および高圧タービンの排気側と第二高温再熱
蒸気管とを連絡する第二タービン排気連絡管をそれぞれ
設け、高圧タービン、中圧タービンおよび低圧タービン
により蒸気タービンの起動を図り、この際超高圧タービ
ンには風損による温度上昇を減少させるためにり−リン
グ蒸気を流すようにする。これにより高圧タービンおよ
び中圧タービンでの風損による発熱を抑制する一方超高
圧タービンではクーリング蒸気が確保され、排気温度の
上昇が防止される。
(Function) As a means of reducing the temperature rise due to windage in the high-pressure turbine and intermediate-pressure turbine during turbine startup, the first turbine exhaust connecting pipe and the high-pressure turbine connect the exhaust side of the ultra-high pressure turbine and the first high-temperature reheat steam pipe A second turbine exhaust connecting pipe is provided to connect the exhaust side of the turbine with the second high-temperature reheat steam pipe, and the steam turbine is started by a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine. A ring steam flow is provided to reduce temperature rise due to windage. This suppresses heat generation due to wind damage in the high-pressure turbine and intermediate-pressure turbine, while ensuring cooling steam in the ultra-high-pressure turbine, preventing a rise in exhaust gas temperature.

(実 施 例) 以下、本発明の一実施例を図面を参照して説明する。第
一図は二段再熱器を有するボイラと組合され、かつター
ビンバイパス装置を有する二段再熱式蒸気タービンプラ
ントを示したものである。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a two-stage reheat steam turbine plant combined with a boiler having a two-stage reheater and having a turbine bypass device.

タービン起動の初期においてはボイラ1より発生した蒸
気は主蒸気管24を通り、バイパス制御弁27で流量制
御され、減温器28で温度降下して第一低温再熱管蒸気
25を通って第一段再熱器30に導かれる。蒸気は第一
再熱器30で温度のみ回復して第一高温再熱蒸気管31
を通り、バイパス弁制御34で流量制御され、減温器3
5で温度降下して第二低温再熱蒸気管32を経て第二再
熱器37に流れる。さらに蒸気は第二段再熱器37で温
度のみ回復して第二高温再熱蒸気管38を通って中、低
圧タービンバイパス管14を通り、減温器16でさらに
減温されて復水器へ排出される。このタービンバイパス
系の運転状態では、主蒸気止め弁39、第−再熱蒸気止
め弁41、第二再熱蒸気止め弁43は全開状態でウオー
ミングされている。このタービンバイパス系の運転状態
から主蒸気加減弁40を開いてバイパス制御弁27を通
って第一段再熱器30へ流れていた蒸気の一部を超高圧
タービン23へ流すと共に、第一再熱蒸気加減弁42を
開いてバイパス制御弁34を通って第二段再熱器37へ
流れていた蒸気の一部を高圧タービン2へ流し、さらに
第二再熱蒸気加減弁44を開いてバイパス制御弁15を
通って復水器12へ流れていた蒸気の一部が中圧タービ
ン10および低圧タービン11を通って流れるようにし
て通気し1回転上昇を行う。また同時に排気制御弁46
を開いて第一低温再熱蒸気管25を流れていた蒸気の一
部を第一タービン排気連絡管45を通して第一高温再熱
蒸気管31へ流し、第一段再熱器30で加熱された蒸気
と混合させる。これにより再熱蒸気の温度が調節される
。さらに排気制御分48を開いて第二低温再熱蒸気管3
2を流れていた蒸気の一部を第2タービン排気連絡管4
7を通して第二高温再熱蒸気管38へ流し、第二段再熱
器37で加熱された蒸気と混合させる。これに再熱蒸気
の温度が調節され、高圧タービン2.中圧タービン10
.および低圧タービン11に必要なり−リング蒸気を供
給する。この状態から超高圧タービン23.高圧タービ
ン2、中圧タービン10および低圧タービン11のメタ
ルマツチング、伸び差等を考慮しつつ、排気制御弁46
および排気制御弁48を調整しながら負荷を上昇させて
いく。
At the initial stage of turbine startup, the steam generated from the boiler 1 passes through the main steam pipe 24, the flow rate is controlled by the bypass control valve 27, the temperature is lowered by the attemperator 28, and the steam is passed through the first low-temperature reheat pipe steam 25 to the first steam. It is led to a stage reheater 30. Only the temperature of the steam is recovered in the first reheater 30 and then transferred to the first high temperature reheat steam pipe 31
The flow rate is controlled by the bypass valve control 34, and the desuperheater 3
5, and flows through the second low-temperature reheat steam pipe 32 to the second reheater 37. Further, the steam only recovers its temperature in the second stage reheater 37, passes through the second high temperature reheat steam pipe 38, passes through the medium and low pressure turbine bypass pipe 14, is further reduced in temperature in the desuperheater 16, and is transferred to the condenser. is discharged to. In this operating state of the turbine bypass system, the main steam stop valve 39, the first reheat steam stop valve 41, and the second reheat steam stop valve 43 are fully open and warmed. From this operating state of the turbine bypass system, the main steam control valve 40 is opened to allow part of the steam that had been flowing to the first stage reheater 30 through the bypass control valve 27 to flow to the ultra-high pressure turbine 23, and to The hot steam control valve 42 is opened and a part of the steam that was flowing to the second stage reheater 37 passes through the bypass control valve 34 to flow to the high pressure turbine 2, and then the second reheat steam control valve 44 is opened and the steam is bypassed. A portion of the steam that has been flowing to the condenser 12 through the control valve 15 is vented to flow through the intermediate pressure turbine 10 and the low pressure turbine 11 to perform a one-rotation rise. At the same time, the exhaust control valve 46
After opening, a part of the steam flowing through the first low-temperature reheat steam pipe 25 flows through the first turbine exhaust connecting pipe 45 to the first high-temperature reheat steam pipe 31, where it is heated by the first stage reheater 30. Mix with steam. This adjusts the temperature of the reheated steam. Furthermore, the exhaust control portion 48 is opened and the second low temperature reheat steam pipe 3 is opened.
A part of the steam flowing through the second turbine exhaust connecting pipe 4
7 to the second high temperature reheat steam pipe 38 and mixed with the steam heated in the second stage reheater 37. The temperature of the reheated steam is adjusted to this, and the high pressure turbine 2. Medium pressure turbine 10
.. and supplies the necessary ring steam to the low pressure turbine 11. From this state, the ultra-high pressure turbine 23. The exhaust control valve 46 is
Then, the load is increased while adjusting the exhaust control valve 48.

この過程で超高圧タービン23の排気圧力が上昇し、超
高圧タービン排気逆止弁29の弁開の設定値より高くな
り、また高圧タービン2の排気圧力が上昇し、高圧ター
ビン排気逆止弁36の弁開の設定値より高くなることに
よって超高圧タービン排気逆止弁29および高圧タービ
ン排気逆止弁36が全開する。
In this process, the exhaust pressure of the ultra-high-pressure turbine 23 increases and becomes higher than the valve opening setting value of the ultra-high-pressure turbine exhaust check valve 29, and the exhaust pressure of the high-pressure turbine 2 also increases, causing the high-pressure turbine exhaust check valve 36 to rise. The ultra-high-pressure turbine exhaust check valve 29 and the high-pressure turbine exhaust check valve 36 are fully opened by becoming higher than the valve opening setting value.

この後、主蒸気加減弁40、第一再熱蒸気加減弁42お
よび第二再熱蒸気加減弁44を開けて行き、これと共に
バイパス制御弁27.バイパス制御弁34およびバイパ
ス制御弁15を全閉する。この状態よりさらに負荷上昇
するに際しては主蒸気加減弁40のみで蒸気量を増加し
て行く。
Thereafter, the main steam control valve 40, the first reheat steam control valve 42, and the second reheat steam control valve 44 are opened, and at the same time, the bypass control valve 27. Bypass control valve 34 and bypass control valve 15 are fully closed. When the load increases further from this state, the amount of steam is increased only by the main steam control valve 40.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、蒸気タービン起動時
に各再熱蒸気の温度を容易に制御できることから、高圧
タービン、中圧タービン、低圧タービンの過熱を減少さ
せる効果がある。
As described above, according to the present invention, since the temperature of each reheated steam can be easily controlled when starting the steam turbine, there is an effect of reducing overheating of the high-pressure turbine, intermediate-pressure turbine, and low-pressure turbine.

また、本発明によれば通常運転時においても、第一ター
ビン排気連絡管および第二タービン排気連絡管を使用す
ることによって、各再熱蒸気の温度を容易に制御できる
Further, according to the present invention, even during normal operation, by using the first turbine exhaust communication pipe and the second turbine exhaust communication pipe, the temperature of each reheated steam can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すタービンバイパス装置
を有する二段再熱式蒸気タービンプラントの系統図、第
2図は従来のタービンバイパス装置を有する蒸気タービ
ンプラントの系統図、第3図は従来のタービンバイパス
装置を二段再熱式タービンプラントに適用した時の蒸気
タービンプラントの系統図を示す。 1・・・ボイラ      2・・・高圧タービン10
・・・中圧タービン   11・・・低圧タービンl2
・・・復水器 14・・・中、低圧タービンバイパス管15、27.3
4・・・バイパス制御弁23・・・超高圧タービン  
24・・・超高圧主蒸気管26・・・超高圧タービンバ
イパス管 30・・・第一段再熱管 31・・・第一高温再熱蒸気管 33・・・高圧タービンバイパス管 37・・・第二段再熱器 38・・・第二高温再熱蒸気管 45・・・第一タービン排気連絡管 46、48・・・排気制御弁 47・・・第二タービン排気連絡管 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図
FIG. 1 is a system diagram of a two-stage reheat steam turbine plant having a turbine bypass device showing an embodiment of the present invention, FIG. 2 is a system diagram of a steam turbine plant having a conventional turbine bypass device, and FIG. 3 is a system diagram of a steam turbine plant having a conventional turbine bypass device. shows a system diagram of a steam turbine plant when a conventional turbine bypass device is applied to a two-stage reheat turbine plant. 1...Boiler 2...High pressure turbine 10
...Intermediate pressure turbine 11...Low pressure turbine l2
... Condenser 14 ... Medium and low pressure turbine bypass pipes 15, 27.3
4...Bypass control valve 23...Ultra high pressure turbine
24...Ultra high pressure main steam pipe 26...Ultra high pressure turbine bypass pipe 30...First stage reheat pipe 31...First high temperature reheat steam pipe 33...High pressure turbine bypass pipe 37... Second stage reheater 38...Second high temperature reheat steam pipe 45...First turbine exhaust communication pipe 46, 48...Exhaust control valve 47...Second turbine exhaust communication pipe agent Patent attorney Nori Chika Ken Yudo Daishimaru Ken Diagram 1

Claims (1)

【特許請求の範囲】[Claims] 二段の再熱器を有するボイラで発生した蒸気が超高圧主
蒸気管を経て超高圧タービンに導かれ、この超高圧ター
ビンから前記ボイラの第一段再熱器に第一低温再熱蒸気
管を通して送られ、さらに第一高温再熱蒸気管を経て高
圧タービンに導かれ、この高圧タービンから前記ボイラ
の第二段再熱器に第二低温再熱蒸気管を通して送られ、
さらに第二高温再熱蒸気管を経て中圧タービンおよび低
圧タービンに順次導かれるようになっている二段再熱式
蒸気タービンプラントにおいて、前記超高圧主蒸気管か
ら分岐されて前記超高圧タービンをバイパスして前記第
一段再熱器に至るバイパス制御弁を備えた超高圧タービ
ンバイパス管、前記第一高温再熱蒸気管から分岐されて
前記高圧タービンをバイパスして前記第二段再熱器に至
るバイパス制御弁を有する高圧タービンバイパス管、前
記第二高温再熱蒸気管から分岐されて前記中圧タービン
および低圧タービンをバイパスして復水器に至るバイパ
ス制御弁を備えた中、低圧タービンバイパス管をそれぞ
れ設けると共に、前記第一低温再熱蒸気管と前記第一高
温再熱蒸気管とを連絡する第一タービン排気連絡管を排
気制御弁を介して、また前記第二低温再熱蒸気管と前記
第二高温再熱蒸気管とを連絡する第二タービン排気連絡
管を排気制御弁を介して各々設けたことを特徴とするタ
ービンバイパス装置を有する二段再熱式蒸気タービンプ
ラント。
Steam generated in a boiler with a two-stage reheater is led to an ultra-high pressure turbine via an ultra-high pressure main steam pipe, and from this ultra-high pressure turbine to the first stage reheater of the boiler, a first low-temperature reheat steam pipe is introduced. through a first high-temperature reheat steam pipe to a high-pressure turbine, and from the high-pressure turbine to a second stage reheater of the boiler through a second low-temperature reheat steam pipe;
Further, in a two-stage reheat steam turbine plant in which the steam is sequentially guided to an intermediate pressure turbine and a low pressure turbine via a second high temperature reheat steam pipe, the ultra high pressure turbine is branched from the ultra high pressure main steam pipe. an ultra-high-pressure turbine bypass pipe equipped with a bypass control valve that bypasses the first-stage reheater; and an ultra-high-pressure turbine bypass pipe that is branched from the first high-temperature reheat steam pipe and bypasses the high-pressure turbine to the second-stage reheater. a high-pressure turbine bypass pipe having a bypass control valve leading to the second high-temperature reheat steam pipe; a medium- and low-pressure turbine having a bypass control valve branching from the second high-temperature reheat steam pipe to bypass the intermediate-pressure turbine and the low-pressure turbine and leading to the condenser; Bypass pipes are respectively provided, and a first turbine exhaust connecting pipe connecting the first low temperature reheat steam pipe and the first high temperature reheat steam pipe is connected to the second low temperature reheat steam pipe through an exhaust control valve. A two-stage reheat steam turbine plant having a turbine bypass device, characterized in that second turbine exhaust communication pipes are provided to connect the pipes and the second high-temperature reheat steam pipes via exhaust control valves.
JP10130488A 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device Pending JPH01273804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10130488A JPH01273804A (en) 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10130488A JPH01273804A (en) 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device

Publications (1)

Publication Number Publication Date
JPH01273804A true JPH01273804A (en) 1989-11-01

Family

ID=14297073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10130488A Pending JPH01273804A (en) 1988-04-26 1988-04-26 Two stage reheating steam turbine plant having turbine bypass device

Country Status (1)

Country Link
JP (1) JPH01273804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531844A (en) * 2012-08-14 2015-11-05 シーメンス アクティエンゲゼルシャフト A method for storing and releasing heat from a regenerator and a facility for storing and releasing thermal energy suitable for the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531844A (en) * 2012-08-14 2015-11-05 シーメンス アクティエンゲゼルシャフト A method for storing and releasing heat from a regenerator and a facility for storing and releasing thermal energy suitable for the method

Similar Documents

Publication Publication Date Title
US5784888A (en) Method and apparatus of conversion of a reheat steam turbine power plant to a no-reheat combined cycle power plant
KR890002916B1 (en) Steam turbine plant having a turbine bypass system
JPH06264763A (en) Combined plant system
JP5860597B2 (en) System and method for preheating exhaust heat recovery boiler piping
KR20070120172A (en) Method for starting a gas and steam turbine system
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPS6336004A (en) Method for starting steam turbine plant
JP3926048B2 (en) Combined cycle power plant
JPH01273804A (en) Two stage reheating steam turbine plant having turbine bypass device
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPH01273805A (en) Two stage reheating steam turbine plant having turbine bypass device
JPH01285605A (en) Method and device of starting 2-stage reheat type steam turbine plant
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JP2558740B2 (en) How to start up a two-stage reheat steam turbine plant
JPH01318706A (en) Bypass device for turbine of two stage reheating turbine
JP2870759B2 (en) Combined power generator
JPH02259301A (en) Waste heat recovery boiler
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JP2563375B2 (en) How to start up a two-stage reheat steam turbine plant
JP4014948B2 (en) Multi-axis combined cycle plant and control method thereof
JP3880746B2 (en) Waste heat recovery device and operation method thereof