JP2677598B2 - Start-up method for two-stage reheat steam turbine plant. - Google Patents

Start-up method for two-stage reheat steam turbine plant.

Info

Publication number
JP2677598B2
JP2677598B2 JP63111604A JP11160488A JP2677598B2 JP 2677598 B2 JP2677598 B2 JP 2677598B2 JP 63111604 A JP63111604 A JP 63111604A JP 11160488 A JP11160488 A JP 11160488A JP 2677598 B2 JP2677598 B2 JP 2677598B2
Authority
JP
Japan
Prior art keywords
turbine
pressure turbine
steam
control valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63111604A
Other languages
Japanese (ja)
Other versions
JPH01285606A (en
Inventor
知幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63111604A priority Critical patent/JP2677598B2/en
Publication of JPH01285606A publication Critical patent/JPH01285606A/en
Application granted granted Critical
Publication of JP2677598B2 publication Critical patent/JP2677598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はタービンバイパス装置を有する二段再熱式蒸
気タービンプラントの起動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a method for starting a two-stage reheat steam turbine plant having a turbine bypass device.

(従来の技術) タービンバイパス系はボイラと蒸気タービンとの相互
の制約を解消または緩和することによってプラント運転
の柔軟性を高める目的で設置されるもので、次の様な機
能を有することを特徴とする。まず、第一の機能はボイ
ラ負荷とタービン負荷の差の吸収であり、ボイラの負荷
応答性を超える急激な負荷変化に対応してその時の応答
遅れを吸収すると共に、送電系統の事故等により所内単
独負荷運転に移行する場合の余剰蒸気の排出を可能とす
る。また、第二の機能としては起動特性の向上であり、
起動時に再熱器の蒸気冷却を行なうことによって再熱器
の焼損を防止しながらボイラ燃焼率を高めると共に、タ
ービン通気時のメタルマッチング(タービン内蒸気通路
部の温度と通気蒸気との温度差をできるだけ小さくす
る)を容易に行なえることである。第三の機能は過熱器
安全弁および再熱器安全弁としての機能を果し、特に変
圧運転プラントと組合せる場合の圧力上昇を抑えること
ができる。
(Prior Art) A turbine bypass system is installed for the purpose of increasing flexibility in plant operation by eliminating or relaxing mutual restrictions between a boiler and a steam turbine, and is characterized by having the following functions. And First, the first function is to absorb the difference between the boiler load and the turbine load.It absorbs the response delay at that time in response to a sudden load change that exceeds the load response of the boiler, and at the same time, due to an accident in the power transmission system, etc. Enables the discharge of excess steam when shifting to single load operation. Also, the second function is to improve the startup characteristics,
By cooling the reheater steam at startup, the boiler combustion rate is increased while preventing burnout of the reheater, and metal matching during turbine ventilation (the temperature difference between the steam passage in the turbine and the ventilation steam is It should be as small as possible). The third function serves as a superheater safety valve and a reheater safety valve, and can suppress a pressure increase particularly when combined with a variable pressure plant.

上記の機能をふまえて、従来のタービンバイパス系は
第2図に示す如く、高圧タービンバイパス装置として、
ボイラ1より発生した蒸気を高圧タービン2をバイパス
して流すために主蒸気管3と低温再熱蒸気管4とを結ぶ
高圧タービンバイパス管5と、高圧タービンバイパス管
5の蒸気流量を制御するためのバイパス制御弁6と、こ
のバイパス制御弁6の出口温度を制御するための減温器
7とで構成され、低温再熱蒸気管4には高圧タービン排
気逆止弁8が配置されている。また、低圧タービンバイ
パス装置として、ボイラの再熱器9を通過した蒸気を中
圧タービン10および低圧タービン11とをバイパスして復
水器12へダンプするために高温再熱蒸気管13と復水器12
とを結ぶ中,低圧タービンバイパス管14と、この中,低
圧タービンバイパス管14の蒸気流量を制御するためのバ
イパス制御弁15と、バイパス制御弁15の出口温度を制御
するための減温器16とで構成されている。復水器12で凝
縮した水は復水ポンプ17、低圧ヒータ18、脱気気19、給
水ポンプ20、高圧ヒータ21の各々を通ってボイラ1に送
られ、再び蒸気となり循環される。また、通常運用時
は、前述のタービンパイパス系は使用されず、ボイラ1
により発生した蒸気は高圧タービン2、再熱器9、中圧
タービン10、低圧タービン11を通して循環される。発電
機22は高圧タービン2、中圧タービン10および低圧ター
ビン11によって駆動される。なお、符号23は主蒸気止め
弁、符号24は蒸気加減弁を示している。
Based on the above functions, the conventional turbine bypass system is a high pressure turbine bypass device as shown in FIG.
To control the steam flow rate of the high-pressure turbine bypass pipe 5 and the high-pressure turbine bypass pipe 5 that connects the main steam pipe 3 and the low-temperature reheat steam pipe 4 in order to flow the steam generated from the boiler 1 by-passing the high-pressure turbine 2. A bypass control valve 6 and a desuperheater 7 for controlling the outlet temperature of the bypass control valve 6, and a high pressure turbine exhaust check valve 8 is arranged in the low temperature reheat steam pipe 4. In addition, as a low-pressure turbine bypass device, the steam that has passed through the reheater 9 of the boiler is bypassed with the intermediate-pressure turbine 10 and the low-pressure turbine 11 and dumped to the condenser 12, and the high-temperature reheat steam pipe 13 and the condensate are condensed. Bowl 12
The low pressure turbine bypass pipe 14, the bypass control valve 15 for controlling the steam flow rate of the low pressure turbine bypass pipe 14, and the desuperheater 16 for controlling the outlet temperature of the bypass control valve 15. It consists of and. The water condensed in the condenser 12 is sent to the boiler 1 through each of the condensate pump 17, the low-pressure heater 18, the degassed air 19, the feed water pump 20, and the high-pressure heater 21, and becomes steam again to be circulated. Also, during normal operation, the above-mentioned turbine bypass system is not used and the boiler 1
The steam generated by the above is circulated through the high pressure turbine 2, the reheater 9, the intermediate pressure turbine 10, and the low pressure turbine 11. The generator 22 is driven by the high pressure turbine 2, the intermediate pressure turbine 10 and the low pressure turbine 11. Reference numeral 23 indicates a main steam stop valve, and reference numeral 24 indicates a steam control valve.

この従来のタービンバイパス系統を有する蒸気タービ
ンプラントでは、起動方式として下記の2つの方法があ
るが、各々一長一短がある。まず第一の方法として、中
圧タービン10および低圧タービン11で起動、昇速し、さ
らに低負荷を制御する。この場合は中圧タービン10の入
口圧力が低いため制御性が良いという長所がある反面、
高圧タービン2内は蒸気加減弁24から僅かに漏洩する蒸
気で再熱蒸気管の圧力に近い蒸気圧力の状態となってい
るため、この中でロータが定格回転数で回転すると蒸気
と動翼の摩擦による風損により高圧タービン2内の蒸気
温度が過上昇し、この温度が高圧タービン2内のロータ
および動翼の強度にとって厳しい条件になるという問題
があり、また、高圧タービン2のケーシングとロータの
伸び差に異常が生じるという問題がある。
In the steam turbine plant having the conventional turbine bypass system, there are the following two methods as starting methods, but each method has advantages and disadvantages. First, as a first method, the medium pressure turbine 10 and the low pressure turbine 11 are started and accelerated to control a low load. In this case, since the inlet pressure of the intermediate pressure turbine 10 is low, the controllability is good, but on the other hand,
The inside of the high-pressure turbine 2 is in a state of a steam pressure close to the pressure of the reheat steam pipe due to the steam slightly leaking from the steam control valve 24. There is a problem that the steam temperature in the high-pressure turbine 2 excessively rises due to wind loss due to friction, and this temperature becomes a severe condition for the strength of the rotor and the moving blades in the high-pressure turbine 2, and the casing and the rotor of the high-pressure turbine 2 are present. There is a problem that the difference in elongation between the two becomes abnormal.

次に、第二の方法として、高圧タービン2のみ、ある
いは高圧タービン2と中圧タービン10と低圧タービン11
で同時に起動・昇速し、さらに低負荷を制御する場合が
ある。この場合には高圧タービン2に冷却蒸気が流れて
いるため、高圧タービン2内の温度上昇は比較的低く維
持されるので問題にならない反面、高圧タービン2の蒸
気−メタルマッチングと、中圧タービン10および低圧タ
ービン11の蒸気−メタルマッチングを同時に考慮して制
御しなければならないという制御上の難しさがある。
Next, as a second method, only the high-pressure turbine 2 or the high-pressure turbine 2, the intermediate-pressure turbine 10, and the low-pressure turbine 11 are used.
There is a case that start up and speed up at the same time to control a low load. In this case, since the cooling steam is flowing through the high-pressure turbine 2, the temperature rise in the high-pressure turbine 2 is kept relatively low, which is not a problem, but the steam-metal matching of the high-pressure turbine 2 and the intermediate-pressure turbine 10 Also, there is a control difficulty in that the steam-metal matching of the low-pressure turbine 11 must be considered and controlled at the same time.

この従来のタービンバイパス系を二段の再熱器を有す
るボイラと組合せた二段再熱式蒸気タービンプラントに
適用すると、第3図に示すようになる。超高圧タービン
バイパス装置として、ボイラ1より発生した超高圧高温
蒸気を超高圧タービン25をバイパスして流すために超高
圧主蒸気管26と第一低温再熱蒸気管27とを結ぶ超高圧タ
ービンバイパス管28と、超高圧タービンバイパス管28の
蒸気流流量を制御するためのバイパス制御弁29と、バイ
パス制御弁29の出口温度を制御するための減温器30とで
構成され、第一低温再熱蒸気管27には超高圧タービン排
気逆止弁31が設置されている。また、高圧タービンバイ
パス装置としての、ボイラの第一段再熱器32を通過した
蒸気を高圧タービン2をバイパスして流すための第一高
温再熱蒸気管36と第二低温再熱蒸気管37とを結ぶ高圧タ
ービンバイパス管38と、高圧タービンバイパス管38の蒸
気流量を制御するためのバイパス制御弁39と、バイパス
制御弁39の出口温度を制御するための減温器40とで構成
され、第二低温再熱蒸気管37には高圧タービン排気逆止
弁41が設置されている。さらに、低圧タービンバイパス
装置として、ボイラの第二段再熱器42を通過した蒸気を
中圧タービン10および低圧タービン11をバイパスして復
水器12へダンプするために第二高温再熱蒸気管43と復水
器12とを結ぶ中,低圧タービンバイパス管14と、中,低
圧タービンバイパス管14の蒸気流量を制御するためのバ
イパス制御弁15と、バイパス制御弁15の出口温度を制御
するための減温器16とで構成されている。復水器12で凝
縮した水は復水ポンプ17、低圧ヒータ18、脱気器19、給
水ポンプ20、高圧ヒータ21の各々を通ってボイラ1に送
られ、再び蒸気となり循環される。また、通常運用時に
は、前述のタービンバイパス系は使用されず、ボイラ1
より発生した蒸気は超高圧タービン25、第一段再熱器3
2、高圧タービン2、第二段再熱器42、中圧タービン1
0、低圧タービン11を通して循環される。発電機22は超
高圧タービン25、高圧タービン2、中圧タービン10、低
圧タービン11により駆動される。なお、符号44は排気
管、45は主蒸気止め弁、46は蒸気加減弁をそれぞれ示し
ている。
When this conventional turbine bypass system is applied to a two-stage reheat type steam turbine plant in which a boiler having a two-stage reheater is combined, it becomes as shown in FIG. As an ultra-high pressure turbine bypass device, an ultra-high pressure turbine bypass that connects the ultra-high pressure main steam pipe 26 and the first low-temperature reheat steam pipe 27 to allow the ultra-high pressure high-temperature steam generated from the boiler 1 to flow by bypassing the ultra-high pressure turbine 25. The pipe 28, a bypass control valve 29 for controlling the steam flow rate of the ultra-high pressure turbine bypass pipe 28, and a desuperheater 30 for controlling the outlet temperature of the bypass control valve 29. An ultra high pressure turbine exhaust check valve 31 is installed in the hot steam pipe 27. In addition, as a high-pressure turbine bypass device, a first high-temperature reheat steam pipe 36 and a second low-temperature reheat steam pipe 37 for allowing the steam that has passed through the first-stage reheater 32 of the boiler to bypass the high-pressure turbine 2 and flow. A high-pressure turbine bypass pipe 38 that connects with, a bypass control valve 39 for controlling the steam flow rate of the high-pressure turbine bypass pipe 38, and a desuperheater 40 for controlling the outlet temperature of the bypass control valve 39, A high pressure turbine exhaust check valve 41 is installed in the second low temperature reheat steam pipe 37. Further, as a low-pressure turbine bypass device, a second high-temperature reheat steam pipe is used for dumping steam that has passed through the second-stage reheater 42 of the boiler into the condenser 12 by bypassing the intermediate-pressure turbine 10 and the low-pressure turbine 11. In order to control the outlet temperature of the low pressure turbine bypass pipe 14, the bypass control valve 15 for controlling the steam flow rate of the medium and low pressure turbine bypass pipe 14, and the outlet temperature of the bypass control valve 15 while connecting the condenser 43 to the condenser 12. It is composed of the desuperheater 16 and. The water condensed in the condenser 12 is sent to the boiler 1 through each of the condensate pump 17, the low-pressure heater 18, the deaerator 19, the feed water pump 20, and the high-pressure heater 21, and becomes steam again to be circulated. Further, during normal operation, the turbine bypass system described above is not used, and the boiler 1
The generated steam is the super high pressure turbine 25, the first stage reheater 3
2, high pressure turbine 2, second stage reheater 42, medium pressure turbine 1
0, circulated through low pressure turbine 11. The generator 22 is driven by an ultra-high pressure turbine 25, a high pressure turbine 2, an intermediate pressure turbine 10 and a low pressure turbine 11. Reference numeral 44 is an exhaust pipe, 45 is a main steam stop valve, and 46 is a steam control valve.

(発明が解決しようとする課題) 蒸気タービンプラントの性能向上の重要開発機種とし
て、主蒸気圧力、温度を従来の機種より高めた超高圧高
温蒸気タービンの開発が進んでおり、国内では従来機種
の主蒸気入口条件である246kgf/cm2/538℃を上回る316k
gf/cm2/566℃の超高圧高温蒸気タービンの開発が完了
し、すでに建設が進められている。これらの超高圧高温
蒸気タービンは基本的には二段の再熱器を有する二段再
熱式蒸気タービンプラントである。この二段再熱式蒸気
タービンプラントの場合、超高圧タービンの排気圧力は
従来の高圧タービンの約2倍の圧力、すなわち、100kgf
/cm2g程度となる。蒸気圧力が高いということは蒸気の
密度が高いことであり、この高圧の蒸気と動翼の摩擦に
よる風損は従来よりも大きくなり、この風損による温度
上昇のためのロータおよび動翼の強度の限界を超えるこ
とが懸念される。このため、前述のように、従来のター
ビンバイパス系を二段再熱式超高圧高温タービンに適用
するのでは、タービン起動時における運転操作が非常に
難しい。さらに、超高圧高温蒸気タービンの場合、蒸気
タービンの部品材料にマルテンサイト系ステンレス鋼
や、オーステナイト系ステンレス鋼が使用されるため、
タービンの伸び差に対しては従来以上の厳しい管理が要
求され、この点でも、前述のような従来のバイパス系を
適用するのでは、タービン起動時における運転操作が難
しくなる。
(Problems to be solved by the invention) As an important development model for improving the performance of a steam turbine plant, development of an ultra-high pressure high temperature steam turbine in which the main steam pressure and temperature are higher than those of conventional models is progressing. 316k greater than 246kgf / cm 2/538 ℃ a main steam inlet conditions
gf / cm 2/566 ℃ of developing ultra-high pressure and high temperature steam turbine is completed already construction are underway. These ultra high pressure and high temperature steam turbines are basically two-stage reheat steam turbine plants having two-stage reheaters. In the case of this two-stage reheat type steam turbine plant, the exhaust pressure of the ultra-high pressure turbine is about twice that of the conventional high pressure turbine, that is, 100 kgf.
It will be about / cm 2 g. The high steam pressure means that the steam density is high, and the wind loss due to the friction between this high-pressure steam and the rotor blade becomes larger than before, and the strength of the rotor and the rotor blade due to the temperature rise due to this wind loss. It is feared that the limit will be exceeded. Therefore, as described above, if the conventional turbine bypass system is applied to the two-stage reheat type ultra-high pressure high temperature turbine, it is very difficult to operate the turbine at the time of starting the turbine. Furthermore, in the case of an ultra-high pressure and high temperature steam turbine, martensitic stainless steel and austenitic stainless steel are used for the steam turbine component materials,
Strict control of the expansion difference of the turbine is required as compared with the conventional one, and also in this respect, if the conventional bypass system as described above is applied, the operation operation at the time of starting the turbine becomes difficult.

そこで、本発明の目的はプラントの起動時に臨んでタ
ービン系からの制約を満しつつ、タービンバイパス系の
運転を可能とし、さらに起動時の状況に応じたタービン
バイパス系の適用に柔軟性を持たせこれにより、起動特
性および制御性の向上を高めるようにした二段再熱式蒸
気タービンプラントの起動方法を提供することにある。
Therefore, an object of the present invention is to enable the operation of the turbine bypass system while satisfying the restrictions imposed by the turbine system when the plant is started, and to have flexibility in applying the turbine bypass system according to the situation at the time of startup. The purpose of the present invention is to provide a start-up method for a two-stage reheat steam turbine plant that improves the start-up characteristics and controllability.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明においては超高圧タ
ービンと高圧タービンと中圧タービンと低圧タービンと
からなるタービン系、第一段再熱器と第二段再熱器とか
らなる再熱系、超高圧タービンバイパス系と高圧タービ
ンバイパス系と中,低圧タービンバイパス系とからなる
タービンバイパス系、各々出力制御に用いられる超高圧
タービン用の主蒸気加減弁、高圧タービン用の第一再熱
蒸気加減弁、中圧タービン用の第二再熱蒸気加減弁を有
する二段再熱式蒸気タービンプラントの起動方法におい
て、タービンバイパス系の運転状態からタービン系への
通気を開始するにあたり、タービン系の中圧タービン回
転部の温度が第二段再熱器から送られる再熱蒸気の温度
よりも高い場合、中圧および低圧タービンに再熱蒸気の
一部が流れるように第二再熱蒸気加減弁を制御し、かつ
残りの再熱蒸気は中,低圧タービンバイパス系にて処理
し、その場合超高圧および高圧タービンの内部圧力は低
圧タービンの入口圧力とほぼ同等に保持し、またタービ
ン系の中圧タービン回転部の温度が第二段再熱器から送
られる再熱蒸気の温度よりも低い場合、高圧タービンに
再熱蒸気の一部が流れるように第一再熱蒸気加減弁を制
御し、かつ残りの再熱蒸気は高圧および中,低圧タービ
ンバイパス系を用いて処理し、その場合超高圧タービン
の内部圧力は高圧タービンの内部圧力とほぼ同等に保持
することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a turbine system including an ultrahigh pressure turbine, a high pressure turbine, an intermediate pressure turbine and a low pressure turbine, a first stage reheater and a second stage reheater are provided. Reheat system consisting of a heater, ultra-high pressure turbine bypass system, high-pressure turbine bypass system, and middle and low-pressure turbine bypass system, main steam control valve for ultra-high-pressure turbine used for output control, high pressure When starting a two-stage reheat steam turbine plant having a first reheat steam control valve for a turbine and a second reheat steam control valve for a medium-pressure turbine, ventilation from the operating state of the turbine bypass system to the turbine system is performed. When the temperature of the rotating part of the medium pressure turbine of the turbine system is higher than the temperature of the reheated steam sent from the second stage reheater, The second reheat steam control valve is controlled so that a part of the reheat steam flows, and the remaining reheat steam is processed by the medium and low pressure turbine bypass systems. If the temperature of the rotating part of the intermediate pressure turbine of the turbine system is lower than the temperature of the reheated steam sent from the second stage reheater, the pressure of the reheated steam is kept almost equal to the inlet pressure of the low pressure turbine. The first reheat steam control valve is controlled so that a part of the reheat steam is controlled, and the remaining reheat steam is processed by using the high pressure and medium and low pressure turbine bypass systems, in which case the internal pressure of the ultra high pressure turbine is It is characterized in that the pressure is maintained almost equal to the internal pressure.

(作用) プラントの起動時に臨んでタービン系の中圧タービン
回転部の温度が第二段再熱器から送られる再熱蒸気の温
度よりも高い場合、超高圧、高圧タービンバイパス系を
使用し、温度調節された第二段再熱蒸気を中圧タービン
および低圧タービンに流し、タービン系の通気を始め
る。また、残りの再熱蒸気は中,低圧タービンバイパス
装置を使用して復水器に排出する。
(Operation) When the temperature of the medium pressure turbine rotating part of the turbine system is higher than the temperature of the reheated steam sent from the second stage reheater when the plant starts up, an ultra high pressure and high pressure turbine bypass system is used, The temperature-controlled second-stage reheated steam is caused to flow through the intermediate-pressure turbine and the low-pressure turbine, and ventilation of the turbine system is started. In addition, the remaining reheated steam is discharged to the condenser using the medium and low pressure turbine bypass device.

一方、タービン系の中圧タービン回転部の温度が第二
段再熱器から送られる再熱蒸気の温度よりも低い場合、
超高圧タービンバイパス系を使用して温度調節された第
一段再熱蒸気を高圧タービンに流し、タービン系の通気
を開始する。
On the other hand, if the temperature of the turbine middle-pressure turbine rotating part is lower than the temperature of the reheated steam sent from the second stage reheater,
The first-stage reheated steam, whose temperature has been adjusted using the ultra-high pressure turbine bypass system, is caused to flow to the high pressure turbine, and ventilation of the turbine system is started.

また、残りの再熱蒸気は高圧タービンバイパス装置お
よび中,低圧タービンバイパス装置を用いて復水器に排
出する。
The remaining reheated steam is discharged to the condenser using the high pressure turbine bypass device and the medium and low pressure turbine bypass devices.

このように本発明の起動方法においてはプラント起動
時のタービン系の状況に応じて、中圧および低圧タービ
ン起動あるいは、高圧タービン起動を行なうことが可能
であり、起動方法に柔軟性が与えられるため、起動特性
の向上を図ることができる。さらにこの起動過程におけ
るタービン通気時の制御が上記の起動方法の何かを選択
することにより中圧タービンのみの制御あるいは、高圧
タービンのみの制御となるため、プラントの制御性を高
めることができる。
As described above, in the starting method of the present invention, it is possible to perform the intermediate pressure and low pressure turbine startup or the high pressure turbine startup according to the situation of the turbine system at the time of plant startup, and the starting method is provided with flexibility. It is possible to improve the starting characteristic. Further, the control during the ventilation of the turbine in this starting process can be controlled only for the medium pressure turbine or only for the high pressure turbine by selecting any of the above starting methods, so that the controllability of the plant can be enhanced.

(実施例) 以下、本発明の一実施例を図面により説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施例は第1図に示す如くタービンバイパス系とし
て、超高圧タービンバイパス管28、バイパス制御弁29お
よび減温器30からなる系と、高圧タービンバイパス管3
8、バイパス制御弁39および減温器40からなる系と、
中,低圧タービンバイパス管14、バイパス制御系15、お
よび減温器16からなる系と、超高圧タービン25の排気管
である第一低温再熱蒸気管27、高圧タービン2の排気管
である第二低温再熱蒸気管37とを連絡する第一タービン
排気連絡管47、この第一タービン排気連絡管47に設置さ
れた排気制御弁48、第二低温再熱蒸気管37と中圧タービ
ン10の排気管44とを連絡する第二タービン排気連絡管4
9、この第二タービン排気連絡管に設置された排気制御
弁50からなる系とを備えている。なお、図中符号54は第
一再熱蒸気止め弁、51は第一再熱蒸気加減弁、52は第二
再熱蒸気止め弁、53は第二再熱蒸気加減弁を各々示して
いる。
In this embodiment, as shown in FIG. 1, as a turbine bypass system, a system including an ultra-high pressure turbine bypass pipe 28, a bypass control valve 29 and a desuperheater 30, and a high pressure turbine bypass pipe 3
8, a system consisting of bypass control valve 39 and desuperheater 40,
A system consisting of the middle and low pressure turbine bypass pipes 14, a bypass control system 15 and a desuperheater 16, a first low temperature reheat steam pipe 27 which is an exhaust pipe of the super high pressure turbine 25, and an exhaust pipe of the high pressure turbine 2. Two low temperature reheat steam pipes 37, a first turbine exhaust communication pipe 47, an exhaust control valve 48 installed in the first turbine exhaust communication pipe 47, a second low temperature reheat steam pipe 37 and the intermediate pressure turbine 10. Second turbine exhaust communication pipe 4 for communicating with the exhaust pipe 44
9. A system including an exhaust control valve 50 installed in the second turbine exhaust communication pipe. In the figure, reference numeral 54 is a first reheat steam stop valve, 51 is a first reheat steam control valve, 52 is a second reheat steam stop valve, and 53 is a second reheat steam control valve.

蒸気タービンとボイラの負荷差を吸収するためにター
ビンバイパス系の運転中、超高圧タービンバイパス管28
のバイパス制御弁29と、主蒸気加減弁46とにより、超高
圧タービン25に流す蒸気量を調整し、また高圧タービン
バイパス管38のバイパス制御弁39と第一再熱蒸気加減弁
51とにより、高圧タービン2に流す流量を調整し、さら
に中,低圧タービンバイパス管14のバイパス制御弁15と
第二再熱蒸気加減弁53により、中圧タービン10および低
圧タービン11に流す蒸気量を調整する。この時、減温器
30,40,16を使用することにより各バイパス蒸気を冷却し
て第一低温再熱蒸気管27、第二低温再熱蒸気管37、復水
器12に導き、これらの機器を保護する。また、超高圧タ
ービン排気逆止弁31および高圧タービン排気逆止弁41に
より、超高圧タービン25ならびに高圧タービン2へ逆流
するのを防止する。
During operation of the turbine bypass system to absorb the load difference between the steam turbine and the boiler, the ultra high pressure turbine bypass pipe 28
The bypass control valve 29 and the main steam control valve 46 adjust the amount of steam flowing to the ultra-high pressure turbine 25, and the bypass control valve 39 of the high pressure turbine bypass pipe 38 and the first reheat steam control valve.
51 adjusts the flow rate to the high-pressure turbine 2, and the amount of steam to flow to the intermediate-pressure turbine 10 and the low-pressure turbine 11 by the bypass control valve 15 of the middle and low-pressure turbine bypass pipe 14 and the second reheat steam control valve 53. Adjust. At this time, the desuperheater
By using 30, 40 and 16, each bypass steam is cooled and guided to the first low temperature reheat steam pipe 27, the second low temperature reheat steam pipe 37 and the condenser 12 to protect these devices. Further, the super high pressure turbine exhaust check valve 31 and the high pressure turbine exhaust check valve 41 prevent the reverse flow to the ultra high pressure turbine 25 and the high pressure turbine 2.

次に、起動時において、タービン停止後の時間による
蒸気タービンの冷却状態に応じてタービン通気時の蒸気
−メタルマッチングを図り、起動特性を向上させるた
め、タービンウォーミング初期状態において、中圧ター
ビン10の回転部の温度が第二再熱蒸気温度に比べて高い
場合には、中圧タービン10および低圧タービン11による
起動を行なう。また、中圧タービン10の回転部の温度が
第二再熱蒸気温度よりも低くなる場合には、高圧タービ
ン2による起動を行なう。すなわち、状況に即して起動
方法を使い分けて起動の柔軟性を高め、かつ回転部の風
損による温度上昇を低く保つように以下に述べるように
タービンバイパス系を用いて制御する。
Next, at the time of start-up, in order to improve steam-metal matching during turbine ventilation depending on the cooling state of the steam turbine depending on the time after the turbine is stopped, and to improve start-up characteristics, in the turbine warming initial state, the intermediate pressure turbine 10 When the temperature of the rotating part of is higher than the second reheat steam temperature, the startup is performed by the intermediate pressure turbine 10 and the low pressure turbine 11. Further, when the temperature of the rotating part of the intermediate pressure turbine 10 becomes lower than the second reheat steam temperature, the high pressure turbine 2 is started. That is, the turbine bypass system is controlled as described below so as to increase the flexibility of startup by properly selecting the startup method depending on the situation and to keep the temperature rise due to the windage loss of the rotating part low.

タービン起動の初期において、ボイラ1で発生した蒸
気は主蒸気加減弁46を閉状態、バイパス制御弁29を開状
態としておくことにより、超高圧タービンバイパス管28
を通り、減温器30で減温され、第一段再熱器32で加熱さ
れる。この再熱蒸気は第一再熱蒸気加減弁51を閉状態、
バイパス制御弁39を開状態としておくことにより、高圧
タービンバイパス管38を通り、減温器40で減温され、第
二段再熱器42で再び加熱され、第二高温再熱蒸気管43に
導びかれる。また、第二再熱蒸気加減弁53を閉状態と
し、バイパス制御弁15を開状態としておくことにより、
第二高温再熱蒸気管43に流れた再熱蒸気は復水器12に排
出される。この時、超高圧タービン排気逆止弁31および
高圧タービン排気逆止弁41により、再熱蒸気は、各々、
超高圧タービン25および高圧タービン2に流入すること
はない。これにより、蒸気タービン側から制約をうける
ことなくボイラの起動特性を高めることができる。ま
た、この時、第一タービン排気連絡管47および第二ター
ビン排気連絡管49に設置された排気制御弁48、50を開状
態としておくことにより、超高圧タービン25および高圧
タービン2の内部の圧力が低圧タービン11の入口圧力と
ほぼ等しくなる。すなわち、中圧タービン10および低圧
タービン11は第二再熱蒸気加減弁53が閉じられているた
めに再熱蒸気が流れず、各内部圧力が復水器12の器内圧
力とほぼ平衡しているため、超高圧タービン25および高
圧タービン2の内部圧力も復水器12の器内圧力、つまり
真空状態となっている。なお、微量ながら主蒸気加減弁
46のシート面から漏洩する蒸気が、第一タービン排気連
絡管47および第二タービン排気連絡管48を通って流れて
いる。
In the initial stage of turbine startup, the steam generated in the boiler 1 is closed by closing the main steam control valve 46 and the bypass control valve 29 to open the super high pressure turbine bypass pipe 28.
And is cooled by the desuperheater 30 and heated by the first stage reheater 32. This reheated steam closes the first reheated steam control valve 51,
By opening the bypass control valve 39, the high-pressure turbine bypass pipe 38, the temperature is reduced by the desuperheater 40, is reheated by the second stage reheater 42, to the second high temperature reheat steam pipe 43. Be guided. In addition, by closing the second reheat steam control valve 53 and leaving the bypass control valve 15 open,
The reheated steam flowing through the second high temperature reheated steam pipe 43 is discharged to the condenser 12. At this time, the reheated steam is respectively discharged by the super high pressure turbine exhaust check valve 31 and the high pressure turbine exhaust check valve 41.
It does not flow into the ultra high pressure turbine 25 and the high pressure turbine 2. As a result, the starting characteristics of the boiler can be enhanced without any restrictions from the steam turbine side. Further, at this time, the exhaust control valves 48 and 50 installed in the first turbine exhaust communication pipe 47 and the second turbine exhaust communication pipe 49 are kept in an open state, so that the pressure inside the ultra-high pressure turbine 25 and the high pressure turbine 2 is increased. Becomes almost equal to the inlet pressure of the low-pressure turbine 11. That is, in the medium-pressure turbine 10 and the low-pressure turbine 11, since the second reheat steam control valve 53 is closed, reheat steam does not flow, and each internal pressure is almost in equilibrium with the internal pressure of the condenser 12. Therefore, the internal pressure of the ultra-high pressure turbine 25 and the high pressure turbine 2 is also the internal pressure of the condenser 12, that is, the vacuum state. In addition, a small amount of main steam control valve
The steam leaking from the seat surface of 46 flows through the first turbine exhaust communication pipe 47 and the second turbine exhaust communication pipe 48.

この後、蒸気−メタルマッチングの適正化を図ること
による起動特性向上を考慮して、蒸気タービンの冷却状
態に応じて、下記I,IIの何れかを選択し、タービン通
気,回転上昇,負荷上昇の順でタービン起動を進める。
After that, in consideration of the improvement of the starting characteristics by optimizing the steam-metal matching, select either I or II below according to the cooling condition of the steam turbine, turbine ventilation, rotation increase, load increase. Start the turbine in this order.

I…中圧タービン回転部の温度が第二再熱蒸気温度と比
べて高い場合 上記のタービンバイパス系の運転時、主蒸気は超高圧
タービン25、高圧タービン2を通ることなく、第一段再
熱器32および第二段再熱器42により加熱されるため、再
熱蒸気は比較的早く温度上昇が可能であり、中圧タービ
ン10における蒸気−メタルマッチングが図り易く、中圧
タービン10および低圧タービン11への通気により回転上
昇を行なう方法を採るならば、起動過程において、ター
ビン通気のタイミングを早めることができる。すなわ
ち、タービンバイパス系の運転状態から、中圧タービン
10の蒸気−メタルマッチングを考慮して第二再熱蒸気加
減弁53を開いて行き、中,低圧タービンバイパス管14を
流れていた蒸気の一部を中圧タービン10および低圧ター
ビン11に流す。これによりタービン通気を行ない、続い
て回転上昇に入る。この時、超高圧タービン25、高圧タ
ービン2の各内部圧力は排気制御弁48,50が開状態にあ
るために低圧タービン11の入口圧力にほぼ等しくなる。
このため、超高圧タービン25および高圧タービン2の回
転部の風損による温度上昇を小さく保つことができる。
I ... When the temperature of the rotating part of the intermediate-pressure turbine is higher than the second reheat steam temperature When the turbine bypass system is operated, the main steam does not pass through the ultra-high pressure turbine 25 and the high-pressure turbine 2 and is reheated in the first stage. Since the reheated steam is heated by the heater 32 and the second-stage reheater 42, the temperature of the reheated steam can rise relatively quickly, steam-metal matching in the intermediate-pressure turbine 10 can be easily achieved, and the intermediate-pressure turbine 10 and the low-pressure turbine 10 If the method of raising the rotation by aeration to the turbine 11 is adopted, the timing of aeration of the turbine can be advanced in the starting process. That is, from the operating state of the turbine bypass system,
In consideration of the steam-metal matching of 10, the second reheat steam control valve 53 is opened and a part of the steam flowing through the middle and low pressure turbine bypass pipes 14 is made to flow to the intermediate pressure turbine 10 and the low pressure turbine 11. As a result, the turbine is ventilated, and then the rotation is increased. At this time, the internal pressures of the ultra-high pressure turbine 25 and the high pressure turbine 2 become substantially equal to the inlet pressure of the low pressure turbine 11 because the exhaust control valves 48, 50 are open.
Therefore, the temperature rise due to the windage loss of the rotating parts of the ultra-high pressure turbine 25 and the high pressure turbine 2 can be kept small.

この状態から、超高圧タービン25および高圧タービン
2の蒸気−メタルマッチングと伸び差等を考慮して、主
蒸気加減弁46および第一再熱蒸気加減弁51を開いて行
き、同時に、バイパス制御弁29,39を閉鎖して行く。こ
れにより、超高圧タービン25および高圧タービン2の排
気圧力が上昇し、第一低温再熱蒸気管27および第二低温
再熱蒸気管37に設置された超高圧タービン排気逆止弁31
および高圧タービン排気逆止弁41がそれぞれ全開される
ために超高圧タービン25および高圧タービン2内を蒸気
が通過するようになる。したがって、これ以後蒸気によ
る仕事がなされ、タービン負荷の上昇が行なわれる。こ
の後、主蒸気加減弁46、第一再熱蒸気加減弁51、第二再
熱蒸気加減弁53を開いて行き、これと共にバイパス制御
弁29,39,15を閉鎖して行き、タービン負荷をさらに上昇
して行く。バイパス制御弁29,39,15が全閉すると共に、
第一再熱蒸気加減弁51、第二再熱蒸気加減弁53を全開状
態とし、これ以後さらにタービン負荷を上昇させるに
は、主蒸気加減弁46で蒸気量を増加して行く。これによ
り中圧タービン回転部の温度が第二再熱蒸気温度に比べ
て高い場合においても、タービンバイパス系を使用して
蒸気温度を上昇させ、回転部と第二再熱蒸気のメタルマ
ッチングを図ることによりタービン通気のタイミングを
早めることが可能となり、タービン起動特性を向上させ
ることができる。また、タービン通気時の制御が第二再
熱蒸気加減弁53のみとなるため、制御特性も向上する。
From this state, the steam-metal matching and expansion difference of the ultra-high pressure turbine 25 and the high-pressure turbine 2 are taken into consideration, and the main steam control valve 46 and the first reheat steam control valve 51 are opened, and at the same time, the bypass control valve is opened. Close 29,39 and go. As a result, the exhaust pressure of the ultra-high pressure turbine 25 and the high-pressure turbine 2 rises, and the ultra-high pressure turbine exhaust check valve 31 installed in the first low temperature reheat steam pipe 27 and the second low temperature reheat steam pipe 37.
Since the high pressure turbine exhaust check valve 41 and the high pressure turbine exhaust check valve 41 are fully opened, steam passes through the ultra high pressure turbine 25 and the high pressure turbine 2. Therefore, the work by steam is performed thereafter, and the turbine load is increased. After that, the main steam control valve 46, the first reheat steam control valve 51, and the second reheat steam control valve 53 are opened, and along with this, the bypass control valves 29, 39, 15 are closed to reduce the turbine load. Go up further. Bypass control valves 29, 39, 15 are fully closed,
The first reheated steam control valve 51 and the second reheated steam control valve 53 are fully opened, and thereafter, in order to further increase the turbine load, the main steam control valve 46 increases the steam amount. As a result, even when the temperature of the rotating part of the medium-pressure turbine is higher than the second reheat steam temperature, the steam temperature is raised by using the turbine bypass system to achieve metal matching between the rotating part and the second reheat steam. This makes it possible to accelerate the timing of turbine ventilation and improve the turbine starting characteristics. Further, since the control during ventilation of the turbine is performed only by the second reheat steam control valve 53, the control characteristic is also improved.

II…中圧タービン回転部温度が第二再熱蒸気温度と比べ
て低い場合 上記のタービンバイパス運転時、超高圧タービンバイ
パス管28に設置された減温器30を使用して、第一高温再
熱蒸気管36を流れる再熱蒸気の温度を比較的低く保つこ
とにより、高圧タービン2の回転部メタル温度との温度
差を少なくする。第一再熱蒸気加減弁51を開いて行き、
高圧タービンバイパス管38を流れていたバイパス蒸気の
一部を高圧タービン2に導き、同時に排気制御弁50を閉
鎖状態にする。この排気状態弁50が閉鎖されると、高圧
タービン2の排気圧力が上昇し、高圧タービン排気逆止
弁41は開状態となり、高圧タービン2に通気が行なわ
れ、タービン速度が上昇し始める。この時、排気制御弁
48が開いているため、超高圧タービン25の内部圧力は高
圧タービン2の排気圧力とほぼ平衡させられる。また、
中圧タービン10および低圧タービン11には蒸気が流れて
いないため、復水器12の器内圧力にほぼ同等の圧力とな
っている。超高圧タービン25、中圧タービン10、低圧タ
ービン11はそれぞれ上記した排気圧力のもとで回され、
それぞれの回転部は風損のために若干温度が上昇する。
この風損による温度上昇を逆に、超高圧タービン25およ
び中圧タービン10のウォーミング熱源として利用し、こ
の後超高圧タービン25および中圧タービン10の蒸気−メ
タル温度のマッチングを図り、伸び差を考慮しつつ、主
蒸気加減弁46および第二再熱蒸気加減弁53を開いて行
く。これにより、中圧タービン10と低圧タービン11に再
熱蒸気が流れ出し、これらの起動が開始される。この
時、同時に排気制御弁48を閉鎖することにより、超高圧
タービン25の排気圧力が上昇し、超高圧タービン排気逆
止弁31は開状態となり、超高圧タービン25内を蒸気が通
過するようになり、タービン負荷の上昇が可能になる。
II ... When the temperature of the intermediate-pressure turbine rotating part is lower than the temperature of the second reheat steam During the above-mentioned turbine bypass operation, the desuperheater 30 installed in the ultra-high pressure turbine bypass pipe 28 is used to By keeping the temperature of the reheated steam flowing through the hot steam pipe 36 relatively low, the temperature difference from the rotating part metal temperature of the high-pressure turbine 2 is reduced. Open the first reheat steam control valve 51,
A part of the bypass steam flowing through the high pressure turbine bypass pipe 38 is guided to the high pressure turbine 2, and at the same time, the exhaust control valve 50 is closed. When the exhaust state valve 50 is closed, the exhaust pressure of the high-pressure turbine 2 rises, the high-pressure turbine exhaust check valve 41 opens, the high-pressure turbine 2 is vented, and the turbine speed starts to rise. At this time, the exhaust control valve
Since 48 is open, the internal pressure of the extra-high pressure turbine 25 is almost balanced with the exhaust pressure of the high-pressure turbine 2. Also,
Since steam does not flow in the intermediate-pressure turbine 10 and the low-pressure turbine 11, the pressure inside the condenser 12 is almost the same. The ultra-high pressure turbine 25, the intermediate pressure turbine 10, and the low pressure turbine 11 are rotated under the exhaust pressure described above,
The temperature of each rotating part rises slightly due to windage loss.
On the contrary, the temperature rise due to the windage loss is used as a warming heat source for the ultra-high pressure turbine 25 and the intermediate-pressure turbine 10, and then the steam-metal temperature of the ultra-high-pressure turbine 25 and the intermediate-pressure turbine 10 is matched to obtain the expansion difference. In consideration of the above, the main steam control valve 46 and the second reheat steam control valve 53 are opened. As a result, the reheated steam flows out to the intermediate-pressure turbine 10 and the low-pressure turbine 11, and these start up. At this time, by closing the exhaust control valve 48 at the same time, the exhaust pressure of the super high pressure turbine 25 rises, the super high pressure turbine exhaust check valve 31 is opened, and steam passes through the super high pressure turbine 25. Therefore, the turbine load can be increased.

この後、主蒸気加減弁46、第一再熱蒸気加減弁51、第
二再熱蒸気加減弁53を開くと同時に、バイパス制御弁2
9,39,15を絞りこみ、タービン負荷を上昇させる。そし
て、バイパス制御弁29,39,15が全閉となった時に第一再
熱蒸気加減弁51および第二再熱蒸気加減弁53を全開させ
る。これ以後、さらにタービン負荷を上昇させるには、
主蒸気加減弁46で蒸気量を増加して行く。これにより、
回転部温度が蒸気温度より低い場合も、タービンバイパ
ス系を用いた起動が可能となり、起動特性を向上させる
ことができる。また、タービン通気時の制御が第一再熱
蒸気加減弁51のみの制御となるので制御性も向上する。
After that, the main steam control valve 46, the first reheat steam control valve 51, and the second reheat steam control valve 53 are opened, and at the same time, the bypass control valve 2
Narrow down 9,39,15 to increase the turbine load. Then, when the bypass control valves 29, 39, 15 are fully closed, the first reheat steam control valve 51 and the second reheat steam control valve 53 are fully opened. After this, to further increase the turbine load,
The main steam control valve 46 increases the amount of steam. This allows
Even when the rotating part temperature is lower than the steam temperature, the start-up using the turbine bypass system becomes possible and the start-up characteristics can be improved. Further, control during ventilation of the turbine is performed only by the first reheat steam control valve 51, so that controllability is also improved.

〔発明の効果〕〔The invention's effect〕

以上詳述したように本発明は、二段再熱式蒸気タービ
ンプラントの起動に臨んで、タービンバイパス系を適切
に用いて回転部の風損による温度上昇を低く抑えつつ、
タービン起動状況に応じた、適正で、かつ制御性の高い
運転方法を与えることができる。したがって、本発明に
よればプラントの起動特性および制御性が高められると
いう優れた効果を奏する。
As described above in detail, the present invention faces the start of the two-stage reheat type steam turbine plant, while appropriately suppressing the temperature rise due to the windage loss of the rotating part by appropriately using the turbine bypass system,
It is possible to provide a proper and highly controllable operation method according to the turbine startup status. Therefore, according to the present invention, there is an excellent effect that the starting characteristic and controllability of the plant are enhanced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法に適用される起動装置を含む二段再
熱式蒸気タービンプラントの系統図、第2図は従来のタ
ービンバイパス系を有する蒸気タービンプラントの系統
図、第3図は従来のタービンバイパス系を有する二段再
熱式蒸気タービンプラントの系統図である。 1……ボイラ、2……高圧タービン 10……中圧タービン、11……低圧タービン 14……中,低圧タービンバイパス管 25……超高圧タービン 28……超高圧タービンバイパス管 32……第一段再熱器 38……高圧タービンバイパス管 42……第二段再熱器、46……主蒸気加減弁 47……第一タービン排気連絡管 48,50……排気制御弁 49……第二タービン排気連絡管 51……第一再熱蒸気加減弁 53……第二再熱蒸気加減弁
FIG. 1 is a system diagram of a two-stage reheat type steam turbine plant including a starter applied to the method of the present invention, FIG. 2 is a system diagram of a steam turbine plant having a conventional turbine bypass system, and FIG. 2 is a system diagram of a two-stage reheat type steam turbine plant having the turbine bypass system of FIG. 1 …… Boiler 2 …… High pressure turbine 10 …… Medium pressure turbine 11 …… Low pressure turbine 14 …… Medium and low pressure turbine bypass pipe 25 …… Ultra high pressure turbine 28 …… Ultra high pressure turbine bypass pipe 32 …… First Stage reheater 38 …… High-pressure turbine bypass pipe 42 …… Second stage reheater, 46 …… Main steam control valve 47 …… First turbine exhaust communication pipe 48,50 …… Exhaust control valve 49 …… Second Turbine exhaust communication pipe 51 …… First reheat steam control valve 53 …… Second reheat steam control valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超高圧タービンと高圧タービンと中圧ター
ビンと低圧タービンとからなるタービン系、第一段再熱
器と第二段再熱器とからなる再熱系、超高圧タービンバ
イパス系と高圧タービンバイパス系と、中,低圧タービ
ンバイパス系とからなるタービンバイパス系、各々出力
制御に用いられる超高圧タービン用の主蒸気加減弁、高
圧タービン用の第一再熱蒸気加減弁、中圧タービン用の
第二再熱蒸気加減弁を有する二段再熱蒸気タービンプラ
ントの起動方法において、前記タービンバイパス系の運
転状態から前記タービン系への通気を開始するにあた
り、該タービン系の中圧タービン回転部の温度が前記第
二段再熱器から送られる再熱蒸気の温度よりも高い場
合、前記中圧および低圧タービンに再熱蒸気の一部が流
れるように前記第二再熱蒸気加減弁を制御し、かつ残り
の再熱蒸気は前記中,低圧タービンバイパス系にて処理
し、その場合前記超高圧および高圧タービンの内部圧力
は前記低圧タービンの入口圧力とほぼ同等に保持し、ま
た前記タービン系の中圧タービン回転部の温度が前記第
二段再熱器から送られる再熱蒸気の温度よりも低い場
合、前記高圧タービンに再熱蒸気の一部が流れるように
前記第一再熱蒸気加減弁を制御し、かつ残りの再熱蒸気
は前記高圧および中,低圧タービンバイパス系を用いて
処理し、その場合前記超高圧タービンの内部圧力は前記
高圧タービンの内部圧力とほぼ同等に保持することを特
徴とする二段再熱式蒸気タービンプラントの起動方法。
1. A turbine system including an ultra-high pressure turbine, a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine, a reheating system including a first-stage reheater and a second-stage reheater, and an ultra-high-pressure turbine bypass system. A high-pressure turbine bypass system and a turbine bypass system consisting of a medium- and low-pressure turbine bypass system, a main steam control valve for an ultra-high-pressure turbine used for output control, a first reheat steam control valve for a high-pressure turbine, and a medium-pressure turbine In a method for starting a two-stage reheat steam turbine plant having a second reheat steam control valve for use in starting aeration from the operating state of the turbine bypass system to the turbine system, the turbine system medium pressure turbine rotation If the temperature of the section is higher than the temperature of the reheated steam sent from the second stage reheater, the second reheated steam is allowed to flow so that a part of the reheated steam flows to the intermediate pressure and low pressure turbines. The steam control valve is controlled, and the remaining reheated steam is processed by the middle and low pressure turbine bypass systems, in which case the internal pressures of the ultra-high pressure and high pressure turbines are kept almost equal to the inlet pressure of the low pressure turbine. If the temperature of the rotating part of the intermediate pressure turbine of the turbine system is lower than the temperature of the reheated steam sent from the second stage reheater, a part of the reheated steam may flow to the high pressure turbine. One reheat steam control valve is controlled, and the remaining reheat steam is processed by using the high pressure and medium and low pressure turbine bypass systems, in which case the internal pressure of the ultra high pressure turbine is approximately equal to the internal pressure of the high pressure turbine. A method for starting a two-stage reheat steam turbine plant, which is characterized by holding the same.
JP63111604A 1988-05-10 1988-05-10 Start-up method for two-stage reheat steam turbine plant. Expired - Lifetime JP2677598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111604A JP2677598B2 (en) 1988-05-10 1988-05-10 Start-up method for two-stage reheat steam turbine plant.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111604A JP2677598B2 (en) 1988-05-10 1988-05-10 Start-up method for two-stage reheat steam turbine plant.

Publications (2)

Publication Number Publication Date
JPH01285606A JPH01285606A (en) 1989-11-16
JP2677598B2 true JP2677598B2 (en) 1997-11-17

Family

ID=14565558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111604A Expired - Lifetime JP2677598B2 (en) 1988-05-10 1988-05-10 Start-up method for two-stage reheat steam turbine plant.

Country Status (1)

Country Link
JP (1) JP2677598B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108301882B (en) * 2018-03-12 2024-03-05 西安热工研究院有限公司 Three-stage series-parallel bypass system of generator set and adjusting method thereof
CN110056402B (en) * 2019-03-26 2023-11-28 华电电力科学研究院有限公司 Steam complementary energy utilization coupling steam extraction heat supply system and adjusting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838305A (en) * 1981-08-31 1983-03-05 Toshiba Corp 2-stage reheat turbine
JPS6282304U (en) * 1985-11-13 1987-05-26

Also Published As

Publication number Publication date
JPH01285606A (en) 1989-11-16

Similar Documents

Publication Publication Date Title
US8276382B2 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
KR890002916B1 (en) Steam turbine plant having a turbine bypass system
US5784888A (en) Method and apparatus of conversion of a reheat steam turbine power plant to a no-reheat combined cycle power plant
JP3795124B2 (en) Steam turbine operation
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP2010242673A (en) Steam turbine system and method for operating the same
JPS6336004A (en) Method for starting steam turbine plant
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP2915885B1 (en) Gas turbine combined cycle system
JP2674263B2 (en) Control method for reheat steam turbine
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JPH01285605A (en) Method and device of starting 2-stage reheat type steam turbine plant
JP2558740B2 (en) How to start up a two-stage reheat steam turbine plant
JPS6165003A (en) Controlling method for turbine in intermediate pressure starting
JPH01318706A (en) Bypass device for turbine of two stage reheating turbine
JPH01273804A (en) Two stage reheating steam turbine plant having turbine bypass device
JPH01273805A (en) Two stage reheating steam turbine plant having turbine bypass device
JP2563375B2 (en) How to start up a two-stage reheat steam turbine plant
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JP2003343213A (en) Combined plant constructed with closed steam cooling gas turbine
JPH06330707A (en) Control method of reheating type steam turbine
JPS6039850B2 (en) How to start the turbine