JPS6336004A - Method for starting steam turbine plant - Google Patents

Method for starting steam turbine plant

Info

Publication number
JPS6336004A
JPS6336004A JP17856086A JP17856086A JPS6336004A JP S6336004 A JPS6336004 A JP S6336004A JP 17856086 A JP17856086 A JP 17856086A JP 17856086 A JP17856086 A JP 17856086A JP S6336004 A JPS6336004 A JP S6336004A
Authority
JP
Japan
Prior art keywords
pressure
steam
turbine
pressure turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17856086A
Other languages
Japanese (ja)
Other versions
JP2523518B2 (en
Inventor
Ryosuke Tada
多田 良介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61178560A priority Critical patent/JP2523518B2/en
Publication of JPS6336004A publication Critical patent/JPS6336004A/en
Application granted granted Critical
Publication of JP2523518B2 publication Critical patent/JP2523518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent a high pressure turbine from windage loss by sending steam to the high pressure bypass line side in starting a plant to start gradually ventilation to the high pressure turbine after the pressure reaches a set value while opening a steam damping valve. CONSTITUTION:This turbine plant has a high pressure turbine 5 driven by main steam from a boiler 1, a low pressure turbine exhaust check valve 6 and medium and low pressure turbines 12, 14 driven by high temperature reheated steam introduced through a reheater 8. In this case, in starting the plant, steam is first supplied to the high pressure bypass pipe 25 side, and pressure at the medium pressure turbine inlet side of steam flowing through said pipe path 25 is maintained at high pressure set in a low pressure bypass pipe 29. And while main steam is supplied to the high pressure turbine 5, the steam damping pipe 33 side is opened to reduce the back pressure in high pressure turbine 5 almost to pressure near vacuum so that, after introducing turbine load at the same time, the negative pressure of high pressure turbine 5 is gradually increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蒸気タービンプラントの起動方法に係り、特に
高F[、(I(圧バイパスラインを(j5えた高圧、中
圧タービン起動方式の蒸気タービンプラン]−の起動方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for starting a steam turbine plant, and particularly to a method for starting a steam turbine plant using a high F [, (I) pressure bypass line (j5). Turbine Plan]

(従来の技術) −12に、第3図にその系統図を示したような、高圧、
低圧バイパスラインを備えたタービンバイパスプラント
は知られている。
(Prior art) In -12, high pressure, as shown in the system diagram in Figure 3,
Turbine bypass plants with low pressure bypass lines are known.

先づ、この種のタービンバイパスプラントの構成を、蒸
気の流れに沿って説明する。
First, the configuration of this type of turbine bypass plant will be explained along the flow of steam.

ボイラ1で発生した主蒸気は、主蒸気管2を経て主蒸気
止め弁3を通過し、蒸気加減弁4で流量を制御され高圧
タービン5に流入する。流入した蒸気は、高圧タービン
5で仕事をし高圧タービン排気逆止弁6及び低温再熱蒸
気管7を通って再熱器8へ橡かれる。ここで蒸気は再熱
され高温再熱蒸気管9を通り、再熱蒸気止め弁10及び
インターセプト弁11を通過後、中圧タービン12に流
入Jる。流入した蒸気は中圧タービン12で仕事をした
1す、排気としてフロスオーバー管13により低圧ター
ビン14に導びかれ、さらに仕事をして復水器15へ排
出される。低圧タービン14のIJI気はこの復水器1
5で冷却され復水となり、復水ポンプ17により抽出、
昇圧され、復水管18及び低1[ヒータ19を経て脱気
器20に送られる。
The main steam generated in the boiler 1 passes through the main steam pipe 2, the main steam stop valve 3, the flow rate of which is controlled by the steam control valve 4, and flows into the high-pressure turbine 5. The inflowing steam performs work in the high-pressure turbine 5 and is passed through the high-pressure turbine exhaust check valve 6 and the low-temperature reheat steam pipe 7 to the reheater 8 . Here, the steam is reheated, passes through a high temperature reheat steam pipe 9, passes through a reheat steam stop valve 10 and an intercept valve 11, and then flows into an intermediate pressure turbine 12. The inflowing steam performs work in the intermediate pressure turbine 12, is led as exhaust to the low pressure turbine 14 through the frothover pipe 13, performs further work, and is discharged to the condenser 15. The IJI air of the low pressure turbine 14 is transferred to this condenser 1.
5 to become condensate, which is extracted by condensate pump 17.
The pressure is increased and sent to the deaerator 20 via the condensate pipe 18 and the low 1 heater 19.

脱気器20で脱気された復水は、給水ポンプ22にJ:
り昇圧され高圧ヒータ24を経てボイラ1に戻る。
The condensate degassed by the deaerator 20 is sent to the water supply pump 22:
The pressure is increased and the water returns to the boiler 1 via the high pressure heater 24.

次に、この秤の従来のタービンプラントの起動方法を説
明する。起り」に際して、主蒸気止め弁3の上流側主蒸
気管2より分岐して高圧バイパス管25、高圧バイパス
弁26及び減温器27を介して低温再熱蒸気管7に接続
する高圧タービンバイパスラインH−Lと、高温再熱蒸
気@9より分岐し、低圧バイパス管29、低圧バイパス
弁30及び減温器31を介して復水器15に接続する低
圧タービンバイパスラインL−Lとを作動させる。
Next, a method of starting up a conventional turbine plant using this scale will be explained. A high-pressure turbine bypass line branches from the main steam pipe 2 on the upstream side of the main steam stop valve 3 and connects to the low-temperature reheat steam pipe 7 via the high-pressure bypass pipe 25, the high-pressure bypass valve 26, and the desuperheater 27. H-L and the low-pressure turbine bypass line L-L that branches from the high-temperature reheated steam @9 and connects to the condenser 15 via the low-pressure bypass pipe 29, the low-pressure bypass valve 30, and the desuperheater 31 are operated. .

主蒸気圧力がある規定圧力に達したら高圧バイパス弁2
6に開信号を送り、タービンバイパス運転を開始する。
When the main steam pressure reaches a certain specified pressure, the high pressure bypass valve 2
6 and starts turbine bypass operation.

減1?lu器27には、給水ポンプ22の出口高圧給水
管23から分岐した高圧バイパススプレー管35により
高圧バイパススプレー弁36を介して給水が導かれ減温
器27の出口温度が制御される。無負荷運転時に高圧バ
イパス弁26の開信号が出た場合は、高圧タービン刊気
逆止弁6が同時に強制閉塞される。低温再熱二へ気管7
へ流入した蒸気は再熱器8で再熱され高温再熱蒸気管9
を満していく。この際、再熱蒸気止め弁10及び低圧バ
イパス弁30は全開状態にあり徐々に低温再熱蒸気管7
及び高温再熱蒸気管9の圧力(再熱圧力)が上界してい
く。再熱圧力がある圧力以上になると低圧バイパス弁3
0は前圧制御しているため開き始め、低圧バイパス弁3
0と低圧バイパススプレー弁38はインターロックされ
ているから同時に間となる。これによって、減温器31
には復水ポンプ17の出口復水管18から分岐した復水
が低圧バイパススプレー管37によって導入され、ここ
で減温された復水は復水器15へ流入する。以上の流れ
を続けながらボイラ1は胃1モ・貸温を行なう。なお、
この間に高圧タービン5はウオーミングされ、低速回転
でターニング運転されている。
Reduced by 1? Water is introduced into the LU device 27 via a high-pressure bypass spray valve 36 by a high-pressure bypass spray pipe 35 branched from the outlet high-pressure water supply pipe 23 of the water supply pump 22, and the outlet temperature of the attemperator 27 is controlled. When an open signal is issued for the high pressure bypass valve 26 during no-load operation, the high pressure turbine air check valve 6 is forcibly closed at the same time. Low temperature reheating 2 to trachea 7
The steam flowing into is reheated in the reheater 8 and passed through the high temperature reheat steam pipe 9.
We will fulfill the following. At this time, the reheat steam stop valve 10 and the low pressure bypass valve 30 are fully open, and gradually the low temperature reheat steam pipe 7
And the pressure of the high temperature reheat steam pipe 9 (reheat pressure) increases. When the reheating pressure exceeds a certain pressure, the low pressure bypass valve 3
0 starts to open because the front pressure is controlled, and the low pressure bypass valve 3
0 and the low pressure bypass spray valve 38 are interlocked, so they are in the middle at the same time. As a result, the desuperheater 31
Condensate branched from the outlet condensate pipe 18 of the condensate pump 17 is introduced by a low-pressure bypass spray pipe 37, and the condensate whose temperature has been reduced here flows into the condenser 15. Continuing the above flow, boiler 1 performs stomach heating. In addition,
During this time, the high-pressure turbine 5 is warmed and is running at a low rotation speed.

ボイラ1の出口主蒸気条件が11圧タービン5への流入
条件を満したら高圧タービン5への通気を開始しタービ
ン回転数の昇速を始める。この際、蒸気加減弁4および
インターセプト弁11を全開にし、主蒸気止め弁バイパ
ス弁3aと再熱蒸気止め弁バイパス弁iQaとを介して
徐々に蒸気を高圧タービン5と中圧タービン12に流入
させ全周噴射運転を行なう。各タービンに流入する蒸気
量は、この主蒸気止め弁バイパス弁3aと再熱蒸気止め
弁バイパス弁10aで完全に制御される。
When the outlet main steam condition of the boiler 1 satisfies the inflow condition to the 11-pressure turbine 5, ventilation to the high-pressure turbine 5 is started and the turbine rotation speed starts to increase. At this time, the steam control valve 4 and the intercept valve 11 are fully opened, and steam is gradually introduced into the high-pressure turbine 5 and the intermediate-pressure turbine 12 via the main steam stop valve bypass valve 3a and the reheat steam stop valve bypass valve iQa. Perform all-round injection operation. The amount of steam flowing into each turbine is completely controlled by the main steam stop valve bypass valve 3a and the reheat steam stop valve bypass valve 10a.

第1図はタービンの負荷、回転数及び圧力、温度を示し
たグラフであり、図中線109は低温再熱蒸気を、線1
10は高圧タービンバイパスを、線111は再熱蒸気を
示している。
Figure 1 is a graph showing the load, rotation speed, pressure, and temperature of the turbine. Line 109 in the figure represents low-temperature reheat steam;
10 indicates the high pressure turbine bypass, and line 111 indicates the reheat steam.

タービンバイパス運転開始後、低温再熱蒸気109の温
度が設定値まで上界してくる。この時、同時に再熱圧力
111も上冒し設定値に落ら着く。
After the turbine bypass operation starts, the temperature of the low temperature reheated steam 109 rises to the set value. At this time, the reheat pressure 111 also rises and settles down to the set value.

タービン通気開始後タービンの回転数をW速しでいくと
高圧タービン刊気110のバカが上背していき温度が急
激に上テ1する。この高温状態は無<′I荷運転中継続
している。負4Xl()1人後、高11タービン排気1
10の4葭は急激に低下し、ある点から負荷に比例して
再び上界する。タービンバイパス運転完了時、高圧ター
ビン排気110の温度は低温再熱蒸気109の温度と一
致しその後は負荷に比例してト芦していく。
After the turbine ventilation starts, when the rotation speed of the turbine is increased to W speed, the high pressure turbine air 110 becomes stiff and the temperature rises rapidly. This high temperature condition continues during non-load operation. Negative 4Xl () 1 person later, high 11 turbine exhaust 1
10:4 sharply decreases and then rises again at a certain point in proportion to the load. When the turbine bypass operation is completed, the temperature of the high-pressure turbine exhaust 110 matches the temperature of the low-temperature reheated steam 109, and thereafter increases in proportion to the load.

第4図で明らかな事は、高圧タービン羽根気110の温
度がタービン回転数W速から定格回転数における無負荷
運転時に過変に上昇していることである。これは、再熱
蒸気111の圧力がある高い圧力に保持されているため
高圧タービン排気逆比弁6が全閉し、高圧タービン5に
流入した蒸気が高圧タービン5内で密閉されることによ
るものである。ところで、高圧タービン排気逆止弁6に
は、強制閑の力がかかっているが、ある差圧が発生する
とリークが起る。この理由から^圧タービン排気110
圧力は再熱蒸気111ff力より少し畠い圧力に維持さ
れる。再熱蒸気111圧力は、この時期においてタービ
ンバイパス容量のタービン負荷になり得る圧力、例えば
タービンバイパス容量が30%容Edの場合、タービン
負v130%時の再熱蒸気圧力に設定されるのが一般的
である。
What is clear from FIG. 4 is that the temperature of the high-pressure turbine blade air 110 increases excessively from the turbine rotational speed W to the rated rotational speed during no-load operation. This is because the pressure of the reheated steam 111 is maintained at a certain high pressure, so the high-pressure turbine exhaust reverse ratio valve 6 is fully closed, and the steam that has flowed into the high-pressure turbine 5 is sealed inside the high-pressure turbine 5. It is. Incidentally, a forced release force is applied to the high-pressure turbine exhaust check valve 6, but when a certain pressure difference occurs, leakage occurs. For this reason, the pressure turbine exhaust 110
The pressure is maintained at slightly less than 111ff of reheat steam. The reheat steam 111 pressure is generally set to the pressure that can become the turbine load of the turbine bypass capacity at this time, for example, when the turbine bypass capacity is 30% capacity Ed, the reheat steam pressure when the turbine negative V is 130%. It is true.

”史だ、この圧力は低圧バイパスラインの容量を小さく
するため可能な限り高い圧力の方が右利である。
``In fact, it is beneficial to have this pressure as high as possible to reduce the capacity of the low-pressure bypass line.

以上のことから高圧タービン排気110の圧力はIαい
圧力となるから、高圧タービン5に流入1゜た蒸気は充
分む膨張が出来ずタービン羽根とのI’1it1(1に
より高圧タービン排気110の温度は急激に−Fシフし
てしまう。このことは高圧タービン5の各部の伸び差の
増大及び熱応力の増大をしたらす。
From the above, the pressure of the high-pressure turbine exhaust 110 becomes Iα, so the steam that has entered the high-pressure turbine 5 by 1° cannot expand sufficiently, and the temperature of the high-pressure turbine exhaust 110 decreases due to I'1it1 (1) between the turbine blades and the steam. suddenly undergoes a -F shift. This increases the difference in elongation of each part of the high-pressure turbine 5 and increases the thermal stress.

そして、表面熱応力にJ:る高圧排気部ローターの身命
消費が最も重要な問題となる。
The most important problem is the loss of life in the high-pressure exhaust rotor due to surface thermal stress.

(発明が解決しようとJる問題点) これらの欠点を改善するための方法および装置として持
fifl 1眉53−102401号公報が提案されて
いる。これは、中低圧タービン起動方式によってなされ
、タービンの昇速は中低圧タービンで行なわれる。この
際、高圧タービンは完全に蒸気の流れから遮断され、か
つ、高圧タービンの排気側から1u水器に至る蒸気ダン
プラインは間さ、真空状態にされている。これにより、
i′IJ′Eタービンのffl Jilを防止し、排気
温度の上昇を防止寸ろ方法である。しかし、この方法で
は高圧タービン排気温度の−L胃は防[ヒできるが、高
圧タービンのウオーミングができないこと、さらに、こ
の中低圧タービン起動方式で(よ起動操作が煩雑となり
制叩がむずかしくなるなどの問題がある。
(Problems to be Solved by the Invention) Japanese Patent Application No. 53-102401 has been proposed as a method and apparatus for improving these drawbacks. This is done by a medium and low pressure turbine startup method, and the turbine speed is increased by the medium and low pressure turbine. At this time, the high-pressure turbine is completely cut off from the flow of steam, and the steam dump line from the exhaust side of the high-pressure turbine to the 1U water heater is kept in a vacuum state. This results in
This is a method to prevent ffl Jil of the i'IJ'E turbine and to prevent an increase in exhaust temperature. However, although this method can prevent the high-pressure turbine exhaust temperature from reaching -L, it is impossible to warm the high-pressure turbine. There is a problem.

そこで、本発明の目的は、上述した従来の技術が4−T
する問題点を解消し、起動操作が容易な、かつ、制御2
11のし易い高圧・中圧タービン起動方式の蒸気タービ
ンプランi〜の起動方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned conventional technology by
It solves the problem of
It is an object of the present invention to provide a method for starting a steam turbine plan i~ of a high-pressure/intermediate-pressure turbine starting method that is easy to perform in No. 11.

〔発明の尚成〕[Naonari of invention]

〈問題点を解決するための手段) 上記目的を)室成するために、本発明は、高・中圧起動
方式の蒸気タービンプラン1〜の起動方法であって、高
圧タービンへの主蒸気の供給に先立ち高圧バイパスライ
ンへ蒸気を供給し、高圧バイパスラインを絆で流入げる
中圧タービン入口側の蒸気圧力を低圧バイパスラインぐ
設定されるに5い圧力に維持し、高圧タービンへの主蒸
気の供給を開始すると同時に蒸気ダンプラインを開き高
圧タービンの背圧を真空近くの圧力にまで下げ、タービ
ン負荷併入後、前記蒸気ダンプラインを開じて高圧ター
ビンの′fY圧を徐々に上昇さ(l−るJ:うにしたこ
とを1、”inとづるbのである。
(Means for Solving the Problems) In order to accomplish the above object, the present invention provides a method for starting a steam turbine plan 1~ of a high/intermediate pressure starting method, in which main steam is supplied to a high pressure turbine. Prior to supply, steam is supplied to the high-pressure bypass line, and the steam pressure on the inlet side of the intermediate-pressure turbine, which flows through the high-pressure bypass line, is maintained at the pressure set at the low-pressure bypass line. At the same time as the supply of steam is started, the steam dump line is opened to reduce the back pressure of the high pressure turbine to a pressure close to vacuum, and after the turbine load is added, the steam dump line is opened and the 'fY pressure of the high pressure turbine is gradually increased.さ(l-ruJ: 1, which is spelled as ``in'').

(作 用) F記構成に基づいて本発明の詳細な説明づ−ろと、高圧
タービンへの主蒸気の供給に尤立って、高圧バイパス弁
を聞いて高圧バイパスライン側へj気を流づ−0これに
より、タービンバイパス運転が開始する。、主、4気圧
力が設定圧力にjヱしたのちtit i!I斤タービン
へ徐々に通気を開始するt) lぐあるが、この通気と
同時に蒸気ダンブ弁を聞く。これ「より、高圧タービン
のつA−ミンクができるととしに、その↑ノを気が復水
器へ逃げ、高L[/)−ビン]JI気圧力1よ真空近い
圧力にまで下がり、(の温度上背を防止することができ
る。この際、低FaFr熱蒸気管内の圧力と高圧タービ
ン排気圧力との差圧ににり高圧タービンIj[気逆止弁
は強制閉塞され、中圧タービン入口側の高温再熱蒸気の
圧力は低圧バイパスラーインて゛設定されろ高圧のまま
保持される。
(Function) To explain the present invention in detail based on the configuration described in F, it is explained that, at the same time as main steam is supplied to the high-pressure turbine, the high-pressure bypass valve is used to flow air to the high-pressure bypass line side. -0 As a result, turbine bypass operation starts. , Main, after the 4 atmosphere pressure reaches the set pressure, tit i! Gradually start venting to the turbine, but listen to the steam damp valve at the same time as this venting. Assuming that a high-pressure turbine is created, the air escapes to the condenser, and the high L[/)-bin] JI pressure drops to a pressure close to vacuum 1, and ( At this time, due to the differential pressure between the pressure in the low FaFr heat steam pipe and the high pressure turbine exhaust pressure, the high pressure turbine Ij check valve is forcibly closed, and the intermediate pressure turbine inlet The pressure of the high temperature reheat steam on the side is maintained at high pressure by setting a low pressure bypass line.

(実施+99 > 以下、本発明による高圧・中圧タービン起動方式の蒸気
タービンプラントの起動方法の一実施例を第1図及び第
2図を参照して説明する。
(Implementation +99) Hereinafter, an embodiment of a method for starting a steam turbine plant using a high-pressure/intermediate-pressure turbine starting method according to the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明である制御方法を実施する上で最適なプ
ラントの概略系統図である。<=お、第3図と同一部分
については同一符号を付して示しており、その説明は省
略する。
FIG. 1 is a schematic diagram of a plant most suitable for implementing the control method of the present invention. <=The same parts as in FIG. 3 are designated by the same reference numerals, and their explanation will be omitted.

このタービンバイパスプラントは、第3図に示したもの
と同様に主蒸気止め弁3の上流側の主蒸気管2より分岐
して高圧バイパス管25、高圧バイパス弁26及び減温
器27を介して低温再熱蒸気管7に接続覆る高圧タービ
ンバイパスライン11・Lと、高温再熱蒸気管9より分
岐し、低圧バイパス管29、低圧バイパス弁30及び減
温器31を介して復水器15に接続する低圧タービンバ
イパスラインL−1とを備え、さらに、高圧タービン排
気逆止弁6の上流から分岐して蒸気ダンプ管33及び蒸
気ダンプ弁34を介して復水器15に接続する蒸気ダン
プラインD−Lを備えている。
This turbine bypass plant, like the one shown in FIG. A high-pressure turbine bypass line 11 L connected to and covering the low-temperature reheat steam pipe 7 is branched from the high-temperature reheat steam pipe 9, and is connected to the condenser 15 via the low-pressure bypass pipe 29, low-pressure bypass valve 30, and desuperheater 31. A steam dump line is further provided with a low-pressure turbine bypass line L-1 to connect to, and further branches from upstream of the high-pressure turbine exhaust check valve 6 and connects to the condenser 15 via a steam dump pipe 33 and a steam dump valve 34. Equipped with D-L.

タービンへの通気を開始するに先だち、ボイラ1の百火
後、主蒸気圧力がある圧力に達したら、高圧バイパス弁
26を聞く。高圧バイパス弁26と高圧バイパススプレ
ー弁36はインターロックされており同一113号によ
り開となる。減温器27で冷7JIされた蒸気は低温再
熱蒸気管7を通り再熱器8へ導かれる。再熱器8で蒸気
は再熱され、高温再熱蒸気管9に流入づる。この段階で
は、再熱蒸気止め弁10及び低圧バイパス弁30が閉塞
されているため再熱蒸気圧力はしだいに−[5′7する
Prior to starting ventilation to the turbine, the high pressure bypass valve 26 is turned on when the main steam pressure reaches a certain pressure after the boiler 1 is fired. The high pressure bypass valve 26 and the high pressure bypass spray valve 36 are interlocked and are opened by the same number 113. The steam cooled by 7JI in the desuperheater 27 is guided to the reheater 8 through the low temperature reheat steam pipe 7. The steam is reheated in the reheater 8 and flows into the high temperature reheat steam pipe 9. At this stage, since the reheat steam stop valve 10 and the low pressure bypass valve 30 are closed, the reheat steam pressure gradually decreases to -[5'7.

再熱蒸気圧力が規定圧力以上となると、ぞの規定圧力を
維持しようとする低圧バイパス弁30が間となり、蒸気
は減温器31で減温され復水器15へ流入する。低1F
バイパススプレー弁38は低圧バイパス弁30とインタ
ーロックされており同じ(1”i号により開となる。こ
の状態でボイラ1の燃料を増加していき1蒸気圧力及び
温度を上背していく。
When the reheat steam pressure exceeds the specified pressure, the low-pressure bypass valve 30 is closed to maintain the specified pressure, and the steam is reduced in temperature by the attemperator 31 and flows into the condenser 15. Low 1F
The bypass spray valve 38 is interlocked with the low pressure bypass valve 30 and is opened by the same number (1"i). In this state, the fuel in the boiler 1 is increased and the steam pressure and temperature are raised.

この時点では、主蒸気止め弁3及び再熱蒸気止め弁10
が全閉しているため高圧タービン5には蒸気は流入して
いない。但し、ターニング運転し−Cいる場合は低速で
回転していることになる。また、高圧タービン5にウオ
ーミングウィンを持つプラントでは、この時期に高圧タ
ービン5内を4〜5atgに保つことが望ましい。
At this point, the main steam stop valve 3 and the reheat steam stop valve 10
Since the high pressure turbine 5 is completely closed, no steam is flowing into the high pressure turbine 5. However, if it is in turning operation and -C, it means that it is rotating at a low speed. Moreover, in a plant having a warming win in the high pressure turbine 5, it is desirable to maintain the inside of the high pressure turbine 5 at 4 to 5 atg during this period.

主蒸気圧力及びW+iが高圧タービン5への流入条件を
満したら通気を開始してタービン回転数の昇速を始める
。この際、通気に先立って蒸気加減弁4が全開され、イ
ンターセブh弁11も蒸気加減弁4に連動して全開とな
る。次に主蒸気止め弁バイパス弁3aと再熱蒸気止め弁
バイパス弁10 aが同時に開き始める。
When the main steam pressure and W+i satisfy the inflow conditions to the high-pressure turbine 5, ventilation is started and the turbine rotational speed begins to increase. At this time, the steam control valve 4 is fully opened prior to ventilation, and the interseven h valve 11 is also fully opened in conjunction with the steam control valve 4. Next, the main steam stop valve bypass valve 3a and the reheat steam stop valve bypass valve 10a begin to open simultaneously.

しかして、本発明によれば、高圧タービン5への通気と
同時に蒸気ダンプ弁3/Iも全開にされ高圧タービン5
で仕事をした蒸気は復水器15へ逃される。この時、高
圧タービン排気逆止弁6はタービンバイパス運転開始後
から差圧により強制的に閉塞されており、その結果、そ
の上流側である高圧タービン5の排気室は復水器15と
同じ真空状態となる。但し、高圧タービン排気逆止弁6
の下流である低温再熱蒸気管7及び高温再熱蒸気管9内
の圧力(再熱蒸気圧力)はタービン側の状態に関係なく
、低1Fバイパス弁30の調節によっである設定圧力を
維持し続ける。ぞして、徐々に高圧タービン5への蒸気
量を増すことに」:リタービンの71速を進める。この
過程に、15いて蒸気ダンプ弁34は全開状態をIff
持する。高1[タービン5に流入した蒸気は排気室圧力
が真空に近い低い圧力のため十分膨張し仕事を1−る。
According to the present invention, the steam dump valve 3/I is also fully opened at the same time as the ventilation to the high pressure turbine 5.
The steam that has done the work is released to the condenser 15. At this time, the high-pressure turbine exhaust check valve 6 is forcibly closed due to the differential pressure after the start of the turbine bypass operation, and as a result, the exhaust chamber of the high-pressure turbine 5 on the upstream side is under the same vacuum as the condenser 15. state. However, the high pressure turbine exhaust check valve 6
The pressure (reheat steam pressure) in the low-temperature reheat steam pipe 7 and the high-temperature reheat steam pipe 9, which are downstream of Continue to do so. Therefore, the amount of steam sent to the high-pressure turbine 5 is gradually increased.'': The 71st speed of the re-turbine is advanced. During this process, the steam dump valve 34 at 15 is fully open.
hold High 1 [The steam flowing into the turbine 5 expands sufficiently and does work because the exhaust chamber pressure is low, close to vacuum.

このことにより風損を防止づることが出来排気温jαが
巽常にL冒づることは41い。尚、蒸気ダンプ弁311
が仝聞で維持されていることから蒸気流量の増加は蒸気
ダンプ管33及び蒸気ダンプ弁34のライン損失を増大
していくことになる。このことト1高圧タービン5の1
気圧力が徐々に上背する原因と/するが、この上?1が
排気温度の異常な上Wに′)ながら/;い様にづるため
には蒸気ダンプ管33の口径を適宜選定すればよい。
This makes it possible to prevent wind damage and prevent the exhaust temperature jα from constantly changing. In addition, the steam dump valve 311
is maintained in the background, an increase in the steam flow rate increases the line loss of the steam dump pipe 33 and the steam dump valve 34. This means 1 high pressure turbine 5
Is this the cause of the air pressure gradually rising? In order to ensure that the exhaust gas temperature 1 is not affected by abnormal exhaust temperature, the diameter of the steam dump pipe 33 may be appropriately selected.

一方、タービン負荷(71人後、本5N明Cは二へ気ダ
ンプ弁34に閉信弓を与えて徐々1ニ閉゛、f+;さ1
!る。
On the other hand, after the turbine load (after 71 persons), the main 5N light C gives a closing signal to the second air dump valve 34 and gradually closes 1st, f+;
! Ru.

この理由は、負荷併入後は、高圧/7−ビン5うの排気
圧力が上昇しても、高圧タービン5内で十分な仕事をづ
ることがら排気温度の異常な上M−1こつながらないか
らである。
The reason for this is that even if the exhaust pressure of the high pressure/bin 5 rises after the load is added, sufficient work is produced within the high pressure turbine 5, and the exhaust temperature is abnormal and the M-1 does not work. It is.

以−Fのことから、この蒸気ダンプ弁34の容量は高圧
タービン5の回転上品に必要な蒸気1nを流せる容励で
あればJ:<、蒸気量としては少なく蒸気ダンプライン
の大口径化を防止できる。
From the above, the capacity of the steam dump valve 34 is J:<, if the capacity of the steam dump valve 34 is sufficient to flow 1n of steam necessary for the rotation of the high-pressure turbine 5, and the amount of steam is small, making it necessary to increase the diameter of the steam dump line. It can be prevented.

また、蒸気ダンプラインを流れる蒸気′a14をタービ
ンの出力に関係なく低流量にできること、ざらに再熱に
気圧力をタービンに関係なく高い圧力に設定出来ること
から低圧バイパスラインのコンバク1〜化を図ることが
できる。
In addition, since the steam 'a14 flowing through the steam dump line can be made to have a low flow rate regardless of the output of the turbine, and the air pressure for rough reheating can be set to a high pressure regardless of the turbine, it is possible to convert the low-pressure bypass line into a combination. can be achieved.

第2図は運転過程での各主要弁の弁開度及び再熱蒸気ラ
インの圧力及びと12度とタービンの負荷及び回転数と
の関係を示している。なお、第4図と同一部分には同一
符号を付して示し、弁開度の経時的変化を示すそれぞれ
の線には第1図に示したそれぞれの弁に対応する符号を
付して示している。
FIG. 2 shows the relationship between the valve opening degree of each main valve, the pressure of the reheat steam line and 12 degrees, and the load and rotation speed of the turbine during the operation process. The same parts as in Fig. 4 are indicated with the same reference numerals, and each line showing the change in valve opening over time is indicated with the reference numeral corresponding to each valve shown in Fig. 1. ing.

第2図に示したように、高圧タービン5への通気量始点
に上記ダンプ弁34が仝聞となる。この時、高圧タービ
ン回転数110の圧力(,1一時的に真空となり、主蒸
気圧め弁バイパス弁321で制御された流入に気は徐々
に増加1)でい、yタービン回転数が’Fl速しでいく
。このff!l1lf熱蒸′八111の圧力に関係なく
高圧タービン排気110の圧力は真空から徐々にト界し
ていく。([1し、この11力上)Vft主i/S気止
め弁バイパス弁3i+の弁開度に比例しており、十分低
い月旦カに113さえることが出来る。
As shown in FIG. 2, the dump valve 34 is located at the starting point of the air flow to the high pressure turbine 5. At this time, the pressure is at a high pressure turbine rotational speed of 110 (,1, which temporarily becomes a vacuum, and the air gradually increases due to the inflow controlled by the main steam pressure bypass valve 321), and the y turbine rotational speed is 'Fl. I'm going fast. This ff! Regardless of the pressure of the thermal steamer 111, the pressure of the high-pressure turbine exhaust 110 gradually goes away from vacuum. ([1 and above this 11 force) Vft is proportional to the valve opening degree of the main i/S stop valve bypass valve 3i+, and can be kept at a sufficiently low monthly force of 113.

しかして、本発明によれば、従に技術で問題になってい
た高圧タービン排気110の調度に5聞畠なト冒が起ら
ず、この温度(1上蒸気止め弁バイパスit 3 aに
比例づる形で上Uf?、 Lでいく。そして、タービン
(1荷Ut入後蒸気ダンプ弁、′34の弁開度4−下げ
ていくとi!′!iL[タービン枡気110の圧力は一
口急激に上冒し始めるが高圧タービン(井気110の温
度はそれ稈急激な上品を示さ/τい。これは、上述した
様にタービン内で十分な仕事が行われるからである。
Therefore, according to the present invention, the temperature of the high-pressure turbine exhaust 110, which has been a problem in the prior art, does not deteriorate, and the temperature (1) is proportional to the steam stop valve bypass it3a. Then, go up the turbine (Uf?, L) and lower the valve opening of the steam dump valve '34 by 4 - i!'!iL [the pressure of the turbine mass 110 is Although the temperature of the high-pressure turbine (well 110) starts to rise rapidly, the temperature of the high-pressure turbine (well 110) shows a rapid increase in temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明から明らかなように、本発明によれば、高圧タ
ービンへの主蒸気の供給に先立ち高圧バイパスラインへ
蒸気を供給し、高圧バイパスラインを経て流入する中圧
タービン入口側の蒸気圧力を低圧バイパスラインで設定
される高い圧力に維持し、高圧タービンへの主蒸気の供
給を開始すると同時に蒸気ダンプラインを開き高圧ター
ビンの背圧を真空近くの圧力にまで下げ、タービンΩ荷
併入後、前記蒸気ダンプラインを閉じて高圧タービンの
背圧を徐々に上TさぜるJ:うにしたから、極めて簡1
11な構成で、高圧タービンの風nを防止し、その排気
Wia麻のL ’??を防止することができる。
As is clear from the above description, according to the present invention, steam is supplied to the high-pressure bypass line before main steam is supplied to the high-pressure turbine, and the steam pressure on the intermediate-pressure turbine inlet side flowing through the high-pressure bypass line is reduced to a low pressure. Maintain the high pressure set in the bypass line, start supplying main steam to the high-pressure turbine, and at the same time open the steam dump line to reduce the back pressure of the high-pressure turbine to a pressure close to vacuum. After loading the turbine, Close the steam dump line and gradually increase the back pressure of the high pressure turbine.
11 configuration prevents the wind of the high-pressure turbine and its exhaust Wia hemp L'? ? can be prevented.

また、;−斤・中圧タービン起動方式の蒸気タービンプ
ラントの起動操作を極めて容易に、かつ、制御のし易い
ものとすることかできる。
Furthermore, the start-up operation of a steam turbine plant using the loaf/medium-pressure turbine start-up method can be made extremely easy and controllable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のタービンバイパスプラントの系統図、
第2図は、本発明の制御方法による各主要弁の動き、及
び1■熱蒸気系と11圧タービン排気の圧力及び温度と
タービン回転数、0荷との関係を示づ図、第3図は従来
タービンプランI−の系統図、第4図は従来の制粗方法
にJ、つた場合のタービン回転数及び0夕iと15熱蒸
気ライン及び高L[タービン回転数の圧力及び渇tnど
の関係を示づ図である。 1・・・ボイラ、2・・・主蒸気管、33・・・主蒸気
止め弁、3ン〕・・・」二蒸気上め弁バイパス弁、4・
・・蒸気加減弁、5・・・高圧タービン、6・・・高圧
タービン111気逆(!二弁、7・・・低温再熱蒸気管
、8・・・再熱器、9・・・高温再熱蒸気管、10・・
・Iq熱蒸気止め弁、10a・・・再熱蒸気止め弁バイ
パス弁、11・・・インターセブ1〜弁、12・・・r
l、t r+−タービン、13・・・)1」スA−バ管
、1/I・・・低圧タービン、15・・・復水器、16
・・復水ポンプ吸込管、17・・・復水ポンプ、19・
・・低圧ヒータ、20・・・脱気器、21・・・降水管
、22・・・給水ポンプ、23・・・高圧給水管、24
・・・高[1ヒータ、25・・・高圧バイパス管、26
・・・高圧バイパス弁、27・・・減温器、28・・・
高圧バイパス管、29・・・(It圧バイパス管、30
・・・低圧バイパスjt、31・・・減温器、32・・
・低圧バイパス管、33・・・、4気ダンブ管、311
・・・蒸気ダンプ弁、35・・・高圧バイパススプレー
管、36・・・高圧バイパススプレー弁、37・・・低
圧バイパススプレー管、38・・・低圧バイパススグレ
ー弁。 出願人代理人  佐  蒔  −雄 躬2図
FIG. 1 is a system diagram of a turbine bypass plant of the present invention;
Fig. 2 is a diagram showing the movement of each main valve according to the control method of the present invention, and the relationship between the pressure and temperature of the 1) thermal steam system and 11-pressure turbine exhaust, the turbine rotation speed, and 0 load, and Fig. 3 is a system diagram of the conventional turbine plan I-, and Fig. 4 shows the turbine rotational speed and the pressure of the turbine rotational speed, the pressure of the turbine rotational speed, the drying temperature and the It is a figure showing a relationship. 1...Boiler, 2...Main steam pipe, 33...Main steam stop valve, 3]...2 Steam upper valve bypass valve, 4...
...Steam control valve, 5...High pressure turbine, 6...High pressure turbine 111 reverse (!2 valves, 7...Low temperature reheat steam pipe, 8...Reheater, 9...High temperature Reheat steam pipe, 10...
・Iq heat steam stop valve, 10a... Reheat steam stop valve bypass valve, 11... Interseven 1~valve, 12...r
l, t r+-turbine, 13...) 1'' Suba pipe, 1/I... low pressure turbine, 15... condenser, 16
・・Condensate pump suction pipe, 17・・Condensate pump, 19・
...Low pressure heater, 20... Deaerator, 21... Downpipe, 22... Water supply pump, 23... High pressure water supply pipe, 24
... High [1 heater, 25 ... High pressure bypass pipe, 26
...High pressure bypass valve, 27...Desuperheater, 28...
High pressure bypass pipe, 29... (It pressure bypass pipe, 30
...Low pressure bypass jt, 31...Desuperheater, 32...
・Low pressure bypass pipe, 33..., 4 air damp pipe, 311
...Steam dump valve, 35...High pressure bypass spray pipe, 36...High pressure bypass spray valve, 37...Low pressure bypass spray pipe, 38...Low pressure bypass Sugere valve. Applicant's agent Maki Sa - Yuman 2

Claims (1)

【特許請求の範囲】[Claims] ボイラから主蒸気管を通して導かれる主蒸気により駆動
される高圧タービンと、この高圧タービンから高圧ター
ビン排気逆止弁、低温再熱蒸気管、再熱器および高温再
熱蒸気管を順次通して導かれる高温再熱蒸気により駆動
される中圧、低圧タービンと、前記主蒸気管から分岐し
高圧タービンをバイパスして前記低温再熱蒸気管に至る
高圧バイパスラインと、前記高温再熱蒸気管から分岐し
中圧、低圧タービンをバイパスして復水器に至る低圧バ
イパスラインと、前記高圧タービン排気逆止弁の上流側
から分岐し蒸気ダンプ弁を介して復水器に至る蒸気ダン
プラインとを備えた蒸気タービンプラントの起動方法で
あつて、高圧タービンへの主蒸気の供給に先立ち高圧バ
イパスラインへ蒸気を供給し、高圧バイパスラインを経
て流入する中圧タービン入口側の蒸気圧力を低圧バイパ
スラインで設定される高い圧力に維持し、高圧タービン
への主蒸気の供給を開始すると同時に蒸気ダンプライン
を開き高圧タービンの背圧を真空近くの圧力にまで下げ
、タービン負荷併入後、前記蒸気ダンプラインを閉じて
高圧タービンの背圧を徐々に上昇させるようにしたこと
を特徴とする蒸気タービンプラントの起動方法。
A high-pressure turbine is driven by main steam led from the boiler through the main steam pipe, and from this high-pressure turbine the main steam is led sequentially through a high-pressure turbine exhaust check valve, a low-temperature reheat steam pipe, a reheater, and a high-temperature reheat steam pipe. an intermediate-pressure and low-pressure turbine driven by high-temperature reheat steam; a high-pressure bypass line branching from the main steam pipe and bypassing the high-pressure turbine to reach the low-temperature reheat steam pipe; and a high-pressure bypass line branching from the high-temperature reheat steam pipe. A low-pressure bypass line that bypasses the intermediate-pressure and low-pressure turbines and reaches the condenser; and a steam dump line that branches from the upstream side of the high-pressure turbine exhaust check valve and runs through the steam dump valve to the condenser. A method of starting up a steam turbine plant, in which steam is supplied to a high-pressure bypass line before main steam is supplied to the high-pressure turbine, and the steam pressure at the inlet of the intermediate-pressure turbine, which flows through the high-pressure bypass line, is set using the low-pressure bypass line. At the same time as starting the main steam supply to the high-pressure turbine, the steam dump line is opened to reduce the back pressure of the high-pressure turbine to a pressure close to vacuum, and after the turbine load is added, the steam dump line is opened. A method for starting a steam turbine plant, characterized in that the back pressure of a high-pressure turbine is gradually increased by closing the turbine.
JP61178560A 1986-07-29 1986-07-29 How to start a steam turbine plant by starting a high pressure turbine Expired - Lifetime JP2523518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178560A JP2523518B2 (en) 1986-07-29 1986-07-29 How to start a steam turbine plant by starting a high pressure turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178560A JP2523518B2 (en) 1986-07-29 1986-07-29 How to start a steam turbine plant by starting a high pressure turbine

Publications (2)

Publication Number Publication Date
JPS6336004A true JPS6336004A (en) 1988-02-16
JP2523518B2 JP2523518B2 (en) 1996-08-14

Family

ID=16050617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178560A Expired - Lifetime JP2523518B2 (en) 1986-07-29 1986-07-29 How to start a steam turbine plant by starting a high pressure turbine

Country Status (1)

Country Link
JP (1) JP2523518B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840139A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
CN102840136A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
WO2013031121A1 (en) * 2011-08-30 2013-03-07 株式会社 東芝 Steam turbine plant and operation method therefor
CN104471199A (en) * 2012-07-12 2015-03-25 西门子公司 Method for supporting a mains frequency
CN105673101A (en) * 2016-01-07 2016-06-15 山西漳泽电力股份有限公司电力技术研究中心 Turbine with deep peak regulation function and thermodynamic system
CN106460569A (en) * 2014-05-19 2017-02-22 阿特拉斯·科普柯空气动力股份有限公司 Device for expanding steam and method to control the device
CN107448247A (en) * 2016-05-30 2017-12-08 上海电气电站设备有限公司 Double reheat steam turbine air blast control method and control system
KR102210866B1 (en) * 2019-09-18 2021-02-04 한국에너지기술연구원 Generating cycle system using flash tank
CN112343678A (en) * 2020-11-05 2021-02-09 华能国际电力股份有限公司玉环电厂 Starting control method of thermal power generating unit
CN115013083A (en) * 2022-06-10 2022-09-06 山东电力工程咨询院有限公司 Double-steam-inlet-parameter multi-shaft steam turbine unit bypass system and working method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005487B (en) * 2019-04-19 2021-07-06 上海汽轮机厂有限公司 Starting method of steam turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165003A (en) * 1984-09-04 1986-04-03 Hitachi Ltd Controlling method for turbine in intermediate pressure starting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165003A (en) * 1984-09-04 1986-04-03 Hitachi Ltd Controlling method for turbine in intermediate pressure starting

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840139A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
CN102840136A (en) * 2011-06-22 2012-12-26 株式会社神户制钢所 Steam drive type compression device
WO2013031121A1 (en) * 2011-08-30 2013-03-07 株式会社 東芝 Steam turbine plant and operation method therefor
CN102966385A (en) * 2011-08-30 2013-03-13 株式会社东芝 Steam turbine plant and operation method therefor
JP2013050055A (en) * 2011-08-30 2013-03-14 Toshiba Corp Steam turbine plant and operation method therefor
US9353650B2 (en) 2011-08-30 2016-05-31 Kabushiki Kaisha Toshiba Steam turbine plant and driving method thereof, including superheater, reheater, high-pressure turbine, intermediate-pressure turbine, low-pressure turbine, condenser, high-pressure turbine bypass pipe, low-pressure turbine bypass pipe, and branch pipe
CN104471199A (en) * 2012-07-12 2015-03-25 西门子公司 Method for supporting a mains frequency
CN106460569A (en) * 2014-05-19 2017-02-22 阿特拉斯·科普柯空气动力股份有限公司 Device for expanding steam and method to control the device
US10174638B2 (en) 2014-05-19 2019-01-08 Atlas Copco Airpower, Naamloze Vennootschap Device for expanding steam and method to control such a device
CN105673101A (en) * 2016-01-07 2016-06-15 山西漳泽电力股份有限公司电力技术研究中心 Turbine with deep peak regulation function and thermodynamic system
CN107448247A (en) * 2016-05-30 2017-12-08 上海电气电站设备有限公司 Double reheat steam turbine air blast control method and control system
CN107448247B (en) * 2016-05-30 2019-08-23 上海电气电站设备有限公司 Double reheat steam turbine air blast control method and control system
KR102210866B1 (en) * 2019-09-18 2021-02-04 한국에너지기술연구원 Generating cycle system using flash tank
WO2021054586A1 (en) * 2019-09-18 2021-03-25 한국에너지기술연구원 Power generation cycle system using flash tank and control method therefor
CN112343678A (en) * 2020-11-05 2021-02-09 华能国际电力股份有限公司玉环电厂 Starting control method of thermal power generating unit
CN115013083A (en) * 2022-06-10 2022-09-06 山东电力工程咨询院有限公司 Double-steam-inlet-parameter multi-shaft steam turbine unit bypass system and working method
CN115013083B (en) * 2022-06-10 2023-06-13 山东电力工程咨询院有限公司 Bypass system of double-steam-inlet-parameter multi-shaft steam turbine unit and working method

Also Published As

Publication number Publication date
JP2523518B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
US5412936A (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant
JPS62206203A (en) Operation control method for steam turbine
JP3694530B2 (en) Single-shaft combined cycle plant and operation method thereof
US4309873A (en) Method and flow system for the control of turbine temperatures during bypass operation
JPS6336004A (en) Method for starting steam turbine plant
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPS62101809A (en) Single-shaft combined plant having reheating system
JP2674263B2 (en) Control method for reheat steam turbine
JPS60159311A (en) Starting method for steam turbine
JP2677598B2 (en) Start-up method for two-stage reheat steam turbine plant.
JP2870759B2 (en) Combined power generator
JPS62159705A (en) Intermediate pressure turbine warming apparatus of reheating condensing turbine
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JPS6039850B2 (en) How to start the turbine
JPS60119304A (en) Steam turbine
CN218971278U (en) System for assisting steam turbine
JPS5912105A (en) Starting system of reheat condensing steam turbine
JPS60169605A (en) Steam turbine plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPS63297705A (en) Starter for steam turbine
JP2000240405A (en) Apparatus for operating reheating power generating plant
JPH01285605A (en) Method and device of starting 2-stage reheat type steam turbine plant
JPS5847203Y2 (en) Steam turbine rotor cooling system
JPH0336123B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term