JPH01264997A - Method of synthesizing diamond by vapor phase - Google Patents

Method of synthesizing diamond by vapor phase

Info

Publication number
JPH01264997A
JPH01264997A JP9038588A JP9038588A JPH01264997A JP H01264997 A JPH01264997 A JP H01264997A JP 9038588 A JP9038588 A JP 9038588A JP 9038588 A JP9038588 A JP 9038588A JP H01264997 A JPH01264997 A JP H01264997A
Authority
JP
Japan
Prior art keywords
diamond
oxygen
atmosphere
base material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9038588A
Other languages
Japanese (ja)
Other versions
JP2597498B2 (en
Inventor
Yoichi Hirose
洋一 広瀬
Kunio Komaki
小巻 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9038588A priority Critical patent/JP2597498B2/en
Publication of JPH01264997A publication Critical patent/JPH01264997A/en
Application granted granted Critical
Publication of JP2597498B2 publication Critical patent/JP2597498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To increase a diamond deposition speed and to improve the characteristics of deposit by impressing a voltage between a base material to be deposited with diamond and a nozzle part. CONSTITUTION:A raw material compd. for diamond deposition contg. carbon is so burned as to have an incomplete combustion region and the base material 5 to be deposited with diamond is installed in the nonoxidizing atmosphere in this incomplete combustion region 3 or near the region 3. The temp. of the base material 5 is held at the diamond deposition temp. The voltage is impressed between the base material 5 and the gas nozzle 1. Oxygen is mixed with the carbon source compd. and the combustion is executed in the oxygen-contg. atmosphere or non-oxygen-contg. atmosphere or the combustion is executed in the oxygen-contg. atmosphere without adding oxygen thereto as the method of burning the raw material compd. for diamond deposition.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は耐摩耗性、耐蝕性、高熱伝導性、高比弾性等の
特性を有し、研摩材、研削材、光学材料、超硬工具材、
摺動材、耐蝕材、音響材、刃先材用部材等に有用な膜状
、粒状のダイヤモンドの気相法合成方法に関する。
[Detailed description of the invention] <Industrial application field> The present invention has characteristics such as wear resistance, corrosion resistance, high thermal conductivity, and high specific elasticity, and is suitable for use in abrasive materials, abrasive materials, optical materials, and cemented carbide tools. wood,
This invention relates to a vapor phase synthesis method for film-like and granular diamond useful for sliding materials, corrosion-resistant materials, acoustic materials, cutting edge materials, etc.

〈従来の技術) ダイヤモンドの合成法としては、超高圧条件下での、鉄
、ニッケル系等の触媒による合成法や爆薬法による黒鉛
の直接変換法か従来より実施されている。
(Prior Art) Conventional methods for synthesizing diamond include a synthesis method using an iron- or nickel-based catalyst under ultra-high pressure conditions, and a direct conversion method of graphite using an explosive method.

近年低圧CVD法として、炭化水素又は窒素、酸素等を
含む有機化合物と水素との混合ガスを熱フィラメント、
マイクロ波プラズマ、高周波プラズマ、直流放電プラズ
マ、直流アーク放電等により励起状態としてダイヤモン
ドを合成する方法か開発されている。
In recent years, as a low-pressure CVD method, a mixed gas of hydrogen and a hydrocarbon or an organic compound containing nitrogen, oxygen, etc. is heated through a hot filament.
Methods have been developed to synthesize diamond in an excited state using microwave plasma, high-frequency plasma, DC discharge plasma, DC arc discharge, etc.

本発明者らは低圧CVD法に関し、とくに励起手段につ
いて種々検討を重ねた結果、熱フィラメントては熱プラ
ズマ、マイクロ波てはマイクロ波プラズマ、直流アーク
放電てはアーク放電プラズマなど、すべてプラズマ状態
かダイヤモンド合成に大きく関与しているとの結論を得
、これより燃焼による燃焼炎もプラズマ状態であること
により、この燃焼炎を利用すれば従来法に比し容易にダ
イヤモンドを合成しうるとの判断のもとに、鋭意研究の
結果炭素を含む原料化合物を燃焼させて不完全燃焼領域
を形成し、該領域又は特定条件下にある該領域の近傍に
ダイヤモンド析出用基材を配置することにより目的を達
成しうることを確認して特願昭63−4780号を出願
した。
The inventors of the present invention have conducted various studies regarding the low-pressure CVD method, especially regarding excitation means, and have found that all of them are in a plasma state, such as thermal plasma for hot filaments, microwave plasma for microwaves, and arc discharge plasma for DC arc discharge. We concluded that diamond synthesis is largely involved in diamond synthesis, and since the combustion flame caused by combustion is also in a plasma state, it was determined that diamond could be synthesized more easily by using this combustion flame than with conventional methods. As a result of intensive research, we created an incomplete combustion region by burning a raw material compound containing carbon, and placed a substrate for diamond precipitation in this region or near the region under specific conditions. After confirming that this could be achieved, we filed Japanese Patent Application No. 4780/1983.

〈発明が解決しようとする課題〉 この方法は炭素を含む原料化合物により燃焼炎を形成さ
せるのみで、基体上へのダイヤモンドを析出させること
かてきるものであり、従来のCVD法に比し画期的にす
ぐれた方法であるか、この方法を実用化するためには、
ダイヤモンド析出速度の増大や析出物の性状制御か可能
であることが強く望まれる。
<Problem to be solved by the invention> This method is capable of depositing diamond onto a substrate by simply forming a combustion flame using a raw material compound containing carbon, and is vastly superior to conventional CVD methods. In order to put this method into practical use, it is necessary to
It is strongly desired to be able to increase the diamond precipitation rate and control the properties of the precipitates.

く課題を解決するための手段〉 本発明者らは種々研究の結果、燃焼炎を形成させてダイ
ヤモンドを合成する場合、ダイヤモンド析出基材とノズ
ル部門に電圧を印加することにより目的を達成すること
を確認して本発明を完成した。
As a result of various studies, the present inventors have found that when synthesizing diamond by forming a combustion flame, the objective can be achieved by applying voltage to the diamond deposition base material and the nozzle section. After confirming this, the present invention was completed.

即ち本発明は、炭素を含むダイヤモンド析出用原料化合
物を不完全燃焼領域を有するように燃焼させ、該不完全
燃焼領域中、又は該領域の近傍の非酸化性雰囲気中に、
ダイヤモンド析出用基材を設置し、基材温度をダイヤモ
ンド析出温度に保持し基材−ガスノズル間に直流又は交
流の電圧を印加することにより基材にダイヤモンドを析
出させることを特徴とする気相法ダイヤモンド合成法に
関する。
That is, the present invention burns a carbon-containing raw material compound for diamond precipitation so as to have an incomplete combustion region, and in a non-oxidizing atmosphere in or near the incomplete combustion region,
A vapor phase method characterized by installing a base material for diamond precipitation, maintaining the base material temperature at the diamond precipitation temperature, and depositing diamond on the base material by applying a DC or AC voltage between the base material and a gas nozzle. Concerning diamond synthesis method.

なお本発明の方法により合成されるダイヤモンドにはダ
イヤモンド様炭素を含む。
Note that the diamond synthesized by the method of the present invention contains diamond-like carbon.

まずダイヤモンド合成用原料ガスについて説明する。First, the raw material gas for diamond synthesis will be explained.

炭素源として次に示す各種の化合物か使用できる。The following various compounds can be used as carbon sources.

a)含水素化合物 飽和炭化水素:メタン、エタン、プロパン、ブタン等。a) Hydrogen-containing compound Saturated hydrocarbons: methane, ethane, propane, butane, etc.

不飽和炭化水素:エチレン、プロピレン、ブチレン、ア
セチレン、アリレン等。
Unsaturated hydrocarbons: ethylene, propylene, butylene, acetylene, arylene, etc.

芳香族炭化水素:ベンゼン、トルエン、キシレン、シク
ロヘキサン等。
Aromatic hydrocarbons: benzene, toluene, xylene, cyclohexane, etc.

CHO化合物:メタノール、エタノール、プロパツール
、ブタノール等のアルコール類、エーテル基含有化合物
CHO compound: alcohols such as methanol, ethanol, propatool, butanol, and ether group-containing compounds.

ケトン基を含むもの:アセトン、メチルエチルケトン、
ジエチルケトン、2.4−ペンタンジオン、アセトフェ
ノン、1′−ツチロナフトン。
Containing ketone groups: acetone, methyl ethyl ketone,
Diethyl ketone, 2,4-pentanedione, acetophenone, 1'-tutilonaphthone.

エステル系 #酸メチル、8:該エチル、酩酊イソアミ
ル。
Ester system #acid methyl, 8: the ethyl, inebriated isoamyl.

ケテン基を含むもの゛ジメチルケテン、フェニルケテン
Those containing ketene groups (dimethylketene, phenylketene).

アセチル基を含むもの・酢酸、無水酢酸、アセトフェノ
ン、ビアセチル。
Containing acetyl groups: acetic acid, acetic anhydride, acetophenone, biacetyl.

アルデヒド基を含むもの:ホルムアルデヒド、アセトア
ルデヒド、プロピオンアルデヒド。
Those containing aldehyde groups: formaldehyde, acetaldehyde, propionaldehyde.

メチレン基を含むもの二ケテン、ジアゾメタン。Diketene, diazomethane containing a methylene group.

メチル基を含むもの:t−ブチルパーオキサイド、メチ
ルヒドロパーオキサイド、過酢酸。
Those containing a methyl group: t-butyl peroxide, methyl hydroperoxide, peracetic acid.

b)窒素含有化合物 第1アミン メチルアミン、エチルアミン、ジメチルア
ミン、トリメチルアミン、−イソプロピルアミン。
b) Nitrogen-containing compounds primary amines methylamine, ethylamine, dimethylamine, trimethylamine, -isopropylamine.

ニトリル基を含むものニアセトニトリル、ベンゾニトリ
ル、アクリロニトリル、ピハロニトリル。
Those containing nitrile groups: Niacetonitrile, benzonitrile, acrylonitrile, pihalonitrile.

アミド基を含むもの ヘキサンアミド、アセトアミド。Those containing amide groups: hexane amide, acetamide.

ニトロ基化合物:ニトロエタン、ニトロメタン、ニトロ
ソベンゼン、ニトロプロパン。
Nitro group compounds: nitroethane, nitromethane, nitrosobenzene, nitropropane.

C)含酸素化合物  −酸化炭素 二酸化炭素前述の化
合物は一種又は二種以上を混合して用いることがてきる
C) Oxygen-containing compound - carbon oxide carbon dioxide The above-mentioned compounds can be used alone or in a mixture of two or more.

これらの炭素源化合物に酸素を混合して、含酸素雰囲気
中、又は非含酸素雰囲気中で、さらに又酪素を添加せず
、含酸素雰囲気中で燃焼させることができる。
These carbon source compounds can be mixed with oxygen and burned in an oxygen-containing atmosphere or in a non-oxygen-containing atmosphere, or in an oxygen-containing atmosphere without adding butyric.

ダイヤモンド合成用原料ガスに非酸化性ガス、例えば1
1□、A「、N2、C01(:O*J1□0等の酸素、
塩素以外のガスを混合又は原料ガス輸送の手段として用
いる事も出来る。
A non-oxidizing gas, e.g. 1, is added to the raw material gas for diamond synthesis.
1□, A'', N2, C01 (:O*J1□0 etc. oxygen,
Gases other than chlorine can also be used as a means of mixing or transporting raw material gases.

さらに炭素源として固体の炭素、黒鉛等を前記化合物と
水素、酸素の混合ガスの燃焼炎中で、気化、燃焼、水素
化等の反応を介して炭素源として用いることも可能であ
る。又、その際非酸化性ガスを混合する事も出来る。
Furthermore, it is also possible to use solid carbon, graphite, etc. as a carbon source through reactions such as vaporization, combustion, and hydrogenation in a combustion flame of a mixed gas of the compound, hydrogen, and oxygen. Moreover, at that time, a non-oxidizing gas can also be mixed.

本発明においては前記のダイヤモンド合成用原料ガスを
不完全燃焼領域が存在するように燃焼させて燃焼炎を形
成させ、該不完全燃焼領域中又は炎外の非酸化性てかっ
炎の近傍のダイヤモンド析出可能に励起された領域に、
直流又は交流の電圧を印加したダイヤモンド析出用基材
を存在させることか必要である。
In the present invention, the raw material gas for diamond synthesis is combusted so that an incomplete combustion region exists to form a combustion flame, and the diamonds in the incomplete combustion region or in the vicinity of the non-oxidizing flame outside the flame are In the region excited to be able to precipitate,
It is necessary to have a substrate for diamond deposition to which a DC or AC voltage is applied.

なお、前記のダイヤモンド合成用原料ガスに酸素を添加
し、燃焼を酸素を含まない雰囲気、或は酸素を含む雰囲
気中でダイヤモンド析出状態に励起された不完全燃焼領
域を生成させる具体例としては、例えば前者については
アルゴン等の雰囲気中での燃焼を、又後者の例としては
大気開放中の燃焼を例示できる。
A specific example of adding oxygen to the raw material gas for diamond synthesis to generate an incomplete combustion region excited to a diamond precipitation state in an oxygen-free atmosphere or an oxygen-containing atmosphere is as follows: For example, the former case can be exemplified by combustion in an atmosphere such as argon, and the latter case can be exemplified by combustion in open air.

第1図に本発明の方法を実施するための代表的な装置の
模式説明図を示す。
FIG. 1 shows a schematic explanatory diagram of a typical apparatus for carrying out the method of the present invention.

図において、1はバーナー、2は燃焼炎で、内炎と称す
べき不完全燃焼領域3と、外炎4により構成されている
。5は基板て、図においては水冷支持台6に取付けられ
ている。7はバーナーノズルと基板(又は支持台)に電
圧を印加するための回路である。
In the figure, 1 is a burner, and 2 is a combustion flame, which is composed of an incomplete combustion region 3, which should be called an inner flame, and an outer flame 4. Reference numeral 5 denotes a substrate, which is attached to a water-cooled support stand 6 in the figure. 7 is a circuit for applying voltage to the burner nozzle and the substrate (or support base).

図において5で示されるダイヤモンド析出用基材は通常
低圧CVD法て用いられるものか使用てきる。即ちSi
ウェハー、SiC焼結体、Si、 SiC粒状物の外に
、W、WC,Mo、TiC,TiN、サーメット、超硬
合金、工具鋼、合金工具鋼、高速度鋼等の形状物及び粒
状物を例示できる。
The base material for diamond precipitation, indicated by 5 in the figure, is one that is normally used in the low-pressure CVD method. That is, Si
In addition to wafers, SiC sintered bodies, Si, and SiC granules, we also use shapes and granules of W, WC, Mo, TiC, TiN, cermet, cemented carbide, tool steel, alloy tool steel, high-speed steel, etc. I can give an example.

電圧印加はノズル口と水冷基板支持台間て行う事により
基板材質によらず安定して行う事が出来る。
By applying voltage between the nozzle opening and the water-cooled substrate support, it can be applied stably regardless of the substrate material.

ダイヤモンドか析出する領域は、燃焼炎中の3で示され
る通常内炎と称される酸素不足の領域である。酸素過剰
領域は、高熱で例えダイヤモンドか形成されても、過剰
の酸素によりco、 co□となり消失する。即ち、ダ
イヤモンド析出領域は酸素不足であり比較的低温である
。そしてこの領域においては原料ガスより炭化水素ラジ
カル(活性種)の生成が盛んに起こり、電圧印加による
電場により、その機構は不明であるか更に、励起され、
析出速度の増大する事となる。
The region where diamonds are deposited is the oxygen-deficient region, usually referred to as the inner flame, indicated by 3 in the combustion flame. In the oxygen-excessive region, even if diamond is formed under high heat, the excess oxygen turns into co and co□ and disappears. That is, the diamond precipitation region is oxygen deficient and relatively low temperature. In this region, hydrocarbon radicals (active species) are actively generated from the raw material gas, and the mechanism is unknown or is further excited by the electric field caused by voltage application.
This results in an increase in the precipitation rate.

この電界印加により基材上析出物は粒状物となる。これ
は電圧印加により、結晶核形成は低下し、析出速度か増
大した事によると推定される。
By applying this electric field, the precipitates on the base material become granular. This is presumed to be due to the fact that crystal nucleation decreased and the precipitation rate increased due to the voltage application.

本発明方法において析出用基材の設置される位置は不完
全燃焼領域で温度は1000℃以上、望ましくは150
0°C以上である。この領域の励起及び温度か不充分の
場合、電界印加と重畳して補助加熱源として、通電加熱
による発熱体、高周波誘導加熱、レーザー光による加熱
方式、赤外線加熱、アーク放電による加熱等が用いられ
る。
In the method of the present invention, the position where the deposition substrate is installed is in the incomplete combustion region and the temperature is 1000°C or higher, preferably 150°C.
The temperature is 0°C or higher. If the excitation and temperature in this region are insufficient, a heating element using electrical heating, high-frequency induction heating, a heating method using laser light, infrared heating, heating using arc discharge, etc. can be used as an auxiliary heating source in addition to applying an electric field. .

基材温度は500°C以上、1200°C以下が好まし
く、水冷基材支持台によりこの範囲に保持すれば良い。
The substrate temperature is preferably 500°C or more and 1200°C or less, and may be maintained within this range by a water-cooled substrate support.

炎を形成させる圧力はO,1Torrから10000T
orrの範囲で選択できるが、 10Torr〜760
Torrか好ましい。とくに常圧(760Torr)て
の合成は大気開放て実施可能を示すものであり、実用的
価値か大である。
The pressure to form a flame is O, 1 Torr to 10,000 T.
It can be selected within the range of 10 Torr to 760 Torr.
Torr is preferred. In particular, synthesis at normal pressure (760 Torr) can be carried out in the open to the atmosphere, and has great practical value.

〈作  用〉 炭素含有原料化合物から燃焼炎中て酸素との反応で分解
解離を行い、ラジカル化した活性種から例えばC,C2
、CI、CH2、CI3などか形成され、電界により更
に励起されてダイヤモンド相として析出するものと推定
される。
<Function> The carbon-containing raw material compound is decomposed and dissociated by reaction with oxygen in a combustion flame, and the radicalized active species are converted into C, C2, etc.
, CI, CH2, CI3, etc. are formed, which is further excited by the electric field and is presumed to precipitate as a diamond phase.

又水素原子、酸素原子も形成され、ダイヤモンド析出反
応に関与しているものと思われる。
Furthermore, hydrogen atoms and oxygen atoms are also formed and are thought to be involved in the diamond precipitation reaction.

く実 施 例〉 実施例 1: 第1図に示す装置を用いて本発明方法によりダイヤモン
ド合成を行った。即ち、アセチレン−酸素バーナーを固
定し、ノズル口より10amの上方位置に基材として超
硬ハイド13mmX 13mm角を水冷支持台に固定し
、ノズル口に対向させた。バーナーにアセチレン2u/
11in、酸素1.2 !2/win  (酸素/アセ
チレン比0.6)を各々導入し、大気中で燃焼させた。
Examples Example 1: Diamond synthesis was carried out according to the method of the present invention using the apparatus shown in FIG. That is, an acetylene-oxygen burner was fixed, and a 13 mm x 13 mm square piece of carbide hydride was fixed to a water-cooled support as a base material at a position 10 am above the nozzle opening, facing the nozzle opening. 2U of acetylene on the burner/
11 inches, oxygen 1.2! 2/win (oxygen/acetylene ratio: 0.6) was introduced into each reactor and burned in the atmosphere.

その後、予め結線しておいた回路により、基板を(+)
とし、ノズル口を(−)とじてDC300Vを印加した
。その時の電流は約500用Aてあった。
After that, connect the board to (+) using the pre-wired circuit.
Then, the nozzle opening was closed (-) and DC 300V was applied. The current at that time was approximately 500 A.

30分間の燃焼後、基板上の堆積物を光学顕微鏡で調べ
た所、自形を含んた粒状ダイヤモンドか密に析出した膜
状析出てその厚さは約110 gmであった。
After 30 minutes of combustion, the deposit on the substrate was examined with an optical microscope and found to be a densely deposited film of granular diamond containing euhedral shapes, with a thickness of about 110 gm.

又、析出面積の約30%は約40gmの粒径の独立粒か
らなる析出物てあった。又、顕微ラマン分光からi−カ
ーボンを僅か含むタイヤモント析出である事を確認した
Furthermore, approximately 30% of the precipitated area was comprised of precipitates consisting of independent grains with a grain size of approximately 40 gm. Furthermore, it was confirmed by micro-Raman spectroscopy that this was Tiemon deposit containing a small amount of i-carbon.

第2図に析出物の膜状部分のラマンスペクトルを示す。FIG. 2 shows the Raman spectrum of the film-like part of the precipitate.

比較例: 実施例1と電圧印加を行わない以外は全て同し条件てダ
イヤモンド合成を行った。
Comparative Example: Diamond synthesis was performed under the same conditions as in Example 1 except that no voltage was applied.

燃焼終了後の基板堆積物を光学顕微鏡、顕微ラマンで調
べた所、多少目形を含んだ膜状析出で、i−カーボンを
多少含むダイヤモンド膜と認められ、膜の厚さは約62
μmてあった。
When the substrate deposit after combustion was examined using an optical microscope and micro-Raman, it was found to be a diamond film containing some i-carbon, with some eye-shaped deposits, and the thickness of the film was about 62 mm.
It was μm.

実施例2: 実施例1と回しバーナー、設定条件で、印加電圧の極性
を逆にした。即ち、基板を(−)、ノズル口を(+)と
して300vを加えた。燃焼中の電流は約100 ! 
Aであった。15分燃焼させた後、同様な観察、測定か
ら堆積物は実施例1とほとんど同し表面形態の目形を有
する析出で、約10%程度の面積は約40pmの独立し
た粒状析出であった。ラマンスペクトル中実施例1とほ
とんど同じであった。なお膜厚は約53uLmてあった
Example 2: The polarity of the applied voltage was reversed under the setting conditions of Example 1 and the rotary burner. That is, 300V was applied with the substrate as (-) and the nozzle opening as (+). The current during combustion is about 100!
It was A. After burning for 15 minutes, similar observations and measurements revealed that the deposits were precipitates with almost the same surface morphology as in Example 1, with approximately 10% of the area being independent granular precipitates of approximately 40 pm. . The Raman spectrum was almost the same as in Example 1. Note that the film thickness was approximately 53 uLm.

〈発明の効果〉 本発明方法は、ダイヤモンドの基体への析出速度を増大
させ、又析出せるダイヤモンドは混入i−カーボン量か
少なく、実用的価値は大である。
<Effects of the Invention> The method of the present invention increases the rate of diamond deposition onto the substrate, and the diamond that can be deposited has a small amount of i-carbon mixed therein, so it has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための代表的な装置の模式説
明図、第2図は実施例1により製造された析出ダイヤモ
ンドの膜状部分のラマンスペクトルを示す。 図中、1はバーナー、2は燃焼炎、3は内炎。 4は外炎、5は基板、6は水冷支持台、7は電圧印加回
路である。
FIG. 1 is a schematic explanatory diagram of a typical apparatus for carrying out the present invention, and FIG. 2 shows a Raman spectrum of a film-like portion of the precipitated diamond produced in Example 1. In the figure, 1 is a burner, 2 is a combustion flame, and 3 is an inner flame. 4 is an outer flame, 5 is a substrate, 6 is a water-cooled support, and 7 is a voltage application circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)炭素を含むダイヤモンド析出用原料化合物を不完
全燃焼領域を有するように燃焼させ、該不完全燃焼領域
中、又は該領域の近傍の非酸化性雰囲気中に、ダイヤモ
ンド析出用基材を設置し、基材温度をダイヤモンド析出
温度に保持し、基材−ガスノズル間に電圧を印加するこ
とにより基材にダイヤモンドを析出させることを特徴と
する気相法ダイヤモンドの合成法。
(1) A raw material compound for diamond precipitation containing carbon is burned so as to have an incomplete combustion region, and a substrate for diamond precipitation is placed in a non-oxidizing atmosphere in or near the incomplete combustion region. A vapor phase diamond synthesis method characterized in that diamond is deposited on the base material by maintaining the base material temperature at a diamond precipitation temperature and applying a voltage between the base material and a gas nozzle.
(2)炭素を含むダイヤモンド析出用原料化合物に酸素
を添加し、酸素を含まない雰囲気中で燃焼させることを
特徴とする請求項1記載の気相法ダイヤモンドの合成法
(2) The vapor phase diamond synthesis method according to claim 1, characterized in that oxygen is added to a carbon-containing raw material compound for diamond precipitation, and the mixture is burned in an oxygen-free atmosphere.
(3)炭素を含むダイヤモンド析出用原料化合物に酸素
を添加し、酸素を含む雰囲気中で燃焼させることを特徴
とする請求項1記載の気相法ダイヤモンドの合成法。
(3) The vapor phase diamond synthesis method according to claim 1, characterized in that oxygen is added to the carbon-containing raw material compound for diamond precipitation, and the mixture is burned in an oxygen-containing atmosphere.
(4)炭素を含むダイヤモンド析出用原料化合物に酸素
を添加することなく、酸素を含む雰囲気中で燃焼させる
ことを特徴とする請求項1記載の気相法ダイヤモンドの
合成法。
(4) The vapor phase diamond synthesis method according to claim 1, characterized in that the raw material compound for diamond precipitation containing carbon is burned in an atmosphere containing oxygen without adding oxygen.
JP9038588A 1988-04-14 1988-04-14 Synthesis method of vapor phase diamond Expired - Lifetime JP2597498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9038588A JP2597498B2 (en) 1988-04-14 1988-04-14 Synthesis method of vapor phase diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9038588A JP2597498B2 (en) 1988-04-14 1988-04-14 Synthesis method of vapor phase diamond

Publications (2)

Publication Number Publication Date
JPH01264997A true JPH01264997A (en) 1989-10-23
JP2597498B2 JP2597498B2 (en) 1997-04-09

Family

ID=13997109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9038588A Expired - Lifetime JP2597498B2 (en) 1988-04-14 1988-04-14 Synthesis method of vapor phase diamond

Country Status (1)

Country Link
JP (1) JP2597498B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183773A (en) * 1989-12-13 1991-08-09 Japan Steel Works Ltd:The Method for synthesizing diamond by burning
JPH03247592A (en) * 1990-02-23 1991-11-05 Japan Steel Works Ltd:The Method for synthesizing diamond by combustion method
JPH03247591A (en) * 1990-02-22 1991-11-05 Japan Steel Works Ltd:The Method for synthesizing diamond by combustion method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183773A (en) * 1989-12-13 1991-08-09 Japan Steel Works Ltd:The Method for synthesizing diamond by burning
JPH03247591A (en) * 1990-02-22 1991-11-05 Japan Steel Works Ltd:The Method for synthesizing diamond by combustion method
JPH03247592A (en) * 1990-02-23 1991-11-05 Japan Steel Works Ltd:The Method for synthesizing diamond by combustion method

Also Published As

Publication number Publication date
JP2597498B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JPH01282193A (en) Method for synthesizing diamond by vapor phase process
US5174983A (en) Flame or plasma synthesis of diamond under turbulent and transition flow conditions
WO1987003307A1 (en) Process for synthesizing diamond
JPS63286576A (en) Production of rigid carbon film
JPH01264997A (en) Method of synthesizing diamond by vapor phase
JP2820604B2 (en) Method and apparatus for synthesizing vapor phase diamond
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JPH0255294A (en) Method for synthesizing diamond by vapor process
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
JP2752753B2 (en) Synthesis method of diamond by combustion flame
JP2619557B2 (en) Synthesis method of vapor phase diamond
JPH01203295A (en) Method for synthesizing diamond by vapor phase method
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JP2839612B2 (en) Synthesis method of vapor phase diamond
JPH01249697A (en) Method of synthesizing diamond by vapor phase method
JPH02192491A (en) Method for synthesizing diamond of vapor process
JP2680676B2 (en) Synthesis method of vapor phase diamond
JPH02267193A (en) Method for synthesizing diamond by combustion flame method and gas burner for synthesis
JP2651773B2 (en) Vapor phase diamond synthesis method and synthesis apparatus
JPH0811719B2 (en) Diamond film manufacturing method
JPS6357007A (en) Synthesis of diamond by gaseous phase method
JPH0393640A (en) Production of diamond particle by continuous gas phase method
JP2568542B2 (en) Low pressure synthesis of diamond
JPS6321296A (en) Method for synthesizing diamond in gaseous phase
JPH05247651A (en) Synthesizing method for diamond