JPH0393640A - Production of diamond particle by continuous gas phase method - Google Patents

Production of diamond particle by continuous gas phase method

Info

Publication number
JPH0393640A
JPH0393640A JP1228686A JP22868689A JPH0393640A JP H0393640 A JPH0393640 A JP H0393640A JP 1228686 A JP1228686 A JP 1228686A JP 22868689 A JP22868689 A JP 22868689A JP H0393640 A JPH0393640 A JP H0393640A
Authority
JP
Japan
Prior art keywords
diamond
substrate
particles
combustion region
diamond particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1228686A
Other languages
Japanese (ja)
Inventor
Yoichi Hirose
洋一 広瀬
Kunio Komaki
小巻 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1228686A priority Critical patent/JPH0393640A/en
Publication of JPH0393640A publication Critical patent/JPH0393640A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously synthesize diamond particles having a good quality by burning a raw material compound in a state having an imperfect combustion region, moving a substrate in the imperfect combustion region to produce diamond particles and subsequently peeling and recovering the produced diamond particles with a recovery blade disposed on the substrate. CONSTITUTION:When a raw material compound for producing diamond is burnt in a state having an imperfect combustion region to synthesize the diamond by the gaseous phase method, the diamond particles are produced while a substrate 1 placed under the imperfect combustion region (a combustion burner 2) is moved (on the rotation axis 5 of the substrate), and the produced diamond particles are peeled and recovered from the substrate 1 with a diamond- recovering blade 4 disposed on the substrate 1. The substrate 1 for depositing the diamond particles is preferably disposed at an angle of 0-80 deg. based on the direction of the combustion flame and moved, thereby permitting to provide transparent particles having a self-shape or independent particles having a self-shape and a large size (>=100mum).

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は耐摩耗性、耐蝕性、高熱伝導性、高比弾性等の
特性を有し、研磨材、研削材、光学材料,超硬工具材,
摺動材、音響振動材、刃先材用部材等に有用な粒状のダ
イヤモンドの連続的気相合成法に関する。
The present invention has characteristics such as wear resistance, corrosion resistance, high thermal conductivity, and high specific elasticity, and can be used as an abrasive material, an abrasive material, an optical material, a carbide tool material, etc.
This invention relates to a continuous vapor phase synthesis method for granular diamond useful for sliding materials, acoustic vibration materials, cutting edge materials, etc.

【従来の技術】[Conventional technology]

ダイヤモンドの合成法としては超高圧条件下での鉄、ニ
ッケル系等の触媒による合成法や爆薬法による黒鉛の直
接変換法が従来より実施されている。 近年、低圧CVD法として、炭化水素又は窒素、酸素等
を含む有機化合物と水素との混合ガスを熱フィラメント
,マイクロ波プラズマ、高周波プラズマ、直流放電プラ
ズマ、直流アーク放電により励起状態としてダイヤモン
ドを合成する方法が開発されている。 さらに最近、本件出願人は燃焼炎中の非酸化性領域での
ダイヤモンドの合成法を開発し、特願昭6:l− 71
758号として出願しており、本件発明はこの方法をさ
らに発展させたものである。 【発明が解決しようとする課題J 特願昭63− 71758号の発明は、従来法に比べ簡
易な手段でしかも広い面積に粒状ダイヤモンドを生成し
つる気相合成法であって、その要点は炭素を含むダイヤ
モンド析出用原料化合物を不完全燃焼領域を有するよう
に燃焼させ,該不完全燃焼領域中、又は該領域の近傍の
非酸化性雰囲気中に、ダイヤモンド析出用基材を設置し
、基材温度をダイヤモンド析出温度に保持することによ
り基材にダイヤモンドを析出させる方法である。 この方法は炭素を含む原料化合物により燃焼炎を形成さ
せるのみで基村上にダイヤモンド粒を析出させることが
可能であり、従来のCVD法に比べ画期的にすぐれた方
法であるが、実用化のためにはダイヤモンド析出速度の
さらなる増大や析出物の性状制御が強く望まれている. 本件発明はダイヤモンド析出粒の均質化および量産化を
促進することを目的とする. 〔課題を解決するための手段1 本件発明者は上記の目的を達成するため鋭意研究した結
果、燃焼炎の内炎に当たる不完全燃焼領域中で基板を移
動させることにより均質なダイヤモンド粒を生成させ、
これを基板に設置した回収ブレードによりダイヤモンド
粒を剥離、回収させることで連続的に良質のダイヤモン
ド粒を合成できることを見出し、本件発明を完成するに
至った。 すなわち、本件発明の要旨はダイヤモンド析出用原料化
合物を不完全燃焼領域を有するように燃焼させて気相法
ダイヤモンドを合成する際に、不完全燃焼領域下にある
基板を移動させながら、ダイヤモンド粒を生成させ、ダ
イヤモンド回収ブレードを基板上に設けて、ダイヤモン
ド粒を基板から剥離させて回収することを特徴とする連
続的気相法ダイヤモンド粒の製造方法にある。また本発
明の方法により合成されるダイヤモンド粒は高品質な透
明ダイヤモンドからダイヤモンドライクカーボンまでを
含む. 以下、本発明を詳しく説明する。 本発明に使用するダイヤモンド合成用炭素源としてはメ
タン、エタン、プロパン、ブタン等の飽和炭化水素、エ
チレン、プロピレン、ブチレン、アセチレン等の不飽和
炭化水素、ベンゼン、スチレン等の芳香族炭化水素、エ
チルアルコール等のアルコール類、アセトン等のケトン
基を含む化合物、ジエチルエーテル等のエーテル類、そ
の他アルデヒド化合物、含窒素化合物、一酸化炭素等す
べてが使用可能である。又、前述の化合物は1種又は2
種以上を混合して用いることができる.本発明において
は前記のダイヤモンド合成用原料ガスを不完全燃焼領域
が存在するように燃焼させて燃焼炎を形成させ、該不完
全燃焼領域(炎外の非酸化性でかつ炎の近傍のダイヤモ
ンド析出可能に励起された領域を含む)中にダイヤモン
ド析出用基板が通過するように移動させることが必要で
ある。 又、前記のダイヤモンド合成用原料ガスに酸素を添加し
、燃焼を酸素を含まない雰囲気,或は酸素を含む雰囲気
中でダイヤモンド析出状態に励起された不完全燃焼領域
を生成させる具体例としては、例えば前者についてはア
ルゴン等の雰囲気中での燃焼を、又後者の例としては大
気開放中の燃焼を例示できる. これらのダイヤモンドの気相合成において有機原料化合
物が燃焼炎中で加熱と酸素との反応で分解解離,さらに
反応してラジカル化した活性種から例えばC.CI 、
CH,CH.、CH.などがダイヤモンド相を形成する
ものと推定される.又、水素原子、酸素原子も形成され
、ダイヤモンド析出反応に関与しているものと思われる
。このようなラジカル化した活性種及び水素原子、酸素
原子濃度及び励起状態が燃焼炎中で分布を持つために燃
焼炎中、特に内炎の流れ方向を変換させて少なくとも析
出用基体の一部に接触させる事により、基板温度の低温
化等の一層好ましい条件が整い析出ダイヤモンドの粒状
化及び質的向上が起るものと思われる. 例えばアセチレン、スチレン、プロパン、エチルアルコ
ール、メチルアルコール、ベンゼン等の原料ガスに酸素
を添加し、大気開放系で燃焼炎を形成し、酸素添加量の
調整により不完全燃料領域の体積を制御することが可能
である.一例を挙げるならば酸素一アセチレン系の場合
O z / C2H2の比は0.75〜lが好ましく、
より好ましくは0.9〜1である。0.75より少ない
場合はススの発生が生じゃすく1を超える場合はエッチ
ングが生じやすい。 これらの場合の不完全燃焼領域である内炎の温度は20
00〜3000℃であ.り、補助励起手段は必要としな
い。一般的にはダイヤモンド合成温度はtsoo℃以上
が望ましい。析出基体温度は300〜800℃、より好
ましくは400〜600℃が望ましく,冷却することに
より、この基体温度範囲に制御可能である。 ダイヤモンド析出基板は通常低圧CVD法で用いられる
ものが使用できる。即ちAlaOa、Si.N.、Si
C燃焼体、W. WC. Mo、TiC , TiN 
,サーメット、超硬合金工具鋼,合金工具鋼,高速度鋼
等の板状及び曲面物を例示できる。しかしながらダイヤ
モンドの形態としてはWC,  SiC. Ti 専は
膜状化し易< . Mo, TiN等は粒状化し易いの
で生成したダイヤモンドが粒状化し易い材質を基板とし
て選?ことが好ましい。 ダイヤモンドが析出する領域は燃焼炎中の通常内炎と称
される酸素不足の領域である。一般的に酸素過剰領域は
高熱で例えばダイヤモンドが形成されても過剰の酸素に
よりCO、CO■となり消失する。すなわち、この領域
ではダイヤモンドは析出しないと考えられる.なお、ダ
イヤモンド析出領域は酸素不足であり、比較的低温であ
る。そしてこの領域においては原料ガスより炭化水素ラ
ジカル(活性種)の生成の条件に励起することが必要で
ある。本発明方法においてダイヤモンド析出用基材の位
置を炎中の300〜l200℃の範囲におくことが好ま
しい。ところで基材温度は300〜800℃の低温域で
は粒状化し易く、750〜l050℃で膜状化し易く,
さらに950〜1200℃の高温域では再び粒状化し易
いので良質なダイヤモンド粒を生成するには温度条件も
考慮に入れる方が好ましい。 又、基材の冷却速度も重要なファ゛クターで膜状折出で
も急冷すれば剥離し易い。一般に冷却速度が120℃/
win以上ならば剥離し易くなる。 本発明では比較的高温な外炎部の熱を基体設置の方法に
より利用する事も可能であり、ほとんど補助加熱源を必
要としないが、補助加熱源として通電加熱による発熱体
、高周波誘導加熱、レーザー光による加熱方式、赤外綿
加熱、アーク放電による加熱等を用いてもよい。 又、ダイヤモンド粒製造装置のダイヤモンド析出基板の
燃焼炎中心軸に対する角度θは0”  (平行)から8
0゜の範囲が好ましく、一層好ましくは30”〜60’
である。このため例えば装置的構造を挙げるならば逆円
錐状の回転基板に真上から燃焼炎を吹き付けたり円筒状
の回転基板に外側から或は内側から斜めに燃焼炎を吹き
付けることが考えられる。 この基板角度を持って炎に接触する事により透明で自形
を持った粒、又は大粒径(100μ以上)の自形独立粒
を得ることができる。従来の基板の設置は燃焼炎と基板
が垂直に配置されていたが、この状態では良質なダイヤ
モンドの他にi一カーボン等の析出が見られていたが、
角度を設定することにより、そのメカニズムは不明であ
るが燃焼炎が基板に接し、基板表面に沿った炎の流れに
よりダイヤモンド成長ラジカルがダイヤモンド粒の成長
点により定常的に達し易く、且つ、i一カボン等の非ダ
イヤモンド成分の選択的エッチングが起り易くなり、そ
の結果、二次核発生確率が減少し粒状化するものと考え
られる。 又、基板を回転等の移動させることによりダイヤモンド
粒の基板への付着力を熱衝撃により低減させ機械的に剥
離可能になる。 ダイヤモンド粒の基板からの剥離は回収ブレードによっ
て行う.回収ブレードは単なるブレード板とダイヤモン
ド粒の付着している基板に押し付ける程度のものであれ
ばよい。ここで押し付けるとはほんのわずかなクリアラ
ンスを持つものを含める意味で、突起したダイヤモンド
粒に機械的な力を与えて剥離を促進させることをいう。 回収ブレードの材質は鋼、ステンレス、モリブデン、超
硬材等が使い得る。 バーナー数は複数設定してもよい。又、ダイヤモンド粒
の回収は数回の回転後の所定成長時間後の間欠的なもの
でもよい。 以下、実施例を挙げて本発明を更に詳しく説明する。 【実施例J 第1図に示した形状のモリブデン製析出基板lOOφの
上部開口と60φの下部開口の円錐波を形成し、外周部
より水冷する方式の合成装置に市販のアセチレン/酸素
バーナーを基板表面に対し60”の角度で火口、基板距
離7msとしアセチレン5I2/IIIin、酸素4.
1!/win  (酸素/アセチレン比0.86)で燃
焼させ、水冷によりダイヤモンド粒合成部基板温度を7
00℃に保持しながら基板を上端で20o+m/hrの
速度で回転させ、バーナーと対向した位置にモリブデン
製ダイヤモンド粒回収ブレード板を基板に押し付けてダ
イヤモンドを回収した.反応を20時間行った後、回収
ダイヤモンド粒を秤量したところ約450mgの粒径分
布が極めて狭い(130〜150μ厘の範囲に約95%
が入る)ダイヤモンド粒であることが判明した. 〔発明の効果] 本発明のダイヤモンド粒製造方法によって均質化された
ダイヤモンド粒が連続的に大量に製造できる.
Conventional methods for synthesizing diamond include a synthesis method using an iron- or nickel-based catalyst under ultra-high pressure conditions, and a direct conversion method of graphite using an explosive method. In recent years, as a low-pressure CVD method, diamond is synthesized by excitation of a mixed gas of hydrocarbon or organic compound containing nitrogen, oxygen, etc., and hydrogen using a hot filament, microwave plasma, high-frequency plasma, DC discharge plasma, or DC arc discharge. A method has been developed. More recently, the applicant has developed a method for synthesizing diamond in the non-oxidizing region of a combustion flame, and has filed a patent application No. 6:1-71.
No. 758, and the present invention is a further development of this method. [Problems to be Solved by the Invention J The invention of Japanese Patent Application No. 71758/1986 is a vapor phase synthesis method that produces granular diamonds over a wider area using simpler means than conventional methods. A raw material compound for diamond precipitation containing This is a method in which diamond is deposited on a base material by maintaining the temperature at the diamond precipitation temperature. This method makes it possible to precipitate diamond grains on the substrate simply by forming a combustion flame using a raw material compound containing carbon, and is a revolutionary method superior to the conventional CVD method, but it is difficult to put it into practical use. To this end, it is strongly desired to further increase the diamond precipitation rate and control the properties of the precipitates. The purpose of the present invention is to promote homogenization and mass production of diamond precipitate grains. [Means for Solving the Problem 1] As a result of intensive research to achieve the above object, the inventor of the present invention has developed a method to generate homogeneous diamond grains by moving a substrate in an incomplete combustion region that corresponds to the inner flame of a combustion flame. ,
They discovered that high-quality diamond grains could be synthesized continuously by peeling off and collecting the diamond grains using a collection blade installed on the substrate, leading to the completion of the present invention. In other words, the gist of the present invention is that when synthesizing diamond using a vapor phase method by burning a raw material compound for diamond precipitation so as to have an incomplete combustion region, the diamond grains are synthesized while moving the substrate under the incomplete combustion region. A method for producing diamond grains by a continuous vapor phase method, characterized in that a diamond collection blade is provided on a substrate, and the diamond grains are peeled off from the substrate and collected. Furthermore, the diamond grains synthesized by the method of the present invention range from high-quality transparent diamond to diamond-like carbon. The present invention will be explained in detail below. Carbon sources for diamond synthesis used in the present invention include saturated hydrocarbons such as methane, ethane, propane, and butane; unsaturated hydrocarbons such as ethylene, propylene, butylene, and acetylene; aromatic hydrocarbons such as benzene and styrene; Alcohols such as alcohol, compounds containing a ketone group such as acetone, ethers such as diethyl ether, other aldehyde compounds, nitrogen-containing compounds, carbon monoxide, etc. can all be used. In addition, the above-mentioned compounds may be one or two types.
A mixture of more than one species can be used. In the present invention, the raw material gas for diamond synthesis is combusted to form a combustion flame so that an incomplete combustion region exists, and the incomplete combustion region (non-oxidizing outside the flame and diamond precipitation near the flame) is formed. (possibly including the excited region) through which the substrate for diamond deposition passes. Further, a specific example of adding oxygen to the raw material gas for diamond synthesis to generate an incomplete combustion region excited to a diamond precipitation state in an oxygen-free atmosphere or an oxygen-containing atmosphere is as follows: For example, an example of the former is combustion in an atmosphere such as argon, and an example of the latter is combustion open to the atmosphere. In the gas phase synthesis of these diamonds, organic raw material compounds are decomposed and dissociated by heating and reaction with oxygen in a combustion flame, and are further reacted to form radicals, which are then converted into active species, such as C.I. CI,
CH, CH. , C.H. It is estimated that these materials form the diamond phase. In addition, hydrogen atoms and oxygen atoms are also formed and are thought to be involved in the diamond precipitation reaction. Since the concentration and excited state of radicalized active species, hydrogen atoms, and oxygen atoms have a distribution in the combustion flame, the flow direction of the combustion flame, especially the inner flame, is changed and at least a part of the deposition substrate is It is thought that by bringing the diamond into contact with the diamond, more favorable conditions such as lowering the substrate temperature can be established, resulting in granulation and quality improvement of the precipitated diamond. For example, oxygen is added to a raw material gas such as acetylene, styrene, propane, ethyl alcohol, methyl alcohol, benzene, etc., a combustion flame is formed in a system open to the atmosphere, and the volume of the incomplete fuel region is controlled by adjusting the amount of oxygen added. is possible. To give an example, in the case of an oxygen-acetylene system, the ratio of Oz/C2H2 is preferably 0.75 to 1,
More preferably it is 0.9-1. If it is less than 0.75, etching tends to occur if the soot generation exceeds 1. In these cases, the temperature of the inner flame, which is the incomplete combustion region, is 20
At 00-3000℃. Therefore, no auxiliary excitation means are required. Generally, it is desirable that the diamond synthesis temperature be 20° C. or higher. The temperature of the deposition substrate is desirably 300 to 800°C, more preferably 400 to 600°C, and can be controlled within this range by cooling. As the diamond-deposited substrate, those commonly used in low-pressure CVD methods can be used. That is, AlaOa, Si. N. , Si
C combustion body, W. W.C. Mo, TiC, TiN
, cermet, cemented carbide tool steel, alloy tool steel, high-speed steel, and other plate-shaped and curved materials. However, the forms of diamond are WC, SiC. Ti-based materials tend to form a film. Mo, TiN, etc. are easily granulated, so choose a material that will easily cause the generated diamond to granulate as the substrate. It is preferable. The region where diamonds are deposited is an oxygen-deficient region of the combustion flame, commonly referred to as the inner flame. Generally, in an oxygen-excessive region, even if diamond is formed under high heat, the excess oxygen turns into CO and CO2 and disappears. In other words, it is thought that diamond does not precipitate in this region. Note that the diamond precipitation region is oxygen deficient and has a relatively low temperature. In this region, it is necessary to excite the raw material gas to conditions that produce hydrocarbon radicals (active species). In the method of the present invention, it is preferred that the substrate for diamond precipitation be placed in the flame at a temperature in the range of 300 to 1200°C. By the way, the base material temperature tends to become granular in the low temperature range of 300 to 800°C, and tends to form a film at 750 to 1050°C.
Further, in the high temperature range of 950 to 1200°C, granulation is likely to occur again, so it is preferable to take temperature conditions into consideration in order to produce high quality diamond grains. The cooling rate of the base material is also an important factor; even if the film is deposited, it will be easier to peel off if it is rapidly cooled. Generally, the cooling rate is 120℃/
If it is more than win, it becomes easy to peel off. In the present invention, it is also possible to utilize the heat of the relatively high-temperature outer flame part by installing the base, and almost no auxiliary heating source is required. A heating method using laser light, infrared cotton heating, heating using arc discharge, etc. may be used. In addition, the angle θ of the diamond precipitation substrate of the diamond grain manufacturing device with respect to the central axis of the combustion flame is from 0" (parallel) to 8".
A range of 0° is preferred, more preferably 30" to 60'
It is. For this purpose, for example, in terms of device structure, it is conceivable to blow combustion flame onto an inverted conical rotating substrate from directly above, or to blow combustion flame onto a cylindrical rotating substrate obliquely from the outside or inside. By bringing the substrate into contact with the flame at this angle, it is possible to obtain transparent, euhedral grains or euhedral independent grains with a large grain size (100 μm or more). In the conventional substrate installation, the combustion flame and the substrate were placed perpendicularly, but in this condition, in addition to high-quality diamond, precipitation of i-carbon etc. was observed.
By setting the angle, the combustion flame comes into contact with the substrate, although the mechanism is unknown, and the flow of the flame along the substrate surface makes it easier for the diamond growth radicals to reach the growth point of the diamond grains steadily. It is thought that selective etching of non-diamond components such as carbon becomes more likely to occur, and as a result, the probability of secondary nucleation decreases and granulation occurs. Furthermore, by rotating or otherwise moving the substrate, the adhesion force of the diamond grains to the substrate is reduced by thermal shock, making it possible to mechanically peel them off. The diamond grains are separated from the substrate using a collection blade. The collection blade may be a simple blade plate and a type that can be pressed against the substrate to which the diamond grains are attached. Here, pressing refers to applying mechanical force to the protruding diamond grains to promote separation, including those with a slight clearance. The collection blade can be made of steel, stainless steel, molybdenum, carbide, etc. A plurality of burners may be set. Further, the diamond grains may be collected intermittently after a predetermined growth time after several rotations. Hereinafter, the present invention will be explained in more detail with reference to Examples. [Example J] A commercially available acetylene/oxygen burner was installed in a synthesis apparatus that forms a conical wave with an upper opening of a molybdenum deposition substrate lOOφ and a lower opening of 60φ as shown in Figure 1, and cools the substrate with water from the outer periphery. Crater at an angle of 60'' to the surface, substrate distance 7ms, acetylene 5I2/IIIin, oxygen 4.
1! /win (oxygen/acetylene ratio 0.86), and the substrate temperature of the diamond grain synthesis part was set to 7.
The substrate was rotated at a speed of 20o+m/hr at the upper end while being held at 00°C, and diamonds were recovered by pressing a molybdenum diamond particle collection blade plate against the substrate at a position facing the burner. After 20 hours of reaction, the recovered diamond particles were weighed and found to be approximately 450 mg.The particle size distribution was extremely narrow (approximately 95% in the range of 130 to 150 μm).
It turned out to be a diamond grain. [Effects of the Invention] By the diamond grain production method of the present invention, homogenized diamond grains can be continuously produced in large quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の実施例を示す装置の断面図である. FIG. 1 is a sectional view of a device showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、ダイヤモンド析出用原料化合物を不完全燃焼領域を
有するように燃焼させて気相法ダイヤモンドを合成する
際に、不完全燃焼領域下にある基板を移動させながら、
ダイヤモンド粒を生成させ、ダイヤモンド回収ブレード
を基板上に設けて、ダイヤモンド粒を基板から剥離させ
て回収することを特徴とする連続的気相法ダイヤモンド
粒の製造方法。 2、ダイヤモンド析出用基板の方向を燃焼炎方向の0〜
80°に設置して移動させることを特徴とする請求項1
記載の連続的気相法ダイヤモンド粒の製造方法。
[Claims] 1. When synthesizing vapor-phase diamond by burning the raw material compound for diamond precipitation so as to have an incomplete combustion region, while moving the substrate under the incomplete combustion region,
1. A method for producing diamond grains by a continuous vapor phase method, characterized in that diamond grains are generated, a diamond collection blade is provided on a substrate, and the diamond grains are peeled off from the substrate and collected. 2. Set the direction of the substrate for diamond deposition from 0 to the direction of the combustion flame.
Claim 1 characterized in that it is installed and moved at 80°.
The continuous vapor phase method for producing diamond grains as described.
JP1228686A 1989-09-04 1989-09-04 Production of diamond particle by continuous gas phase method Pending JPH0393640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228686A JPH0393640A (en) 1989-09-04 1989-09-04 Production of diamond particle by continuous gas phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228686A JPH0393640A (en) 1989-09-04 1989-09-04 Production of diamond particle by continuous gas phase method

Publications (1)

Publication Number Publication Date
JPH0393640A true JPH0393640A (en) 1991-04-18

Family

ID=16880218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228686A Pending JPH0393640A (en) 1989-09-04 1989-09-04 Production of diamond particle by continuous gas phase method

Country Status (1)

Country Link
JP (1) JPH0393640A (en)

Similar Documents

Publication Publication Date Title
KR920000781B1 (en) Method for synthesizing diamond by vapor phase process
JPS5891100A (en) Synthesizing method for diamond
EP0288065A2 (en) Method for synthesis of diamond
JPH0393640A (en) Production of diamond particle by continuous gas phase method
JPH0238304A (en) Improved abrasive grain of fine diamond and production thereof
JPH0255294A (en) Method for synthesizing diamond by vapor process
JPH02192491A (en) Method for synthesizing diamond of vapor process
JP2820604B2 (en) Method and apparatus for synthesizing vapor phase diamond
JP2680676B2 (en) Synthesis method of vapor phase diamond
JP2752753B2 (en) Synthesis method of diamond by combustion flame
JP2619557B2 (en) Synthesis method of vapor phase diamond
JP2597498B2 (en) Synthesis method of vapor phase diamond
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JPH0667797B2 (en) Diamond synthesis method
JP2651773B2 (en) Vapor phase diamond synthesis method and synthesis apparatus
JPH0481552B2 (en)
JP2585342B2 (en) Diamond vapor phase synthesis
JPH02267193A (en) Method for synthesizing diamond by combustion flame method and gas burner for synthesis
JP2786721B2 (en) Synthesis method of diamond by combustion flame
JPS6353159B2 (en)
JP2568542B2 (en) Low pressure synthesis of diamond
JPS63297299A (en) Method for vapor synthesis of diamond
JPH01203295A (en) Method for synthesizing diamond by vapor phase method
JPH04139014A (en) Production of silicon carbide