JPH01261804A - Manufacture of magnetic hexagonal-cobalt powder - Google Patents

Manufacture of magnetic hexagonal-cobalt powder

Info

Publication number
JPH01261804A
JPH01261804A JP63089252A JP8925288A JPH01261804A JP H01261804 A JPH01261804 A JP H01261804A JP 63089252 A JP63089252 A JP 63089252A JP 8925288 A JP8925288 A JP 8925288A JP H01261804 A JPH01261804 A JP H01261804A
Authority
JP
Japan
Prior art keywords
cobalt
hexagonal
hydrogen
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63089252A
Other languages
Japanese (ja)
Inventor
Ryuichiro Tsumura
津村 柳一郎
Kunimitsu Fukumura
福村 国光
Teruo Muraishi
照男 村石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63089252A priority Critical patent/JPH01261804A/en
Publication of JPH01261804A publication Critical patent/JPH01261804A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction

Abstract

PURPOSE:To obtain stable magnetic powders with appropriate coercive force and good anticorrosiveness, without deteriorating the saturation magnetization, by liquid- phase-hydrogen-reducing hydrated cobalt directly at the specified temperature under the applied pressure of hydrogen, in the presence of a dispersing agent in the water as a reaction medium. CONSTITUTION:Hydrated cobalt is directly water-phase-hydrogen-reduced at 150-300 deg.C with the pressure of hydrogen applied, in the water as a reaction medium in the presence of a dispersing agent. It is desirable that the hydrated cobalt to be used should have hexagonal platelike or platelike crystals of hexagonal system crystal lattices, and that the particle diameters should be mainly in the degree of 0.01-1mum. The reaction is a different-phase system reaction, end it is important and necessary for the reaction to be performed in the presence of the dispersing agent, to control the particle diameters and dispersibility of manufactured cobalt particles. For a dispersing agents, an ionic or nonionic surface-active agent, and so on are used. The amount of the dispersing agent used is usually 0.001-1wt.% to water, and especially 0.01-0.5wt.% is desirable. This can improve the magnetic characteristics by increasing the coercive force and rectangularity ratio of minute reduced-cobalt powders, and also increase the specific surface area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性材料や触媒として、特に高密度な磁気記録
を可能とする垂直磁気記録方式のための記録媒体(テー
プ、ディスク、ドラム等)用の磁性粉として有用な新規
な六方晶コバルト六角板状磁性粉の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applied as a magnetic material or catalyst to recording media (tapes, disks, drums, etc.) for perpendicular magnetic recording systems that enable particularly high-density magnetic recording. The present invention relates to a method for producing a novel hexagonal cobalt hexagonal plate-shaped magnetic powder useful as a magnetic powder for industrial use.

〔従来の技術〕[Conventional technology]

高密度な磁性記録方式としては現行の長手方式と異なっ
た垂直方式が提唱され、その優れた記録性能が蒸着膜、
スパッター膜、メツキ膜の様な薄膜型記録媒体で試験的
に実証されている。この新方式を商業的に有利な塗布型
記録媒体で実用化するために新たな特性を持つ磁性粉と
して、例えばバリウムフェライト微粒子粉末が最近開発
されてきた。
A perpendicular method, which is different from the current longitudinal method, has been proposed as a high-density magnetic recording method.
It has been experimentally demonstrated on thin film recording media such as sputtered films and plated films. In order to put this new method into practical use in a commercially advantageous coated recording medium, barium ferrite fine particle powder, for example, has recently been developed as a magnetic powder with new characteristics.

しかして、もし、該バリウムフェライト微粒子(通常的
55emu/g )よりも高い飽和磁化(100ea+
u7g以上)を有するコバルト微粒子を六方晶系の結晶
格子状で且つ適当な保磁力(500〜2.0000s)
、サブミクロン以下の粒径と均一な分散性を示す磁性粉
末として製造できれば、これよりもずっと侵れた結晶−
軸磁気異方性を具備する垂直記録用素材となることが期
待される。
However, if the saturation magnetization (100ea+
cobalt fine particles having a hexagonal crystal lattice shape and an appropriate coercive force (500 to 2.0000 s)
If it could be produced as a magnetic powder with a submicron particle size and uniform dispersibility, it would be possible to produce a much more eroded crystal.
It is expected that this material will become a perpendicular recording material with axial magnetic anisotropy.

従来、金属状コバルトの粉末またはゾルの製造法として
は、大別すると、(1)コバルト酸化物または水酸化物
を高温で気相水素還元する方法、(2)コバルトカルボ
ニルまたはコバルト塩を液相熱分解する方法、(3)コ
バルト塩を高温で気相水素還元する方法、(4)コバル
ト塩を液相媒体中で水素または還元性試剤により還元す
る方法と、(5)コバルト電極で還元剤存在下に水電解
する方法、(6)金属状コバルトを不活性ガス中で高温
蒸発させる方法等が公知である。
Conventionally, methods for producing metallic cobalt powder or sol can be roughly divided into (1) a method in which cobalt oxide or hydroxide is reduced with hydrogen in the vapor phase at high temperatures, and (2) a method in which cobalt carbonyl or cobalt salt is reduced in a liquid phase. (3) a method of reducing a cobalt salt with hydrogen in the vapor phase at high temperature; (4) a method of reducing a cobalt salt with hydrogen or a reducing agent in a liquid phase medium; and (5) a method of reducing a cobalt salt with hydrogen or a reducing agent at a cobalt electrode. A method in which water is electrolyzed in the presence of cobalt, and (6) a method in which metallic cobalt is evaporated at high temperature in an inert gas are known.

本発明の製造法はこの様な方法に属さない全く新規な方
法である。因に、上記の(1)から(6)の方法では純
度、結晶格子、結晶性、粒径または分散性等において本
発明の目的に合致するコバルト微粒子は得られていない
The production method of the present invention is a completely new method that does not belong to such methods. Incidentally, cobalt fine particles meeting the objectives of the present invention in terms of purity, crystal lattice, crystallinity, particle size, dispersibility, etc., cannot be obtained by methods (1) to (6) above.

コバルト水酸化物を原料とするコバルiff性粉の製造
法としては、例えば水酸化コバルトを高温で熱処理して
酸化物としこれを高温で気相水素還元する方法(例えば
特開昭54−75597号)、水酸化コバルト粒子の表
面に銅、ニッケル、硅素化合物の様な焼結防止剤を付け
てから高温熱処理した後、高温気相で水素還元する方法
(例えば特開昭59−172209号、同59−172
210号、同59−173207号、同59−1732
08号)や水酸化コバルトを熱処理して酸化物Co3O
4とした後、焼結防止剤の硅酸塩を表面に付け、次いで
高温気相で水素還元する方法(特開昭60−10060
6号)等が知られている。
As a method for producing cobalt iff powder using cobalt hydroxide as a raw material, for example, cobalt hydroxide is heat-treated at high temperature to form an oxide, which is then reduced with gas phase hydrogen at high temperature (e.g., JP-A-54-75597). ), a method in which an anti-sintering agent such as copper, nickel, or a silicon compound is applied to the surface of cobalt hydroxide particles, heat treatment is performed at a high temperature, and then hydrogen reduction is performed in a high-temperature gas phase (for example, JP-A-59-172209, 59-172
No. 210, No. 59-173207, No. 59-1732
08) and cobalt hydroxide to form oxide Co3O.
4, apply silicate as an anti-sintering agent to the surface, and then reduce it with hydrogen in a high-temperature gas phase (Japanese Patent Application Laid-Open No. 60-10060).
No. 6) etc. are known.

しかしながら、この様な公知の方法では高温気相還元す
るために面心立方晶コバルトが生成し、基本的に重要な
高純度の六方晶結晶が得られず、その上微粒子の焼結が
起こる。これを防ぐためには、磁性鉄粉の製造法におけ
ると同一の手法を通用し、複雑な工程で焼結防止対策し
ているが、その効果は充分ではなく、本発明の目的物を
製造す゛る方法として、別置実用的に満足できるもので
はない。
However, in such known methods, face-centered cubic cobalt is produced due to the high-temperature gas phase reduction, and fundamentally important high-purity hexagonal crystals cannot be obtained, and furthermore, sintering of fine particles occurs. In order to prevent this, the same method as in the manufacturing method of magnetic iron powder is used to prevent sintering through a complicated process, but the effect is not sufficient, and the method for manufacturing the object of the present invention is As such, it is not practical to install separately.

本発明者らは、これら公知の高温気相還元法と全く異な
り、水酸化コバルトを水の反応媒体中で低温液相水素還
元する方法を提案した(特願昭61−245427号)
、これは最も経済的な製法であるが、生成磁性粉の磁気
特性等を大巾な範囲で任意に設計するには、更に改良が
必要となった。即ち、保磁力を7000e程度以上から
高め、また角形比や比表面積も比較的大きく設定できる
様にすることである。
The present inventors have proposed a method for reducing cobalt hydroxide with hydrogen in a low-temperature liquid phase in a water reaction medium, which is completely different from these known high-temperature gas-phase reduction methods (Japanese Patent Application No. 61-245427).
Although this is the most economical manufacturing method, further improvements are required in order to arbitrarily design the magnetic properties of the produced magnetic powder over a wide range. That is, the coercive force should be increased from about 7000e or more, and the squareness ratio and specific surface area should also be set relatively large.

本発明は水酸化コバルトを分散剤存在下の水中で、15
0から300°Cの比較的低温で水素加圧下に液相水素
還元する方法を提供するものであり、より詳しくはかか
る点を特徴とする新規な高純度六方晶コバルト六角また
は多角板状または粒状微粒子磁性粉の製造方法を提供す
るものである。
In the present invention, cobalt hydroxide is dissolved in water in the presence of a dispersant for 15
The purpose is to provide a method for liquid phase hydrogen reduction under hydrogen pressure at a relatively low temperature of 0 to 300°C, and more specifically, a novel high-purity hexagonal cobalt hexagonal or polygonal plate-like or granular form characterized by this point. The present invention provides a method for producing fine particle magnetic powder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

金属コバルト粒子の結晶格子には六方晶系と面心立方晶
系があり、前者は低温安定性型のため約300℃以下の
特定の条件で生成し、400℃以上の様な高温還元では
通常主として後者が生じる。この再結晶系の転移温度は
約300から400℃程度であり、高温からの徐冷によ
り六方晶を増すことは出来るが、十分な転位はできず、
両結晶格子の混合状態となる0本発明の目的たる垂直磁
気記録用磁性粉に使用するためには、結晶性がよ(且つ
一軸結晶磁気異方性を示す出来るだけ純粋な六方晶系コ
バルトが必要である。公知の製造法では高温で気相還元
するために生成する面心立方晶系の混入は避けられず、
かつ結晶性も満足されない。
The crystal lattice of metallic cobalt particles has a hexagonal system and a face-centered cubic system, and the former is stable at low temperatures, so it is produced under specific conditions of about 300°C or less, and it usually does not occur under high-temperature reduction such as over 400°C. The latter mainly occurs. The transition temperature of this recrystallized system is about 300 to 400°C, and although it is possible to increase the hexagonal crystal structure by slow cooling from a high temperature, sufficient dislocation cannot occur.
In order to use the magnetic powder for perpendicular magnetic recording, which is the object of the present invention, it is necessary to use hexagonal cobalt that has good crystallinity (and exhibits uniaxial magnetocrystalline anisotropy) as pure as possible. In known production methods, the inclusion of face-centered cubic crystal systems produced due to high-temperature gas phase reduction is unavoidable.
Moreover, crystallinity is also not satisfied.

次に垂直磁気記録用磁性粉の粒子形とサイズは(六角)
板状または粒状粒子で粒径がサブミクロン程度またはそ
れ以下で分布中が狭く、更に焼結や凝結のない均一に分
散した微粒子が望まれる。
Next, the particle shape and size of magnetic powder for perpendicular magnetic recording are (hexagonal)
It is desirable to have plate-like or granular particles with a particle size of about submicron or smaller, a narrow distribution, and uniformly dispersed particles without sintering or aggregation.

しかしながら、前記公知の方法では、この様な粒径の水
酸化コバルト微粒子を原料に用いても高温で気相水素還
元する方法のために粒子間の焼結物や凝集物の混入が不
可避となり、粒子の形状と粒径が保持されず、分散性も
悪い、さらに、粒子形は板状であり、粒径並びに粒径と
厚みの比が出来るだけ揃った微粒子から成る磁性粉が望
ましい。
However, in the above-mentioned known method, even if cobalt hydroxide fine particles of such a particle size are used as a raw material, the method of gas phase hydrogen reduction at high temperature inevitably causes contamination of sintered substances and aggregates between particles. It is desirable to use a magnetic powder consisting of fine particles whose particle shape and particle size are not maintained and whose dispersibility is poor.Furthermore, the particle shape is plate-like, and the particle size and particle size-to-thickness ratio are as uniform as possible.

また静的磁気特性に関して基本的には飽和磁化、保磁力
と角形比が重要となる。純粋な金属コバルト自身は飽和
磁化が161emu/g(20℃)とバリウムフェライ
トの2倍以上の優れた素材であり、−方探磁力は500
から2,0000e  、特に700から1.5000
eの範囲が、また角形比は高い方が実用上望ましい、従
って出来るだけもともと優れている飽和磁化を低下させ
ずに適当な保磁力を有する耐食性のよい安定な磁性粉を
製造できる方法を開発することが肝要である。
Regarding static magnetic properties, saturation magnetization, coercive force, and squareness ratio are basically important. Pure metal cobalt itself is an excellent material with a saturation magnetization of 161 emu/g (20°C), more than twice that of barium ferrite, and a -direction magnetic force of 500
from 2,0000e, especially from 700 to 1.5000
It is practically desirable that the range of e is high and the squareness ratio is high.Therefore, we will develop a method that can produce stable magnetic powder with appropriate coercive force and good corrosion resistance without reducing the originally excellent saturation magnetization as much as possible. That is essential.

更に出来るだけ異種の物質を混入させずに簡略な再現性
のよい方法によって、経済的に前記目的に沿うコバルト
磁性粉を量産できる方法であることも特に実用上から重
要な問題となる。
Furthermore, it is particularly important from a practical standpoint to find a method that can economically mass-produce cobalt magnetic powder that meets the above objectives by a simple method with good reproducibility and without mixing different types of substances as much as possible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的は、上記の如き垂直磁気記録用磁性粉とし
て要求される(1)結晶性のよい六方晶系格子を有し、
(2)粒径0.01から1μ曙の分散性のよい安定な六
角または多角板状または粒状粒子で且つ(3)高い飽和
磁化(100eau/g以上)と適当な保磁力(500
〜2.0000e )を示すという困難な諸要求を全て
同時に充足した(4)純粋なコバルト微粒子粉末を製造
する方法を提供することにある。
The object of the present invention is to (1) have a hexagonal lattice with good crystallinity, which is required for a magnetic powder for perpendicular magnetic recording as described above;
(2) Stable hexagonal or polygonal plate-shaped or granular particles with good dispersibility with a particle size of 0.01 to 1μ; and (3) high saturation magnetization (100 eau/g or more) and appropriate coercive force (500 eau/g or more).
The object of the present invention is to provide (4) a method for producing pure cobalt fine particle powder that simultaneously satisfies all of the difficult requirements of exhibiting .about.2.0000e).

本発明者らは、かかる目的を達成するために鋭意検討を
行った結果、水酸化コバルト微粒子粉末を、面心立方晶
コバルトの生成温度以下でしかも微粒子の焼結や凝結を
起こしに(い様な比較的低温において、適当な分散剤を
用いることにより水中に十分分散させた状態で、しかも
生成する還元コバルト微粒子も同様によく分散された状
態を保つ様な分散系を構築した上で、もし直接水素還元
できれば、上記課題を全て満足するコバルト粒子粉末が
得られるのではと着想し、分散剤や反応条件と生成物の
関係を鋭意研究した結果本発明を完成するに到った。
As a result of extensive studies to achieve this objective, the present inventors have determined that fine particles of cobalt hydroxide can be used at a temperature below the formation temperature of face-centered cubic cobalt and in a manner that does not cause sintering or coagulation of the fine particles. At a relatively low temperature, by using an appropriate dispersant, we can construct a dispersion system in which the reduced cobalt particles are sufficiently dispersed in water, and the resulting reduced cobalt fine particles can also be maintained in a well-dispersed state. The idea was that if direct hydrogen reduction could be performed, cobalt particles that would satisfy all of the above problems could be obtained, and as a result of intensive research into the relationship between dispersants, reaction conditions, and products, the present invention was completed.

すなわち、本発明は、コバルト磁性粉の製造方法であっ
て、水酸化コバルトを反応媒体としての水中で分散剤の
存在下、150から300°Cで水素加圧下に直接水相
水素還元することを特徴とする六方晶コバルトの板状ま
たは粒状微粒子から成る磁性粉の製造法である。
That is, the present invention is a method for producing cobalt magnetic powder, which comprises directly reducing cobalt hydroxide with hydrogen in water as a reaction medium in the presence of a dispersant at 150 to 300°C under hydrogen pressure in the aqueous phase. This is a method for producing magnetic powder consisting of plate-like or granular fine particles of hexagonal cobalt.

本発明は水酸化コバルトを水中に分散させ、分散剤の存
在下に低温高圧で直接液相水素還元することを大きな特
徴とするが、このようなコバルト微粒子粉末の製造方法
は本発明により初めて開示された方法である。コバルト
水酸化物の高温気相還元では、磁性鉄粉の製造方法にお
けるが如き方法と類似な手法を用いることにより、焼結
を防ぐ種々な方法が前記の様に提案されており、また予
め熱処理して生じる酸化物を焼結防止しながら還元する
方法も公知であるが、本発明はこれらが抱える基本的な
問題、特に前記した課題を根本的に解決する全(新規な
経済的方法を提供するものである。
A major feature of the present invention is that cobalt hydroxide is dispersed in water and subjected to direct liquid-phase hydrogen reduction at low temperature and high pressure in the presence of a dispersant, and the present invention discloses a method for producing such fine cobalt powder for the first time. This is how it was done. In the high-temperature gas phase reduction of cobalt hydroxide, various methods have been proposed to prevent sintering by using methods similar to those used in the production of magnetic iron powder, and also to prevent sintering by pre-heat treatment. Methods for reducing the oxides produced by oxidation while preventing sintering are also known, but the present invention provides a novel economical method that fundamentally solves the fundamental problems faced by these, especially the problems mentioned above. It is something to do.

本発明の方法に用いられる原料は水酸化コバルトであり
、種々な公知の方法によって製造される六方晶系結晶格
子の六角板状または板状晶で主として粒径が0.01か
ら1μ−程度の粒子が好ましいものとして使用される。
The raw material used in the method of the present invention is cobalt hydroxide, which is a hexagonal plate or plate crystal with a hexagonal crystal lattice produced by various known methods and mainly has a particle size of about 0.01 to 1μ. Particles are preferably used.

しかしながら、かかる水酸化コバルトを主体とするもの
であるかぎり、公知の方法により処理または変性された
水酸化コバルト化合物、たとえば、シリカ、アルミナ、
ニッケル等の種々な金属または金属化合物が添加された
ものを用いてもよい。
However, as long as the cobalt hydroxide compound is mainly composed of cobalt hydroxide, cobalt hydroxide compounds treated or modified by known methods, such as silica, alumina,
Materials to which various metals or metal compounds such as nickel are added may also be used.

反応は異相系反応であり、生成コバルト粒子の粒径と分
散性を制御するために、分散剤の存在下に実施すること
が重要且つ不可欠である0分散剤としてはイオン系また
は非イオン系界面活性剤等が用いられる。
The reaction is a heterophasic reaction, and it is important and essential to conduct it in the presence of a dispersant in order to control the particle size and dispersibility of the produced cobalt particles.The dispersant may be an ionic or nonionic interface. An activator or the like is used.

かかる界面活性剤としては種々のものを選んで用いるこ
とが出来る0例えば、代表例で示すと、イオン系のもの
として例えばラウリルスルホン酸ソーダ、ドデシルベン
ゼンスルホン酸ソーダ、アルキルナフタレンスルホン酸
ソーダ、ジオクチルスルホこはく酸ソーダ、α−オレフ
ィンスルホン酸ソーダ、N−アシルアミノスルホン酸ソ
ーダ、パーフルオロアルキルスルホン酸アンモニウム等
の様なスルホン酸塩;例えばステアリン酸ソーダ、アル
キルエーテルカルボン酸ソーダ、N−アシルアミノ酸ソ
ーダ、パーフルオロアルキルカルボン酸ソーダ等の様な
カルボン酸塩、; 例えばラウリル硫酸ソーダ、アルキ
ルエーテル硫酸ソーダ、アルキルアリールエーテル硫酸
ソーダ、アルキルアミド硫酸ソーダ等の様な硫酸エステ
ルと例えばアルキルリン酸ソーダ、リン酸ジ(ポリエチ
レングリコール−p−ノニルフェニル)ソータ、パーフ
ルオロアルキルリン酸ソーダ等の様なリン酸塩のアニオ
ン界面活性剤;例えばトリオクチルメチルアンモニウム
クロライド、パーフルオロアルキルメチルアンモニウム
クロライド等の様な4級アンモニウム塩;脂肪族アミン
塩;ピリジニウム塩とイミダゾリニウム塩等の様なカチ
オン界面活性剤;ベタイン、パーフルオロアルキルベタ
イン、アミノカルボン酸塩等の様な両性界面活性剤が用
いられる。ノニオン系のものとしては、例えばポリエチ
レングリコールラウリルエーテル、ポリエチレングリコ
ールノニルフェニルエーテル、パーフルオロアルキルポ
リオキシエチレンエタノール等の様なエーテル型のもの
;例えばポリエチレングリコールモノステアレート、ソ
ルビタンオレエート、フルオロアルキルエステル等の様
なエステル型のもの;エーテルエステル型のもの;例え
ばポリオキシエチレンエチルアミン、パーフルオロアル
キルアミンオキシド等の様な窒素含有型のもの等の様な
ノニオン界面活性剤が使い分けられる。
Various surfactants can be selected and used as such surfactants. For example, representative examples include ionic surfactants such as sodium lauryl sulfonate, sodium dodecylbenzenesulfonate, sodium alkylnaphthalene sulfonate, and dioctyl sulfonate. Sulfonates such as sodium succinate, sodium α-olefin sulfonate, sodium N-acylaminosulfonate, ammonium perfluoroalkylsulfonate, etc.; e.g. sodium stearate, sodium alkyl ether carboxylate, sodium N-acylamino acid, carboxylic acid salts such as sodium perfluoroalkyl carboxylates; sulfuric acid esters such as sodium lauryl sulfate, sodium alkyl ether sulfate, sodium alkylaryl ether sulfate, sodium alkylamide sulfate, etc.; and phosphoric acid, such as sodium alkyl phosphate, phosphoric acid Phosphate anionic surfactants such as di(polyethylene glycol-p-nonylphenyl)sorta, perfluoroalkyl sodium phosphate, etc.; quaternary surfactants such as trioctylmethylammonium chloride, perfluoroalkylmethylammonium chloride, etc. Ammonium salts; aliphatic amine salts; cationic surfactants such as pyridinium salts and imidazolinium salts; amphoteric surfactants such as betaines, perfluoroalkylbetaines, aminocarboxylate salts, etc. are used. Nonionic ones include ether type ones such as polyethylene glycol lauryl ether, polyethylene glycol nonylphenyl ether, perfluoroalkyl polyoxyethylene ethanol, etc.; for example, polyethylene glycol monostearate, sorbitan oleate, fluoroalkyl ester, etc. Nonionic surfactants such as ester type surfactants; ether ester type surfactants; nitrogen-containing surfactants such as polyoxyethylene ethylamine, perfluoroalkyl amine oxide, etc. can be used.

分散剤の使用量は特別の制限はないが、通常水に対して
0.001から1重量%であり、特に0.01から0.
5重量%が望ましい。
There is no particular limit to the amount of the dispersant used, but it is usually 0.001 to 1% by weight, particularly 0.01 to 0.0% by weight, based on water.
5% by weight is desirable.

本発明においては、水酸化コバルトの水相加圧水素還元
において適当な分散剤を用いることにより、還元コバル
ト微粉末の保磁力と角形比を高めて磁気特性を改善し、
更に比表面積も大きくすることができる。
In the present invention, by using an appropriate dispersant in the aqueous phase pressurized hydrogen reduction of cobalt hydroxide, the coercive force and squareness ratio of the reduced cobalt fine powder are increased and the magnetic properties are improved.
Furthermore, the specific surface area can also be increased.

またコバルト微粒子の表面改質、酸化防止、安定化、凝
集防止、磁性調節等の目的でコバルトその他の金属微粒
子または磁性粉の製造に関して公−知の添加物質やその
処決を本発明の製造法に加味することもできる。
In addition, known additives and treatments for the production of cobalt and other metal fine particles or magnetic powders for the purpose of surface modification, oxidation prevention, stabilization, prevention of agglomeration, and magnetic adjustment of cobalt fine particles can be used in the production method of the present invention. It can also be added to.

本発明では還元剤として水素を使用するが、ここで使用
する還元剤の水素は特に純度的制限はな(、反応に関し
ては不活性な成分であれば混入していても勿論構わない
0例えば窒素、炭化水素等の混合した低純度水素も用い
られる。
In the present invention, hydrogen is used as a reducing agent, but there are no particular purity restrictions for the reducing agent hydrogen used here (for example, nitrogen may be mixed in as long as it is an inert component with respect to the reaction). , low-purity hydrogen mixed with hydrocarbons, etc. may also be used.

本発明において原料水酸化コバルトは反応媒体の水に対
して通常は0.1から20重量%、望ましくは1から1
0重量%の範囲で用いられる。水素は加圧することが必
要であるが、その圧力に特に制限はない、しかし圧力を
上げる程、反応速度を高めることが出来るので、通常は
5から300Kg/cdの範囲で、望ましくは50から
150Kg/c+aの範囲で選ばれる。また反応温度は
150から300°Cの範囲で実施されるが、望ましく
は170から250°Cの範囲である。この温度未満で
あると、反応が実質的に進行しないし、また、この温度
を越えた場合は、高温安定型の面心立方晶が副生ずるよ
うになる。
In the present invention, the raw material cobalt hydroxide is usually 0.1 to 20% by weight, preferably 1 to 1% by weight, based on the water of the reaction medium.
It is used in a range of 0% by weight. Hydrogen needs to be pressurized, but there are no particular restrictions on the pressure.However, the higher the pressure, the higher the reaction rate, so it is usually in the range of 5 to 300 kg/cd, preferably 50 to 150 kg/cd. /c+a. Further, the reaction temperature is carried out in the range of 150 to 300°C, preferably in the range of 170 to 250°C. If the temperature is below this temperature, the reaction will not substantially proceed, and if it exceeds this temperature, high-temperature stable face-centered cubic crystals will be produced as by-products.

本発明の方法による水酸化コバルトから六方晶コバルト
微粒子への還元の好ましい実施のB様としては、上記の
如き水酸化コバルト微粉末と分散剤を水中へ加えてホモ
ジナイザーや超音波分散装置等により分散させた後1、
効果的な混合撹拌または流動状態を化学工学的に公知の
例えば機械的な手段で与えながら上記反応条件で水素と
加熱反応させることにより実施される。
In preferred method B of reducing cobalt hydroxide to hexagonal cobalt fine particles by the method of the present invention, the above-mentioned cobalt hydroxide fine powder and a dispersant are added to water and dispersed using a homogenizer, an ultrasonic dispersion device, etc. After letting 1,
The reaction is carried out by heating and reacting with hydrogen under the above reaction conditions while providing effective mixing and stirring or a fluidized state by means known in chemical engineering, for example, mechanical means.

反応時間は原料の水酸化コバルトとその濃度、水素圧力
、反応温度、ゾル状スラ、リー反応相の混合状態によっ
て大幅に異なりうるが、通常は数秒から20時間程度の
範囲、好ましくは数分から10時間程度の範囲である。
The reaction time can vary greatly depending on the raw material cobalt hydroxide, its concentration, hydrogen pressure, reaction temperature, sol slurry, and the mixing state of the Lee reaction phase, but it usually ranges from several seconds to about 20 hours, preferably from several minutes to 10 hours. The range is about hours.

還元反応は回文式または連続式の種々属地形式を採用し
て実施できるが、原料と生成物がゾル状スラリーを形成
しこの状態において水素ガスを吸収せしめて反応させる
ことになるので、反応相の混合をよくすることが肝要で
ある。この際に前記の反応条件を適当に選択することに
よって円滑に還元を進行させ、反応中の凝結を抑えて微
粒子の形状を保持することができる。
The reduction reaction can be carried out in various forms, such as palindromic or continuous, but since the raw materials and products form a sol-like slurry, and in this state hydrogen gas is absorbed and reacted, the reaction phase is It is important to mix well. At this time, by appropriately selecting the reaction conditions described above, the reduction can proceed smoothly, coagulation during the reaction can be suppressed, and the shape of the fine particles can be maintained.

本発明においては、かくして水酸化コバルト粉末から六
方晶六角または多角板状または粒状のコバルト微粒子粉
末が反応を完結させることによって実質的に100%の
収率で生成させることができる。
In the present invention, hexagonal hexagonal or polygonal plate-like or granular cobalt fine particle powder can be produced from cobalt hydroxide powder in a substantially 100% yield by completing the reaction.

生成するコバルト微粒子は反応器からゾル状スラリー状
で取り出し、反応媒体から1頃斜、濾過、遠心分離等の
公知の方法で分離し、その尽でまたは必要に応じて洗浄
、徐酸化して乾燥することにより空気中で安定なコバル
ト微粒子磁性粉末を製造できる。
The produced cobalt fine particles are taken out of the reactor in the form of a sol-like slurry, separated from the reaction medium by a known method such as decanting, filtration, or centrifugation, and then washed, slowly oxidized, and dried when exhausted or as necessary. By doing so, it is possible to produce cobalt fine particle magnetic powder that is stable in the air.

過剰の未反応水素ガス、分離回収された反応媒体と洗液
はその尽または慣用の方法で精製して容易に再使用され
る。
Excess unreacted hydrogen gas, separated and recovered reaction medium and washing liquid can be used up or purified by conventional methods and easily reused.

本発明の方法に従えば、結晶性のよい六方晶結晶格子の
高純度コバルト微粒子から成るコバルト微粉末を容易に
製造することができ、この微粒子の形状、サイズと分散
は原料に用いた水酸化コバルト粒子にも依存するが、主
として粒径0.01から1μl、特に0.03から0.
3μ階の範囲で比較的粒径が揃った六角または多角板状
または粒状を呈し、粒径と厚みの比が約2から10程度
の分散した微粒子を主とする黒色微粉末である。この微
粉末は飽和磁化100から150emu/gの安定した
強磁性を示し、保磁力500から2,0000e  特
に700から1.5000e  の値を有するので、特
に垂直磁気録媒体用に最適であり、有用な新規磁性粉と
なる。
According to the method of the present invention, it is possible to easily produce cobalt fine powder consisting of high-purity cobalt fine particles in a hexagonal crystal lattice with good crystallinity, and the shape, size and dispersion of the fine particles are determined by the hydroxide used as the raw material. Although it depends on the cobalt particles, the particle size is mainly from 0.01 to 1 μl, especially from 0.03 to 0.0 μl.
It is a black fine powder mainly consisting of dispersed fine particles with a hexagonal or polygonal plate shape or a granular shape with a relatively uniform particle size in the 3μ order range, and a particle size to thickness ratio of about 2 to 10. This fine powder exhibits stable ferromagnetism with a saturation magnetization of 100 to 150 emu/g and a coercive force of 500 to 2,0000e, especially 700 to 1.5000e, making it particularly suitable and useful for perpendicular magnetic recording media. It becomes a new magnetic powder.

〔実施例〕〔Example〕

以下実施例により本発明の好ましい実施の態様を具体的
に説明する。
Hereinafter, preferred embodiments of the present invention will be specifically explained with reference to Examples.

実施例1 水酸化コバルト桃色微粉末(平均粒径0.10μmの六
角板状晶で凝集せずによ(分散されるもの)2.32g
とステアリン酸ソーダ0.04gを水200mj2中に
入れ加温しながら十分に分散処理後、これを500  
mlステンレスオートクレーブに窒素雰囲気下に仕込み
、水素をloOKg/cd圧大した後、800rpmの
速度で攪拌しながら180°Cで10分間反応を行った
。冷却、放圧してから内容物を取り出し、水を分離した
0次いで黒色泥状粉末をメタノールで洗浄し、乾燥する
と空気中で安定な黒色コバルト微粉末1.50gが得ら
れた。この粉末はX線分析によると結晶性のよい六方晶
系コバルトを示し、面心立方晶は認められず、高純度の
コバルト結晶であることがf!認された。電子顕微鏡に
よると、粒径0.05〜0.15μmの主として粒状と
(六角)板状の微粒子から成ることがわかった。この微
粉末は振動試料型磁力計により10 KOeまで磁化し
た飽和磁化は131 emu/g 、保磁力は8200
e 、角形比は0.388であり、比表面積は18.2
m”/gであった。
Example 1 2.32 g of cobalt hydroxide pink fine powder (dispersed without agglomeration in hexagonal plate-like crystals with an average particle size of 0.10 μm)
Add 0.04 g of sodium stearate to 200 mj2 of water and thoroughly disperse while heating.
A stainless steel autoclave was charged under a nitrogen atmosphere, hydrogen was increased to lo OK g/cd, and the reaction was carried out at 180° C. for 10 minutes while stirring at a speed of 800 rpm. After cooling and releasing the pressure, the contents were taken out, water was separated, and the black slurry powder was washed with methanol and dried to obtain 1.50 g of black cobalt fine powder stable in the air. According to X-ray analysis, this powder shows hexagonal cobalt with good crystallinity, and no face-centered cubic crystals are observed, indicating that it is a highly pure cobalt crystal. It has been certified. According to an electron microscope, it was found that it consisted mainly of granular and (hexagonal) plate-like fine particles with a particle size of 0.05 to 0.15 μm. This fine powder was magnetized to 10 KOe using a vibrating sample magnetometer, with a saturation magnetization of 131 emu/g and a coercive force of 8200.
e, squareness ratio is 0.388, specific surface area is 18.2
m”/g.

比較例1 ステアリン酸ソーダを用いない以外は実施例1と同様に
行うと、黒色コバルト微粉末1.23gが得られた。結
晶性のよい高純度の六方晶系結晶であるが 飽和磁化は
140e麟u/g 、保磁力は4900e、角形比は0
.260であり、比表面積は7.5N” /gであった
Comparative Example 1 In the same manner as in Example 1 except that sodium stearate was not used, 1.23 g of black cobalt fine powder was obtained. It is a high-purity hexagonal crystal with good crystallinity, but the saturation magnetization is 140e/g, the coercive force is 4900e, and the squareness ratio is 0.
.. 260, and the specific surface area was 7.5 N''/g.

実施例2 水酸化コバルト4.65g  とステアリン酸ソーダ0
.2gを用いて、200°Cで30分間反応を行った以
外は実施例1と同様な実験を行ったところ、黒色微粉末
2.81 gが得られた。この粉末は結晶性のよい純粋
な六方晶コバルトから成り、飽和磁化135ellu/
g、保磁カフ750s 、角形比0.403であり、比
表面積は18.5m”/gを示した。
Example 2 4.65 g of cobalt hydroxide and 0 sodium stearate
.. When the same experiment as in Example 1 was conducted except that 2 g was used and the reaction was carried out at 200°C for 30 minutes, 2.81 g of black fine powder was obtained. This powder is made of pure hexagonal cobalt with good crystallinity, and has a saturation magnetization of 135 ellu/
g, coercive cuff 750s, squareness ratio 0.403, and specific surface area 18.5 m''/g.

実施例3 ステアリン酸ソーダ0.3gを用いた以外は実施例2と
同様な実験を行ったところ、黒色微粉末2.85gが得
られた。この粉末は結晶性のよい純粋な六方晶コバルト
から成り、飽和磁化130emu/g 、保磁力935
0e、角形比0.426であり、比表面積は14.7+
++”/gを示した。
Example 3 An experiment similar to Example 2 was conducted except that 0.3 g of sodium stearate was used, and 2.85 g of black fine powder was obtained. This powder is made of pure hexagonal cobalt with good crystallinity, has a saturation magnetization of 130 emu/g, and a coercive force of 935.
0e, the squareness ratio is 0.426, and the specific surface area is 14.7+
++”/g.

実施例4 ステアリン酸ソーダ0.4gを用いた以外は実施例2と
同様な実験を行ったところ、黒色微粉末2.62gが得
られた。この粉末は結晶性のよい純粋な六方晶コバルト
から成り、飽和磁化135emu/g 、保磁カフ85
0e、角形比0.394であり、比表面積は18.7m
” /gを示した。
Example 4 An experiment similar to Example 2 was conducted except that 0.4 g of sodium stearate was used, and 2.62 g of black fine powder was obtained. This powder is made of pure hexagonal cobalt with good crystallinity, has a saturation magnetization of 135 emu/g, and a coercive cuff of 85
0e, squareness ratio 0.394, specific surface area 18.7m
”/g.

比較例2 ステアリン酸ソーダを用いない以外は実施例2と同様な
実験を行ったところ、黒色微粉末2.55gが得られた
。この粉末は結晶性のよい純粋な六方晶コバルトであっ
たが、飽和磁化138emu/g 、保磁力4750s
 、角形比0.270であり、比表面積は6.5+s”
/gであった。
Comparative Example 2 An experiment similar to Example 2 was conducted except that sodium stearate was not used, and 2.55 g of black fine powder was obtained. This powder was pure hexagonal cobalt with good crystallinity, and had a saturation magnetization of 138 emu/g and a coercive force of 4750 s.
, the squareness ratio is 0.270, and the specific surface area is 6.5+s”
/g.

実施例5〜9 水酸化コバルト粉末(平均粒径0.15μ清)4.65
gと前記の分散剤0.04gを用いて、水素を30Kg
/ d圧入して反応を行った以外は、実施例2と同様に
処理した。得られた結果を分散剤を用いない比較例3と
共に第1表に示した。尚それぞれに還元された黒色微粉
末は結晶性のよい高純度な六方晶コバルトであった。
Examples 5 to 9 Cobalt hydroxide powder (average particle size 0.15μ clear) 4.65
g and 0.04 g of the above dispersant, 30 kg of hydrogen
The process was carried out in the same manner as in Example 2, except that the reaction was carried out by press-fitting the sample. The obtained results are shown in Table 1 together with Comparative Example 3 in which no dispersant was used. The reduced black fine powder was highly purified hexagonal cobalt with good crystallinity.

(本発明の効果〕 本発明の方法によれば、水酸化コバルトを原料として、
純粋な六方晶系で粒径0.01から1μmの高純度コバ
ルト六角または多角板状または粒状微粒子が分散した粉
末を高収率で経済的に製造することができる。
(Effects of the present invention) According to the method of the present invention, cobalt hydroxide is used as a raw material,
A powder in which highly purified cobalt hexagonal or polygonal plate-like or granular fine particles having a pure hexagonal system and a particle size of 0.01 to 1 μm are dispersed can be economically produced in high yield.

また本発明の方法によれば、飽和磁化が十分に高< (
LOOe+mu/g以上)、且、保磁力が適当な値(5
00から1,5000e  )を有する新規な六方晶高
純度コバルト板状または粒状粒子(粒径0.01かう1
μm)を含有する有用な磁性粉、特に垂直磁気記録媒体
用に適当な磁性粉が容易に製造されるものである。
Furthermore, according to the method of the present invention, the saturation magnetization is sufficiently high < (
LOOe+mu/g or more), and the coercive force is an appropriate value (5
Novel hexagonal high-purity cobalt plate-like or granular particles (particle size 0.01 to 1
.mu.m), useful magnetic powders, particularly magnetic powders suitable for perpendicular magnetic recording media, can be easily produced.

第1表 例      分散剤     飽和磁化保磁力 角形
比(e+nu/g)   (Oe)
Table 1 Example Dispersant Saturation coercivity Squareness ratio (e+nu/g) (Oe)

Claims (3)

【特許請求の範囲】[Claims] (1)コバルト磁性粉の製造方法であって、水酸化コバ
ルトを分散剤の存在下に水を反応媒体として、150か
ら300℃で水素加圧下に直接液相水素還元することを
特徴とする六方晶コバルト微粒子から成る磁性粉の製造
法。
(1) A method for producing cobalt magnetic powder, which comprises directly reducing cobalt hydroxide with liquid phase hydrogen under hydrogen pressure at 150 to 300°C in the presence of a dispersant and using water as a reaction medium. A method for producing magnetic powder consisting of crystalline cobalt fine particles.
(2)六方晶コバルト微粒子の粒径が0.01から1μ
mの六方晶コバルト六角または多角板状または粒状微粒
子である特許請求の範囲第1項記載の方法。
(2) The particle size of hexagonal cobalt fine particles is 0.01 to 1μ
The method according to claim 1, wherein the hexagonal cobalt particles are hexagonal cobalt hexagonal or polygonal plate-like or granular fine particles.
(3)得られる磁性粉が垂直磁気記録媒体用磁性材料と
して好適に使用しうるものである特許請求の範囲第1項
もしくは第2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the obtained magnetic powder can be suitably used as a magnetic material for perpendicular magnetic recording media.
JP63089252A 1988-04-13 1988-04-13 Manufacture of magnetic hexagonal-cobalt powder Pending JPH01261804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089252A JPH01261804A (en) 1988-04-13 1988-04-13 Manufacture of magnetic hexagonal-cobalt powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089252A JPH01261804A (en) 1988-04-13 1988-04-13 Manufacture of magnetic hexagonal-cobalt powder

Publications (1)

Publication Number Publication Date
JPH01261804A true JPH01261804A (en) 1989-10-18

Family

ID=13965568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089252A Pending JPH01261804A (en) 1988-04-13 1988-04-13 Manufacture of magnetic hexagonal-cobalt powder

Country Status (1)

Country Link
JP (1) JPH01261804A (en)

Similar Documents

Publication Publication Date Title
JP5130534B2 (en) Ε iron oxide powder with improved magnetic properties
JP5124826B2 (en) Ε iron oxide powder with good dispersibility
JP2008063199A (en) epsi-IRON OXIDE-BASED MAGNETIC MATERIAL
US3770500A (en) Magnetic materials and method of making same
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε&#39;iron carbide and method for producing the same
Sakai et al. Preparation and magnetic properties of barium ferrite fine particles by the coprecipitation salt-catalysis method
JPH01261804A (en) Manufacture of magnetic hexagonal-cobalt powder
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPS63103830A (en) Production of hexagonal cobalt magnetic powder
JP2004035939A (en) Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP2010095751A (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
KR19990077521A (en) Spindle-shaped goethite particles and process for producing the same
JPS63222404A (en) Metal powder having super high coercivity and manufacture thereof, and magnetic recording medium
JPS6333510A (en) Production of fine hexagonal cobalt particle
JPH01261805A (en) Manufacture of magnetic hexagonal-cobalt powder
JPS636806A (en) Manufacture of hexagonal crystal cobalt magnetic powder
JPS63103831A (en) Production of hexagonal cobalt magnetic powder
JPH05326233A (en) Production of magnetic powder
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JPS5925905A (en) Production of acicular ferrous ferromagnetic metallic powder
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JPS62294126A (en) Production of fine hexagonal cobalt particles
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP3171223B2 (en) Method for producing acicular magnetic particle powder