JPH01254210A - Substance separator - Google Patents

Substance separator

Info

Publication number
JPH01254210A
JPH01254210A JP8111088A JP8111088A JPH01254210A JP H01254210 A JPH01254210 A JP H01254210A JP 8111088 A JP8111088 A JP 8111088A JP 8111088 A JP8111088 A JP 8111088A JP H01254210 A JPH01254210 A JP H01254210A
Authority
JP
Japan
Prior art keywords
electrodes
conductive polymer
porous
electrode
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8111088A
Other languages
Japanese (ja)
Inventor
Takeshi Sasaki
武 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP8111088A priority Critical patent/JPH01254210A/en
Publication of JPH01254210A publication Critical patent/JPH01254210A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes

Abstract

PURPOSE:To obtain a miniaturized deionization equipment by parallelly providing a cathode and an anode made of a conductive high molecular layer while holding an interval and interposing a soln. incorporating ions between the electrodes. CONSTITUTION:A substance separator 1 is constituted by interposing the spacers 4 among the cathodes 2 and the anodes 3 and parallel providing one couple or more cathodes and anodes. These cathodes 2 and anodes 3 consist of a porous body and feed water 10 incorporating ions is interposed among them and allowed to permeate through them. The cathodes 2 have cation trapping capacity and nickel is used as a conductive supporting material and a porous conductive high polymer layers 7 are formed and held to both sides of the supporting material. As the anodes, the conductive high molecular layer having anion trapping capacity is utilized. Therefore pressure drop is made small and the efficient equipment is obtained.

Description

【発明の詳細な説明】 (、)産業上の利用分野 本発明は、荷電物質(イオン)を含む溶液中より電気化
学的に荷電物質を効率良く分離する物質分離装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a substance separation device that efficiently separates charged substances (ions) electrochemically from a solution containing charged substances (ions).

(b)従来の技術 従来、物質を分離する方法として種々の方法が提案され
ている。
(b) Prior Art Conventionally, various methods have been proposed for separating substances.

例えば、荷電物質の分離には、抽出法、イオン交換法、
電気透析法、膜分離法等が採用されており、又、荷電物
質に限らなければ、活性炭やクロマトグラフィ等を用い
た吸着法や吸収法があり、更に熱拡散法等が挙げられる
For example, to separate charged substances, extraction methods, ion exchange methods,
Electrodialysis methods, membrane separation methods, etc. have been adopted, and if the method is not limited to charged substances, there are adsorption methods and absorption methods using activated carbon, chromatography, etc., and further examples include thermal diffusion methods.

この物質分離には、膜性に代表される圧力差、濃度差や
吸収力の差を利用する吸着、吸収更に抽出、または電位
差を利用する電気透析、特殊な温度差を利用する熱拡散
法等が挙げられる。
This separation of substances includes adsorption, absorption and extraction using pressure differences represented by membranes, differences in concentration and absorption capacity, electrodialysis using potential differences, and thermal diffusion methods using special temperature differences. can be mentioned.

荷電物質の分離方法として、特にイオン交換り(詣を用
いた方法が多用されているが、イオン交換樹皿中での荷
電物質の拡散・移動速度に限界があり、その処理量を多
くするにはイオン交換?31脂の量を増やす必要があり
、その結果、処理装置の大型化が避けられないのである
。特に、この場合には、再生システムが必要で、全体の
装置が複雑になるだけでなく、操作も複雑になる。
As a method for separating charged substances, methods using ion exchange (mari) are often used, but there is a limit to the rate of diffusion and movement of charged substances in an ion exchange tray, and it is difficult to increase the throughput. In this case, it is necessary to increase the amount of ion exchange fat, and as a result, it is inevitable that the processing equipment becomes larger.In particular, in this case, a regeneration system is required, which only increases the complexity of the overall equipment. Moreover, the operation becomes complicated.

又、この方法では、イオン交換樹脂の再生に多量の酸も
しくはアルカリを必要とするので、再生処理が煩瑣であ
るうえに、この酸やアルカリは一般に辱・劇物でその取
り扱いには相当の注意が必要であり、加えて、イオン交
換樹脂中のイオン交換基が溶液中のイオンを強固に吸着
した場合には、再生が困難となって、イオン交換用脂の
ライフサイクルが短くなるなどの問題が生じる。
In addition, this method requires a large amount of acid or alkali to regenerate the ion exchange resin, making the regeneration process cumbersome. In addition, acids and alkalis are generally harmful and harmful substances and must be handled with great care. In addition, if the ion exchange groups in the ion exchange resin strongly adsorb ions in the solution, regeneration becomes difficult and problems such as a shortened life cycle of the ion exchange resin occur. occurs.

(c)発明が解決しようとする課題 イオン交換、電気透析等の荷電物質の分離方法において
は分離面での濃度低下と荷電物質の移動、拡散速度の限
界等から、分離遠度を無限に速くできない。また、イオ
ン交換は粒状物を充填しており、電気透析は、電圧印加
のため平面状にならざるをえない。このため、処理能力
の増大を図るには、分離面の増加による流れ系の変化や
装置の大型化が起こり、再生工程を含めて、システムの
複雑化を避けることができないなどの開運がある。
(c) Problems to be Solved by the Invention In methods for separating charged substances such as ion exchange and electrodialysis, the distance of separation can be made infinitely faster due to the concentration drop at the separation surface, the movement of charged substances, and the limit of diffusion speed. Can not. In addition, ion exchange is filled with particulate matter, and electrodialysis must be planar due to voltage application. Therefore, in order to increase the processing capacity, changes in the flow system due to the increase in the number of separation surfaces and an increase in the size of the equipment occur, and the complexity of the system, including the regeneration process, cannot be avoided.

本発明は、陰・陽画電極の少なくとも11Lを所定の間
隔を隔ててパラレルに対峙、併設させ、当該陰・陽極を
多孔質にして当該電極中にイオンを含む溶液を透過させ
つつ、所定の電圧を印加することにより電荷物質を除去
ようにしたものであり、これによって、装置の小型化を
実現し、しかも電極とイオンの接触を良好にして有効に
脱イオンを行う一方、この後、再生液中で陰・陽画電極
間に印加する電圧の極性を逆転させて、それぞれの電極
から同時に、又は個別的に効率良くそれぞれアニオン及
びカチオンを放出させて、電極を再生しうる物質分離装
置を提供することを目的とするものである。
In the present invention, at least 11 L of negative and positive image electrodes are arranged in parallel with each other at a predetermined interval, and the negative and anode electrodes are made porous to allow a solution containing ions to pass through the electrodes while maintaining a predetermined voltage. The device is designed to remove charged substances by applying a To provide a substance separation device capable of regenerating electrodes by reversing the polarity of voltage applied between negative and positive electrodes to efficiently release anions and cations from each electrode simultaneously or individually. The purpose is to

(d)課題を解決するための手段 本発明者らは、上記間に点を解決すべく鋭意検討を重ね
た結果、脱イオン工程と再生工程の簡略化、操作性の簡
素化を図るには、特開昭62−25871号公報、特願
昭62−264876号に開示されている電気化学的脱
イオンシステムを利用し、且つ陰、陽電極間の電位差を
交互に変えて脱イオンと再生を繰り返し行うことが好ま
しく、しかも多孔質導電性高分子層を用いてなる画電極
の少なくとも111を所定の間隔を隔ててパラレルに対
峙、併設させ、該画電極を多孔質にして当該電極中にイ
オンを含む溶液を透過させつつ、所定の電圧を印加する
ことによって電荷物質を除去することにより、装置の小
型化が実現されて容積効率の向上を図ることができ、し
かも有効に脱イオンを行う一方、この後、再生液中で両
電極間に印加する電圧の極性を逆転させて、それぞれの
電極から同時に、又は個別的に効率良くそれぞれアニオ
ン及びカチオンを放出させて、電極を再生しうろことを
見い出し、本発明を完成するに至ったものである。
(d) Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the inventors have found that in order to simplify the deionization process and the regeneration process, and to simplify the operability. , using the electrochemical deionization system disclosed in Japanese Patent Application Laid-Open No. 62-25871 and Japanese Patent Application No. 62-264876, and alternately changing the potential difference between the negative and positive electrodes to perform deionization and regeneration. It is preferable to repeat the process repeatedly, and in addition, at least 111 picture electrodes made of porous conductive polymer layers are placed facing each other in parallel at a predetermined interval, and the picture electrodes are made porous so that ions are absorbed into the electrodes. By applying a predetermined voltage to remove charged substances while allowing a solution containing ions to pass through, it is possible to miniaturize the device and improve volumetric efficiency, while also effectively deionizing. After this, the polarity of the voltage applied between both electrodes is reversed in the regeneration solution to efficiently release anions and cations from each electrode simultaneously or individually, thereby regenerating the electrodes. This is the heading that led to the completion of the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の物質分離装置は、陰・陽電極間にイオンを含む
溶液を透過、介在させ、該両電極間に所定の電位を印加
することにより、陰極側でカナオン抽促能を、陽極側で
7ニオン抽促能を発現する多孔質導電性高分子層を用い
たものである。
The substance separation device of the present invention allows a solution containing ions to pass between the negative and positive electrodes, and applies a predetermined potential between the two electrodes, thereby achieving the extraction ability on the cathode side and on the anode side. It uses a porous conductive polymer layer that exhibits 7-ion extraction ability.

本発明に用いられる多孔質導電性高分子層としては、導
電性の高分子で形成されたものであれば、特に限定され
るものではなく、その具体例としでは、ピロール、その
窒素、3位及び/又は4位に置換基を有する誘導体、7
ラン、その3位及び/又は4位に置換基を有する誘導体
等の複素環式化合物単量体や、アニリン、フェノール、
チオフェノール、これらの誘導体等の芳香族化合物単量
体の電解酸化重合又は化学酸化重合による高分子等を挙
げることができる。つまりポリピロール、ポリチオフェ
ン、ポリアニリン、ポリ7ラン等が挙げられる。
The porous conductive polymer layer used in the present invention is not particularly limited as long as it is formed of a conductive polymer, and specific examples thereof include pyrrole, its nitrogen, and/or a derivative having a substituent at the 4-position, 7
Ran, heterocyclic compound monomers such as derivatives having substituents at the 3rd and/or 4th positions, aniline, phenol,
Examples include polymers produced by electrolytic oxidative polymerization or chemical oxidative polymerization of aromatic compound monomers such as thiophenol and derivatives thereof. That is, polypyrrole, polythiophene, polyaniline, poly7ran, etc. can be mentioned.

又、他の導電性高分子としてはポリアセチレン、ポリ(
1,6−へブタツイン)、ポリチェニレン、ポリフェニ
レン、ポリパラフェニレン、ポリナフタレン、ポリ(パ
ラーフ二二しンスルフイド)、ポリ(メタ−フェニレン
スルフィド)、ポリ(パラ−7二二レンオキシド)等が
挙げられる。
Other conductive polymers include polyacetylene and poly(
Examples thereof include polythenylene, polyphenylene, polyparaphenylene, polynaphthalene, poly(para-phenylene sulfide), poly(meta-phenylene sulfide), poly(para-7-phenylene oxide), and the like.

これらの導電性高分子はその製造方法のいかんを問うも
のではなく、使用が可能である。
These conductive polymers can be used without any particular manufacturing method.

さらに具体的には、還元反応によってカチオンJ+tl
促能を有する導電性高分子としては、例えばカチオン捕
捉能を有する p型導電性高分子製の層が用いられ、こ
の導電性高分子中を容易には拡散し得ないポリアニオン
がドーピングされて形成されたものが挙げられる。
More specifically, the cation J+tl is
As the conductive polymer having a promoting ability, for example, a layer made of a p-type conductive polymer having a cation-trapping ability is used, and the conductive polymer is doped with a polyanion that cannot be easily diffused. The following are examples of what has been done.

かかるポリアニオンの具体例としては、例えばポリビニ
ル硫酸、ポリスチレンスルホン酸、ポリビニルスルホン
酸、スルホン化スチレン−ブタノエン共重合体、ポリア
リルスルホン酸、ポリメタリルスルホン酸、ポリ−2−
アクリルアミド−2メチルプロパンスルホン る。
Specific examples of such polyanions include polyvinyl sulfuric acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, sulfonated styrene-butanoene copolymer, polyallylsulfonic acid, polymethallylsulfonic acid, poly-2-
Acrylamide-2 methylpropane sulfone.

即ち、ポリアニオンがドーピングされた導電性高分子は
、その還元によって、カチオン捕捉能を有する。
That is, a conductive polymer doped with a polyanion has a cation-trapping ability due to its reduction.

一方、酸化反応によって7ニオン抽促能を有する導電性
高分子は、過塩素酸イオン、塩素イオン、ホウ7ツ化水
素酸イオン、硫酸イオン、アルキルスルホン酸イオン等
の代分子量アニオンがドーピングされた、それ白木はカ
チオン性の高分子である。かかる導電性高分子も、電気
化学的に可塑的に酸化還元される.換言すれば、酸化還
元機能を有して、レドックスポリマーとして機能する。
On the other hand, conductive polymers that have the ability to extract 7 ions through oxidation reactions are doped with anions of similar molecular weight such as perchlorate ions, chloride ions, borosulfate ions, sulfate ions, and alkylsulfonate ions. , it is a cationic polymer. Such conductive polymers are also electrochemically redoxed plastically. In other words, it has a redox function and functions as a redox polymer.

このような導電性高分子は、溶液中にて還元されること
によってアニオンを放出し、自体は中性となり、再酸化
によって、再びアニオンをドーパントとして捕捉する。
When such a conductive polymer is reduced in a solution, it releases anions and becomes neutral, and upon reoxidation, it captures the anions again as a dopant.

即ち、低分子量アニオンがドーピングされでいるp型導
電性高分子は、アニオン捕捉能を有する。
That is, a p-type conductive polymer doped with a low molecular weight anion has an anion trapping ability.

つまり、アニオン捕捉能をもつ導電性高分子は、この導
電性高分子中を容易に拡散し得る低分子量の7ニオンが
ドーピングされた導電性高分子を意味し、かかる低分子
1アニオンの具体例として、例えば、上述した塩素イオ
ン、ホウフッ化水素酸イオン、エチル硫酸イオン等の無
機及び有機アニオンを挙げることができる。
In other words, a conductive polymer having an anion-trapping ability means a conductive polymer doped with a low molecular weight 7 anion that can easily diffuse through the conductive polymer, and a specific example of such a low molecular weight 1 anion. Examples of the anion include inorganic and organic anions such as the above-mentioned chlorine ion, fluoroboric acid ion, and ethyl sulfate ion.

このように、導電性高分子とドーパントとしてのアニオ
ンとの複合物からなる導電性高分子は、既に知られてい
るように、導電性高分子を形成し得るQIEt体の溶液
中に低分子1アニオン又はポリアニオンを溶解させ、こ
の溶液中にて上記単量体を酸化重合させることによって
得ることができる(例えば、J,Chew,Soc, 
、Chew,Co+u++un. 、 1979.63
5、特開昭59−98165号公報)。
As is already known, a conductive polymer consisting of a composite of a conductive polymer and an anion as a dopant is produced by adding a small molecule to a solution of a QIEt body capable of forming a conductive polymer. It can be obtained by dissolving an anion or a polyanion and oxidatively polymerizing the above monomer in this solution (for example, J, Chew, Soc,
, Chew, Co+u++un. , 1979.63
5, Japanese Unexamined Patent Publication No. 59-98165).

この酸化重合の方法は、特に制限されるものではなく電
解酸化重合、化?酸化重合、光酸化重合の中か適宜選ば
れる。
This oxidative polymerization method is not particularly limited, and may be electrolytic oxidative polymerization or oxidative polymerization. It is appropriately selected from oxidative polymerization and photooxidative polymerization.

この場合、アニオン捕捉能をもつp型導電性高分子は、
溶液中の7ニオンを多量に捕捉し得るように、導電性高
分子を予め部分的に還元し、導電性高分子にrrp電的
に結合している低分子量アニオンが一部脱ドーピングさ
れているものであることが好ましい.このとき、一般に
、導電性高分子は、脱ドーピングによって導電性から絶
縁性に移行するので、本発明においては、上記部分脱ド
ーピング量は、用いる導電性高分子や溶液中の対象とす
るイオンの種類等によって適宜に選ばれるが、通常、導
電性高分子が10−5S/cm以上の導電性を有する程
度に留とめることが好ましい。
In this case, the p-type conductive polymer with anion-trapping ability is
In order to capture a large amount of 7 ions in the solution, the conductive polymer is partially reduced in advance, and the low molecular weight anions electrically bonded to the conductive polymer are partially dedoped. It is preferable that it be a thing. At this time, generally conductive polymers transition from conductivity to insulating properties by dedoping, so in the present invention, the above-mentioned partial dedoping amount is determined based on the conductive polymer used and the target ions in the solution. Although it is appropriately selected depending on the type, etc., it is usually preferable that the conductive polymer has a conductivity of 10<-5>S/cm or more.

この脱ドーピングをするために導電性高分子が還元され
るが、その還元方法と.しては、何ら制限されるもので
はな(、電解還元又は化学還元のいずれによることもで
きるが、脱ドーピング量を容易に制御し得る電解還元に
よるのが好ましい。
The conductive polymer is reduced to perform this dedoping, but what is the reduction method? (There is no limitation in this regard.) Either electrolytic reduction or chemical reduction can be used, but electrolytic reduction is preferable since the amount of dedoping can be easily controlled.

そして、本発明の物質分離装置は、上記の陰・陽電極の
少なくとも1組を所定の間隔を隔ててパラレルに対峙、
併設させ、且っ該画電極を多孔質にしてイオンを含む溶
液が当該電極中を透過しうるように構成した点に最も大
きな特徴を有する。
The substance separation device of the present invention includes at least one set of the negative and positive electrodes facing each other in parallel at a predetermined interval,
The most significant feature is that the image electrode is arranged side by side, and the picture electrode is made porous so that a solution containing ions can pass through the electrode.

即ち、多孔質導電性高分子層を用いてなる陰・陽7fL
極を所定の間隔を隔ててパラレルに対峙、併設させ、そ
の7′tl極中にイオンを含む溶液を介在、透過させつ
つ、所定の電圧を印加することにより、装置の小型化が
実現され、しがも電極とイオンの接触を良好にして有効
に脱イオンが行える一方、この後、再生液中で両電極間
に印加する電圧の極性を逆転させると画電極から脱イオ
ンが砥めて容易に且つ効率良くなしえて電極を再生しう
るのである。しかも、この装置は、1m以上の陰・陽電
極をパラレルに併設するだけでよいから、礪造が簡素化
でき、しかも容積効率を向上しうる。
In other words, Yin/Yang 7fL using a porous conductive polymer layer
By arranging the poles in parallel with each other at a predetermined interval, and applying a predetermined voltage while passing a solution containing ions through the 7′tl pole, the device can be made smaller. However, while good contact between the electrode and the ions allows for effective deionization, it is also easier to remove ions from the picture electrode by reversing the polarity of the voltage applied between the two electrodes in the regenerating solution. Therefore, the electrode can be regenerated easily and efficiently. Furthermore, since this device only requires parallel installation of negative and positive electrodes of 1 m or more in length, the construction can be simplified and the volumetric efficiency can be improved.

又、陰・陽極の1組以上をパラレルに設けるには処理層
中に陰・陽極を1組以上併設し、この1組づつの電極に
、外部電源から給電される陰又は陽の集電体を各々電気
的に接合すれば良く、この場合、イオンを含む溶液が透
過しやすくするため多孔質であることを要するのである
In addition, in order to provide one or more pairs of negative and anodes in parallel, one or more pairs of negative and anodes are provided in the treatment layer, and each pair of electrodes is connected to a negative or positive current collector that is supplied with power from an external power source. They may be electrically connected to each other, and in this case, they need to be porous so that a solution containing ions can easily pass through them.

このように多孔性電極を形成する方法は特に限定される
ものではない。
The method of forming the porous electrode in this way is not particularly limited.

このように多孔性電極を形成するにあたり、その好まし
い方法は多孔質導電性支持体を多孔化し、この表面に多
孔質導電性高分子層を保持させればよく、これによって
、表面積の増加、つまり反応面の増加が実現され、しか
も電極中を、イオンを含む溶液が透過できてイオンと電
極の接触が良好になり、その結果、脱イオンや再生が一
層効率良(達成しうるのである。
In forming a porous electrode in this way, the preferred method is to make a porous conductive support porous and retain a porous conductive polymer layer on the surface of the porous conductive support, which increases the surface area, i.e. An increase in the reaction surface is achieved, and the ion-containing solution can permeate through the electrode, resulting in better contact between the ions and the electrode, and as a result, more efficient deionization and regeneration can be achieved.

又、画電極が多孔質導電性支持体に多孔質導電性高分子
層を保持させて形成されたものを用いることにより、当
該電極からのリードが容易になしうる上、導電性高分子
の保持が確実になしえ、しかも電極全体の強度を者しく
向上させることができるのであり、その結果、電極の成
形、加工が容易になしえるのである。
In addition, by using an image electrode formed by holding a porous conductive polymer layer on a porous conductive support, leads from the electrode can be easily made, and the conductive polymer can be held easily. can be achieved reliably, and the strength of the entire electrode can be significantly improved. As a result, the electrode can be easily formed and processed.

上記多孔質導電性支持体としては、例えば、白金、金、
ステンレス、ニッケル等の金属、又は酸化インツユツム
、酸化スズ、ITO″!!Pの導電性金属酸化物、或い
はカーボン、グラファイト等が挙げられる。
Examples of the porous conductive support include platinum, gold,
Examples include metals such as stainless steel and nickel, conductive metal oxides such as indium oxide, tin oxide, and ITO''!!P, carbon, and graphite.

この場合において、多孔度は、用途に応じて任意に選択
しうるが、反応面積の増大と電極の強度更にイオンを含
む溶液の透過性等の観点より、各電極の全面積の10〜
80%の範囲とするのが望ましい。
In this case, the porosity can be arbitrarily selected depending on the application, but from the viewpoint of increasing the reaction area, electrode strength, and permeability of solutions containing ions, the porosity is 10 to 10% of the total area of each electrode.
A range of 80% is desirable.

本発明において、多孔質導電性支持体に導電性高分子を
保持させる方法としては、特に限定されるものではない
が、例えば導電性高分子自身が可忍性であれば、溶解後
、塗布し、多孔化する方法や、不溶性であれば、結着剤
等の充填剤を添加し、成形加工するなどの方法が好適に
採用される。
In the present invention, the method for holding the conductive polymer on the porous conductive support is not particularly limited, but for example, if the conductive polymer itself is tolerable, it may be applied after dissolving. A method of making the material porous, or, if it is insoluble, a method of adding a filler such as a binder and molding it, etc., are preferably employed.

本発明の物質分離装置においては、カチオン捕捉能をも
つ多孔質導電性高分子層と7ニオン抽促能をもつ多孔質
導電性高分子層を用い、この陰・陽電極間にイオンを含
む溶液を介在、透過させつつ当該陰・陽電極を電位負荷
装置を介して電気的に接続し、これら電極間に電圧を印
加して、溶液中のイオンを電気化学的に且つ可逆的に捕
捉、放出させ、このようにして、イオンを処理し、また
、電極を電気化学的に再生するものである。
In the substance separation device of the present invention, a porous conductive polymer layer having a cation-trapping ability and a porous conductive polymer layer having a 7-ion extraction ability are used, and a solution containing ions is used between the negative and positive electrodes. The anode and anode electrodes are electrically connected via a potential load device, and a voltage is applied between these electrodes to electrochemically and reversibly capture and release ions in the solution. In this way, the ions are treated and the electrode is electrochemically regenerated.

即ち、本発明の物質分離装置によれば、多孔性の陰・陽
電極間にイオンを含む溶液を介在、透過させつつ、カチ
オン捕捉能をもつ多孔質導電性高分子層を陰極とし、7
ニオン捕捉能をもつ多孔質導電性高分子層を陽極とする
電圧を印加して、このアニオン捕捉能をもつ多孔質導電
性高分子層を酸化すると共に、上記カチオン捕捉能をも
つ多孔質導電性高分子層を還元することによって、溶液
中のアニオンは陽極に捕捉され、池方、溶液中のカチオ
ンは陰極に捕捉される。
That is, according to the substance separation device of the present invention, a solution containing ions is interposed between the porous anode and anode electrodes, and a porous conductive polymer layer having a cation trapping ability is used as the cathode, while a solution containing ions is interposed between the porous anode and anode electrodes.
By applying a voltage using the porous conductive polymer layer having an anion-trapping ability as an anode, the porous conductive polymer layer having an anion-trapping ability is oxidized, and at the same time, the porous conductive polymer layer having an anion-trapping ability is oxidized. By reducing the polymer layer, anions in the solution are captured at the anode, and cations in the solution are captured at the cathode.

陰・陽′?l極間に印加する負荷電圧は、電極上のそれ
ぞれの多孔質導電性高分子層の酸化還元電位によって適
宜に選ばれるが、通常は数■である。
Yin/Yang'? The load voltage applied between the electrodes is appropriately selected depending on the oxidation-reduction potential of each porous conductive polymer layer on the electrodes, but is usually several square meters.

次いで、本発明の物質分離装置において、印加電圧の極
性を逆転させて、アニオン捕捉性の両極を陰極とし、一
方、カチオン捕捉性の電極を陽極として、7ニオン捕捉
能をもつ多孔質導電性高分子層を還元すると共に、カチ
オン捕捉能をもつ多孔質導電性高分子層を酸化すること
によって、それぞれの電極が捕捉していたアニオン及び
カチオンがそれぞれ溶液中に放出されると共に、このよ
うにして、それぞれの電極が電気化学的に再生される。
Next, in the substance separation device of the present invention, the polarity of the applied voltage is reversed, and the anion-trapping electrodes are used as cathodes, while the cation-trapping electrodes are used as anodes to form a porous highly conductive material with a seven-ion trapping ability. By reducing the molecular layer and oxidizing the porous conductive polymer layer with cation trapping ability, the anions and cations trapped by each electrode are released into the solution. , each electrode is electrochemically regenerated.

本発明において用いるイオンを含む溶液は、その媒体が
水であっても、有機溶剤であっても、また、これらの混
合物であってもよく、媒体において何ら制限されるもの
ではない。
The medium of the ion-containing solution used in the present invention may be water, an organic solvent, or a mixture thereof, and the medium is not limited in any way.

(e)作用 本発明の物質分離装置は、上記構成を有し、多孔質導電
性高分子層を用いてなる陰・陽電極の少なくとt、i組
を所定の間隔を隔ててパラレルに対峙、併設させ、且つ
該画電極を多孔質にして、その電極中を、イオンを含む
溶液を介在、透過させつつ、所定の電位を印加するもの
であり、このため装置の小型化が実現されて容積効率の
向上を図ることができるのであり、しかも電極とイオン
の接触を良好にして有効に脱イオンが行える一方、この
後、再生液中で両電極間に印加する電圧の極性を逆転さ
せると画電極から脱イオンが極めて容易に且つ効率良く
なしえてT1ff+を再生しうる作用を有するのである
(e) Function The substance separation device of the present invention has the above-mentioned configuration, and includes at least t and i pairs of negative and positive electrodes made of porous conductive polymer layers facing each other in parallel at a predetermined interval. , and the picture electrode is made porous so that a solution containing ions is allowed to pass through the electrode while applying a predetermined potential, which makes the device more compact. While it is possible to improve the volumetric efficiency and to effectively deionize by making good contact between the electrode and ions, it is possible to improve the deionization by reversing the polarity of the voltage applied between the two electrodes in the regenerating solution. It has the effect of regenerating T1ff+ by deionizing the picture electrode very easily and efficiently.

(f)実施例 以下、本発明を実施例に基づき詳細に説明するが、本発
明はこれに限定されるものではない。
(f) Examples Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

第1図は本発明の物質分離装置を示す斜視図、第2図は
そのO印へ部位の拡大図を示す。
FIG. 1 is a perspective view showing the substance separation device of the present invention, and FIG. 2 is an enlarged view of the portion indicated by the O mark.

第1図において、(1)は物質分離装置であり、該物質
分離装置(1)は少なくとも1組の陰・陽画電極(2)
、(3)と、該画電極(2)、(3)を所定の間隔(1
)を隔てて平行に保持させるスペーサー(4)、更に上
記両′:tL極(2)、(3)を外部電[(図示せず)
に電気的に接続するための電位印加用端子(5a)(5
b)からなる。
In FIG. 1, (1) is a material separation device, and the material separation device (1) has at least one set of negative and positive electrodes (2).
, (3), and the picture electrodes (2), (3) are spaced at a predetermined interval (1
) are separated and held in parallel, and furthermore, both ′:tL poles (2) and (3) are connected to an external voltage [(not shown)
Potential application terminal (5a) for electrical connection to (5
Consists of b).

そして、上記画電極(2)、(3)間にスペーサー(4
)を介在させ、これによって、この画電極(2)、(3
)を所定の間隔(1)、この場合、5+++mの間隔、
を隔てて7組の電極(2)、(3)をパラレルに対峙、
併設させ、且っ該画電極(2)、(3)を多孔質にして
イオンを含む供給水(10)を介在、透過させうるよう
に構成してなる。
A spacer (4) is provided between the picture electrodes (2) and (3).
) are interposed between the picture electrodes (2) and (3).
) at a predetermined interval (1), in this case an interval of 5 +++ m,
Seven pairs of electrodes (2) and (3) are faced in parallel across the
The picture electrodes (2) and (3) are made porous so that the supply water (10) containing ions can pass therethrough.

この場合、上記陰極(2)は、カチオン捕捉能を有し、
多孔性ニッケルを導電性支持体(図示せず)とし、該支
持体を完全にポリビニル硫酸をドーピングした0、05
gのポリピロールで多孔質導電性高分子層(2a)を形
成、保持させたものを用い、一方、陽極(3)は、アニ
オン捕捉能を有し、多孔性ニッケルを導電性支持体(図
示せず)とし、訊支持体を完全に0.05.の還元型ポ
リピロールで多孔質導電性高分子1(31)を形成、保
持させたものを用いてなる。
In this case, the cathode (2) has a cation trapping ability,
Porous nickel is used as a conductive support (not shown), and the support is completely doped with polyvinyl sulfate.
A porous conductive polymer layer (2a) is formed and held using polypyrrole (g), while the anode (3) has an anion trapping ability and is made of porous nickel as a conductive support (not shown). 0.05), and the support was completely heated to 0.05. Porous conductive polymer 1 (31) is formed and held using reduced polypyrrole.

第1図においで、(6)は給水バイブ、(7)は排出パ
イプである。
In FIG. 1, (6) is a water supply vibrator, and (7) is a discharge pipe.

この構成により、イオンを含む供給水(8)を物質分離
装置(1)内に供給しつつ、換言すると、陰・陽極(2
)、(3)間に供給水(8)を介在、透過させつつ当該
陰・陽画電極(2)、(3)間に所定の電位を印加する
ことにより、l13極(2)側でカチオンが捕捉され、
一方、陽極(3)側で7ニオンが捕捉される。
With this configuration, while supplying water (8) containing ions into the material separation device (1), in other words, the cathode/anode (2
), (3), by interposing the supply water (8) between them and applying a predetermined potential between the negative and positive electrodes (2) and (3), cations are generated on the l13 electrode (2) side. captured,
On the other hand, 7 ions are captured on the anode (3) side.

この場合、上記供給水(8)として3,3X10弓mo
l/lの塩化カリウム水溶Q200mlを用い、この供
給水(8)を0.1鶴A/cln2の電流密度で60分
間循環しながら通電すると、塩化カリウムの濃度が2 
、6 X 10−’no&/ 1まで低減した脱塩水(
9)がイ丁られ、脱イオンがなされていることが認めら
れた。
In this case, as the above-mentioned supply water (8), 3.3X10 bow mo
Using 200 ml of potassium chloride aqueous solution Q of l/l, when this supply water (8) is circulated and energized for 60 minutes at a current density of 0.1 A/cln2, the concentration of potassium chloride becomes 2
, 6 X 10-'no &/
9) was removed, and deionization was confirmed.

また、上記溶液を用いて、両電極間に所定の逆電圧を印
加し、0.1mA/c+*2の電流密度で60分間循環
しながら通電すると、塩化カリウムの濃度が3.4X1
0−’論01/1まで上昇し、再生可能であることが認
められた。
In addition, when using the above solution and applying a predetermined reverse voltage between both electrodes and circulating the current at a current density of 0.1 mA/c+*2 for 60 minutes, the concentration of potassium chloride decreased to 3.4
0-' theory rose to 01/1 and was recognized to be reproducible.

(g)発明の効果 本発明の物質分離装置において、陰極側でカチオン捕捉
能を、陽極側で7ニオン捕捉能を発現する多孔質導電性
高分子層を用い、陰・陽画電極間にイオンを含む溶液を
介在、透過させつつ、該陰・陽画電極間に所定の電位を
印加することにより、荷電物質を分離するylcr!!
であって、上記陰・陽画電極の少なくともIMLを所定
の間隔を隔ててパラレルに対峙、併設させ、且つ該陰・
陽極を多孔質にしてイオンを含む溶液が当該電極中を透
過しうるように構成したものは、装置の小型化が実現さ
れて容積効率の向上を図ることができるのであり、しか
も有効に脱イオンが行える効果を有するのである。
(g) Effects of the invention In the substance separation device of the present invention, a porous conductive polymer layer that exhibits cation trapping ability on the cathode side and seven ion trapping ability on the anode side is used to transfer ions between the negative and positive electrodes. A charged substance is separated by applying a predetermined potential between the negative and positive electrodes while passing a solution containing the ylcr! !
At least the IMLs of the negative and positive picture electrodes are arranged in parallel and facing each other with a predetermined interval apart, and
If the anode is made porous so that the ion-containing solution can pass through the electrode, the device can be made smaller and the volumetric efficiency can be improved, and it can be effectively deionized. This has the effect of making it possible.

又、この結果、荷電物質の分離工程が簡略化でき再生繰
作もwJ索化できるため、分離システム全体が省エネル
ギー、省プロセスとなり、分離コストの低減が図れる効
果を有するのである。
Moreover, as a result, the separation process of charged substances can be simplified and the regeneration operation can be made more efficient, so the entire separation system can save energy and process, which has the effect of reducing separation costs.

本発明の物質分離装置において、イオン(I促後、両電
極間に所定の逆電圧を印加するように構成することによ
り、脱イオン後、再生液中で両電極間に印加する電圧の
極性を逆転させると画電極から脱イオンが極めて容易に
且つ効率良くなしえて電極を再生しうる効果を有するの
である。
In the substance separation device of the present invention, after ion (I) stimulation, a predetermined reverse voltage is applied between the two electrodes, so that the polarity of the voltage applied between the two electrodes in the regeneration solution after deionization is controlled. When reversed, the picture electrode can be deionized very easily and efficiently, and has the effect of regenerating the electrode.

本発明の物質分離装置において、陰・陽両電原が導電性
支持体に多孔質導電性高分子層を保持させて形成された
ものを用いることにより、当該電極からのリードが容易
になしうる上、導電性高分子の保持が確実になしえ、し
かも電極全体の強度を著しく向上させることができるの
であり、その結果、電極を成形、加工が容易になしえ、
製造コストの低減を図る効果を有するのである。
In the substance separation device of the present invention, by using a material in which the negative and positive electron sources are formed by holding a porous conductive polymer layer on a conductive support, leads from the electrode can be easily made. Moreover, the conductive polymer can be reliably retained, and the strength of the entire electrode can be significantly improved.As a result, the electrode can be easily formed and processed.
This has the effect of reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の物質分離!!置を示す斜視図、第2図
はその○印A部位の拡大所面図である。 (1)・・・物質分Il!l装置、(2)・・・陰極、
(2a)・・・多孔質導電性高分子層、(3)・・・陽
極、(3a)・・・多孔質導電性高分子層、(4)・・
・スペーサー、(5a)+(5b)・・・電位印加用端
子−1(8)・・・供給水、(9)・・・脱塩水、(1
)・・・間隔。
Figure 1 shows the substance separation of the present invention! ! FIG. 2 is an enlarged view of the portion A marked with a circle. (1)...Matter Il! l device, (2)... cathode,
(2a)...Porous conductive polymer layer, (3)...Anode, (3a)...Porous conductive polymer layer, (4)...
・Spacer, (5a) + (5b)... Potential application terminal -1 (8)... Supply water, (9)... Demineralized water, (1
)···interval.

Claims (3)

【特許請求の範囲】[Claims] (1)陰極側にカチオン捕捉能を、陽極側にアニオン捕
捉能を発現する多孔質導電性高分子層を用い、該両電極
間にイオンを含む溶液を介在させ、該両電極間に所定の
電圧を印加することにより、荷電物質を分離する装置で
あって、上記陰・陽電極の少なくとも1組を所定の間隔
を隔ててパラレルに対峙、併設させ、且つ該陰・陽電極
を多孔質にしてイオンを含む溶液が当該電極中を透過し
うるように構成したことを特徴とする物質分離装置。
(1) A porous conductive polymer layer that exhibits a cation-trapping ability on the cathode side and an anion-trapping ability on the anode side is used, a solution containing ions is interposed between the two electrodes, and a predetermined gap is formed between the two electrodes. A device for separating charged substances by applying a voltage, wherein at least one set of the negative and positive electrodes are arranged facing each other in parallel at a predetermined interval, and the negative and positive electrodes are made porous. 1. A substance separation device characterized in that the material separation device is configured such that a solution containing ions can pass through the electrode.
(2)イオンを捕捉後、該陰・陽電極間に所定の逆電圧
を印加することで当該電極を再生することを特徴とする
請求項1記載の物質分離装置。
(2) The substance separation device according to claim 1, wherein after capturing the ions, the electrode is regenerated by applying a predetermined reverse voltage between the negative and positive electrodes.
(3)陰・陽電極が多孔質導電性支持体に導電性高分子
層を保持させて形成されている請求項1又は2記載の物
質分離装置。
(3) The substance separation device according to claim 1 or 2, wherein the negative and positive electrodes are formed by holding a conductive polymer layer on a porous conductive support.
JP8111088A 1988-03-31 1988-03-31 Substance separator Pending JPH01254210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8111088A JPH01254210A (en) 1988-03-31 1988-03-31 Substance separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8111088A JPH01254210A (en) 1988-03-31 1988-03-31 Substance separator

Publications (1)

Publication Number Publication Date
JPH01254210A true JPH01254210A (en) 1989-10-11

Family

ID=13737241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111088A Pending JPH01254210A (en) 1988-03-31 1988-03-31 Substance separator

Country Status (1)

Country Link
JP (1) JPH01254210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005134C2 (en) * 2010-07-23 2012-01-24 Voltea Bv Apparatus for removal of ions, and a method for removal of ions.
CN110559863A (en) * 2019-09-09 2019-12-13 中国科学院生态环境研究中心 Membrane and method for controlling membrane pollution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005134C2 (en) * 2010-07-23 2012-01-24 Voltea Bv Apparatus for removal of ions, and a method for removal of ions.
WO2012011815A1 (en) * 2010-07-23 2012-01-26 Voltea B.V. Apparatus and method for removal of ions
CN110559863A (en) * 2019-09-09 2019-12-13 中国科学院生态环境研究中心 Membrane and method for controlling membrane pollution
CN110559863B (en) * 2019-09-09 2021-03-16 中国科学院生态环境研究中心 Membrane and method for controlling membrane pollution

Similar Documents

Publication Publication Date Title
US9233860B2 (en) Supercapacitor and method for making the same
AU772935B2 (en) Solid gel membrane
US3288641A (en) Electrical energy storage apparatus
FI108685B (en) Electrochemical apparatus for emitting electrical current using air electrode
JP5667577B2 (en) Ion exchange device and method for regenerating the ion exchange material
KR101513446B1 (en) Ion exchange membrane used for flow-electrode capacitive deionization device and flow-electrode capacitive deionization device including the same
Zeng et al. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries
JP2943792B1 (en) Proton conductive polymer battery and method for producing the same
JP3594895B2 (en) Proton conductive polymer secondary battery
JP3302443B2 (en) Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
EP3877341B1 (en) Electrochemical module comprising a flexible membrane-electrode assembly
KR101549525B1 (en) Amphoteric ion exchange membrane used for redox flow battery having low ion permeablility for vanadium ion and redox flow battery including the same
Zhao et al. Parameters influencing transport across conducting electroactive polymer membranes
US5612148A (en) Process for energy storage and/or power delivery with means for restoring electrolyte balance
JP3565777B2 (en) Polymer battery
JPH01254210A (en) Substance separator
JPH01254211A (en) Substance separator
US11322797B2 (en) Membrane electrode assemblies for ion concentration gradient devices
KR102373244B1 (en) Multi-channel desalination battery system
JP2005520310A (en) Polymer matrix material and polymer matrix material incorporated in an electrochemical cell
Sata Properties of ion exchange membranes combined with conducting polymers anisotropically—I. emf generation by redox reactions across composite membrane
JP2002273434A (en) Treating device and treating method for ionic substance- containing water using activated carbon electrode and regenerating method of activated carbon electrode
JPS6369156A (en) Conductive organic polymer battery
JPS63197553A (en) Improved anion exchange membrane
TWI445031B (en) Supercapacitor and method for making the same