TWI445031B - Supercapacitor and method for making the same - Google Patents

Supercapacitor and method for making the same Download PDF

Info

Publication number
TWI445031B
TWI445031B TW98101268A TW98101268A TWI445031B TW I445031 B TWI445031 B TW I445031B TW 98101268 A TW98101268 A TW 98101268A TW 98101268 A TW98101268 A TW 98101268A TW I445031 B TWI445031 B TW I445031B
Authority
TW
Taiwan
Prior art keywords
electrode
ion
ions
unit
ionophore
Prior art date
Application number
TW98101268A
Other languages
Chinese (zh)
Other versions
TW201027579A (en
Inventor
Jianyun Liu
Su Lu
Hai Yang
Wei Cai
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Priority to TW98101268A priority Critical patent/TWI445031B/en
Publication of TW201027579A publication Critical patent/TW201027579A/en
Application granted granted Critical
Publication of TWI445031B publication Critical patent/TWI445031B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

超電容及其製造方法Ultracapacitor and manufacturing method thereof

本發明大體上係關於一種超電容及一種製造該超電容的方法。更特定而言,本發明係關於一種超電容脫鹽單元及一種製造其之方法。The present invention generally relates to an ultracapacitor and a method of fabricating the same. More particularly, the present invention relates to an ultracapacitor desalination unit and a method of making the same.

超電容通常被用作能量儲存單元。大體而言,該等超電容為雙層型,其中一對通常包括顆粒活性碳的電極被一微孔性、電子絕緣的離子導電隔離器元件隔開,該隔離器元件包括一均勻分散的電解質組分。典型超電容之構造進一步包括與各別電極緊密接觸的導電集電器元件。Ultracapacitors are commonly used as energy storage units. In general, the supercapacitors are of a two-layer type in which a pair of electrodes, typically comprising particulate activated carbon, are separated by a microporous, electronically insulated ion conducting isolator element comprising a uniformly dispersed electrolyte Component. The configuration of a typical overcapacitance further includes a conductive collector element in intimate contact with the respective electrodes.

跨越該等電極施加一電位可導致電荷積聚於該雙層中,其係存在於該電極/電解質界面處。在該超電容中,於該等電極與該隔離器元件之間及該等電極內通常存在內電阻。因此,當對該超電容,特別係該超電容脫鹽單元充電或放電時,會消耗大量的能量以克服該內電阻而迫使在該電解質中的陽離子及陰離子移動至各別電極或從該等電極脫離至該電解質中。Applying a potential across the electrodes can cause charge to accumulate in the bilayer, which is present at the electrode/electrolyte interface. In the supercapacitor, there is usually an internal resistance between the electrodes and the isolator element and within the electrodes. Therefore, when the supercapacitor, particularly the supercapacitor desalination unit is charged or discharged, a large amount of energy is consumed to overcome the internal resistance and force the cations and anions in the electrolyte to move to or from the respective electrodes. Get detached into the electrolyte.

已嘗試藉由一些使該顆粒碳電極組合物及導電集電器成為一體的方式來降低該超電容中的內電阻。美國專利第5,115,378號中描述一種高溫燒結該等元件以達成此目的的方法,然而,其中明顯可見大量的處理步驟及高能耗會導致此方法的經濟性不理想。進一步限制該方法之總體接受度的是所得之固態且不易彎曲之預成形電容體的難處理性,其無法被輕易定形以符合不同利用裝置的特殊要求。Attempts have been made to reduce the internal resistance in the supercapacitor by means of integrating the particulate carbon electrode composition and the conductive current collector. A method of high temperature sintering of such elements to achieve this is described in U.S. Patent No. 5,115,378, however, it is apparent that a large number of processing steps and high energy consumption result in an uneconomical economics of the process. Further limiting the overall acceptance of the method is the refractory nature of the resulting solid and inflexible preformed capacitor body that cannot be easily shaped to meet the particular requirements of different utilization devices.

因此,有需要一種新穎且改良之超電容結構及一種製造其之方法,以降低該超電容中的內電阻。Therefore, there is a need for a novel and improved supercapacitor structure and a method of fabricating the same to reduce the internal resistance in the supercapacitor.

根據本發明之一實施例提供一種超電容。該超電容包括一第一電極;一第二電極;一第一離子載體,其係經配置成接觸該第一電極以提供一用於輸送離子至該第一電極及從該第一電極輸送離子之第一離子導電通路;及一第一保持層,其係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間。此外,該超電容包括一電解質,其係分散於該第一及該第二電極之間以提供該等離子;一第一集電器,其係經配置成接觸該第一電極;及一第二集電器,其係經配置成接觸該第二電極。According to an embodiment of the invention, an ultracapacitor is provided. The supercapacitor includes a first electrode; a second electrode; a first ion carrier configured to contact the first electrode to provide a source for transporting ions to and from the first electrode a first ion conductive path; and a first retention layer configured to hold the first ion carrier between the first electrode and the first retention layer. In addition, the supercapacitor includes an electrolyte dispersed between the first and the second electrodes to provide the plasma; a first current collector configured to contact the first electrode; and a second set An appliance configured to contact the second electrode.

根據本發明之另一實施例提供一種超電容脫鹽單元。該超電容脫鹽單元包括一第一電極及一第二電極,該兩電極係經配置成在該單元之充電狀態下吸附離子及在該單元之放電狀態下脫附離子。該超電容脫鹽單元進一步包括一第一離子載體,其係經配置成接觸該第一電極以提供一用於輸送離子至該第一電極及從該第一電極輸送離子之第一離子導電通路;及一第一保持層,其係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間。此外,該超電容脫鹽單元包括一第一集電器,其係經配置成接觸該第一電極;及一第二集電器,其係經配置成接觸該第二電極。According to another embodiment of the present invention, an ultracapacitor desalination unit is provided. The ultracapacitor desalination unit includes a first electrode and a second electrode, the two electrodes being configured to adsorb ions in a charged state of the unit and to desorb ions in a discharged state of the unit. The ultracapacitor desalination unit further includes a first ion carrier configured to contact the first electrode to provide a first ion conductive path for transporting ions to and from the first electrode; And a first retention layer configured to hold the first ionophore between the first electrode and the first retention layer. Additionally, the ultracapacitor desalination unit includes a first current collector configured to contact the first electrode, and a second current collector configured to contact the second electrode.

根據本發明之另一實施例提供一種超電容脫鹽裝置。該超電容脫鹽裝置包括一超電容脫鹽單元,該單元包括一第一電極及一第二電極,該兩電極係經配置成在該單元之充電狀態下吸附離子及在該單元之放電狀態下脫附離子。該超電容脫鹽單元進一步包括一第一離子載體,其係經配置成接觸該第一電極以提供一用於輸送離子至該第一電極及從該第一電極輸送離子之第一離子導電通路;一第一保持層,其係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間;一第一集電器,其係經配置成接觸該第一電極;及一第二集電器,其係經配置成接觸該第二電極。此外,該超電容脫鹽裝置包括一電源,其係經配置成對該第一及第二電極供能以使電極性相反;及一液體源,其係經配置成傳遞一液體通過該單元以用於脫鹽。According to another embodiment of the present invention, an ultracapacitor desalination device is provided. The ultracapacitor desalination device comprises an ultracapacitor desalination unit, the unit comprising a first electrode and a second electrode, the two electrodes being configured to adsorb ions in a state of charge of the unit and to be off in a discharge state of the unit With ions. The ultracapacitor desalination unit further includes a first ion carrier configured to contact the first electrode to provide a first ion conductive path for transporting ions to and from the first electrode; a first retention layer configured to hold the first ionophore between the first electrode and the first retention layer; a first current collector configured to contact the first electrode; A second current collector configured to contact the second electrode. Additionally, the ultracapacitor desalination apparatus includes a power source configured to energize the first and second electrodes to reverse polarity; and a liquid source configured to deliver a liquid through the unit for use Desalting.

此外,根據又另一實施例提供一種方法。該方法包括提供一第一電極及一第二電極;提供一經配置成接觸該第一電極之第一離子載體,以提供一用於輸送離子至該第一電極及從該第一電極輸送離子之第一離子導電通路;及提供一第一保持層,該保持層係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間。該方法進一步包括提供一經配置成接觸該第一電極的第一集電器及一經配置成接觸該第二電極的第二集電器。Moreover, a method is provided in accordance with yet another embodiment. The method includes providing a first electrode and a second electrode; providing a first ion carrier configured to contact the first electrode to provide a source for transporting ions to and from the first electrode a first ion conductive path; and a first retention layer configured to hold the first ion carrier between the first electrode and the first retention layer. The method further includes providing a first current collector configured to contact the first electrode and a second current collector configured to contact the second electrode.

根據以下結合附圖所作的詳細描述,本發明之以上及其他態樣、特點及優點將變得顯而易見。The above and other aspects, features and advantages of the present invention will become apparent from the Detailed Description.

本揭示案之較佳實施例將參考附圖說明於下。在以下說明中,熟知之功能或構造將不作詳細說明,以避免以不必要的細節混淆揭示內容。Preferred embodiments of the present disclosure will be described below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail.

如圖1所示,一超電容10包括一第一集電器11、一第二集電器12、一第一電極13、一第二電極14、一第一離子載體15、一第二離子載體16、一第一保持層17及一第二保持層18。該第一集電器11可連接至一電源(電源/轉換器)19之一正端子,及該第二集電器12可連接至該電源19之一負端子。在一實施例中,可使一電解質溶液20,例如氯化鈉等,分散於該超電容10之第一及第二電極13及14之間。As shown in FIG. 1 , an ultracapacitor 10 includes a first current collector 11 , a second current collector 12 , a first electrode 13 , a second electrode 14 , a first ion carrier 15 , and a second ion carrier 16 . a first holding layer 17 and a second holding layer 18. The first current collector 11 can be connected to one positive terminal of a power source (power/converter) 19, and the second current collector 12 can be connected to one of the negative terminals of the power source 19. In one embodiment, an electrolyte solution 20, such as sodium chloride or the like, may be dispersed between the first and second electrodes 13 and 14 of the ultracapacitor 10.

在所示之實施例中,該第一及第二集電器11、12各自與該第一及第二電極13、14緊密接觸,使得該第一電極13可充當一正電極(陽極),及該第二電極14可充當一負電極(陰極)。該第一離子載體15係位於該第一電極13與該第一保持層17之間以用於運送陰離子。該第二離子載體16係位於該第二電極14與該第二保持層18之間以用於運送陽離子。該第一及第二保持層17及18均用於離子交換且該電解質20中的陰離子及陽離子可通過,即離子可從接觸該等保持層17、18的該溶液20行進至該等電極。特定言之,該第一保持層17可僅使陰離子通過而該第二絕緣空間18可僅使陽離子通過。同時,該第一及第二保持層17、18可保護諸如高分子聚電解質的該等離子載體15、16不會經由該等保持層洩漏從而失效。在一些實施例中,該第一及第二離子載體15、16可用於運送陰離子及陽離子。In the illustrated embodiment, the first and second current collectors 11, 12 are each in intimate contact with the first and second electrodes 13, 14, such that the first electrode 13 can serve as a positive electrode (anode), and The second electrode 14 can serve as a negative electrode (cathode). The first ion carrier 15 is located between the first electrode 13 and the first holding layer 17 for transporting anions. The second ionophore 16 is positioned between the second electrode 14 and the second retention layer 18 for transporting cations. The first and second retention layers 17 and 18 are each used for ion exchange and the anions and cations in the electrolyte 20 are permeable, i.e., ions can travel from the solution 20 contacting the retention layers 17, 18 to the electrodes. In particular, the first holding layer 17 may pass only anions and the second insulating space 18 may pass only cations. At the same time, the first and second holding layers 17, 18 can protect the plasma carriers 15, 16 such as high molecular polyelectrolytes from leaking through the holding layers and failing. In some embodiments, the first and second ion carriers 15, 16 can be used to transport anions and cations.

特定言之,該超電容10進一步包括一隔離物100,其可為任何可透過離子的非導電材料,包含薄膜及多孔及無孔材料,用以隔開該第一保持層17及該第二保持層18。該隔離物100可具有或其本身可為一用於容納該電解質20的空間或一流道,一液體通過該流道在該第一及第二保持層17、18之間流動,特別係當其間之距離小時。In particular, the ultracapacitor 10 further includes a spacer 100, which may be any ion permeable non-conductive material, including a film and a porous and non-porous material for separating the first holding layer 17 and the second The layer 18 is maintained. The spacer 100 may have or may itself be a space or a first-class channel for accommodating the electrolyte 20, through which a liquid flows between the first and second holding layers 17, 18, particularly during this period. The distance is small.

在該超電容10之充電狀態下,來自該電源19的正及負電荷各自聚積於該第一及第二電極13、14之表面上。同時,該正及負電荷吸引在該游離電解質20中的陰離子及陽離子,以促使其被吸附於該第一及第二電極13、14之表面上。在該超電容10之放電狀態下,經吸附之該等陰離子及陽離子從該第一及第二電極13、14之表面脫離而返回至該電解質20中。同時,經釋放之能量可被用於驅動一電氣裝置,例如一燈泡,或經由例如一雙向DC-DC轉換器之一能量回收單元回收。In the charged state of the ultracapacitor 10, positive and negative charges from the power source 19 are accumulated on the surfaces of the first and second electrodes 13, 14. At the same time, the positive and negative charges attract the anions and cations in the free electrolyte 20 to cause them to be adsorbed on the surfaces of the first and second electrodes 13, 14. In the discharged state of the ultracapacitor 10, the adsorbed anions and cations are separated from the surfaces of the first and second electrodes 13, 14 and returned to the electrolyte 20. At the same time, the released energy can be used to drive an electrical device, such as a light bulb, or recovered via an energy recovery unit, such as a bi-directional DC-DC converter.

在所示之實例中,該陰離子載體15之相對表面分別接觸該陽極13及該第一保持層17。且該陽離子載體16之相對表面分別接觸該陰極14及該第二保持層18。特定言之,該等離子載體15、16可各自分散至陽極13及陰極14中,即該等離子載體15、16可互相貫穿並自該等各別電極之間隙空間延伸至該等保持層17、18。在本發明之實施例中,該等離子載體15、16係用以產生與該等電極13、14來往的第一及第二離子導電輸送通路,以便在充電及放電週期中減少該等各別電極與該等保持層之間的內電阻。因此,在充電狀態下,可消耗一相對少量的能量來將該電解質20中的該等陰離子及陽離子吸附至該第一及第二電極13、14之表面。及在放電狀態下,經吸附之陰離子及陽離子會從該等電極13、14之表面脫離而返回至該電解質20中,其僅消耗一相對少量的能量。In the illustrated example, the opposing surfaces of the anion carrier 15 contact the anode 13 and the first retention layer 17, respectively. And the opposite surfaces of the cationic carrier 16 contact the cathode 14 and the second holding layer 18, respectively. In particular, the plasma carriers 15, 16 can each be dispersed into the anode 13 and the cathode 14, i.e., the plasma carriers 15, 16 can be interpenetrated and extend from the interstitial spaces of the respective electrodes to the holding layers 17, 18 . In an embodiment of the invention, the plasma carriers 15, 16 are configured to generate first and second ion conducting transport paths to and from the electrodes 13, 14 to reduce the respective electrodes during charge and discharge cycles Internal resistance between the holding layers. Therefore, in the charged state, a relatively small amount of energy can be consumed to adsorb the anions and cations in the electrolyte 20 to the surfaces of the first and second electrodes 13, 14. And in the discharged state, the adsorbed anions and cations are detached from the surfaces of the electrodes 13, 14 and returned to the electrolyte 20, which consumes only a relatively small amount of energy.

在一些實施例中,該第一離子載體15可為一包含一諸如第四銨基之陽離子基的離子聚合物,用於傳送該等陰離子。該第二離子載體16可為一包含一諸如磺酸基(SO3 H)或羧酸基(COOH-)之陰離子基的離子聚合物,用於傳送該等陽離子。在所示之實施例中,該第一及第二離子聚合物15、16各自包含第一及第二聚電解質溶液。該第一聚電解質溶液可包含聚(氯化二烯丙基二甲基銨)(PDDA)溶液,及該第二聚電解質溶液可包含聚苯乙烯硫酸鈉(PSS)溶液。PSS亦可稱為鈉形式的磺化聚苯乙烯。此外,該等離子載體15、16可為一離子聚合物,例如一諸如聚磷酸鹽的大分子兩性電解質,用於促進將該電解質20中的該等陰離子及陽離子傳送至該等電極13、14。In some embodiments, the first ionophore 15 can be an ionic polymer comprising a cationic group such as a tetraammonium group for transporting the anions. The second ionophore 16 can be an ionic polymer comprising an anionic group such as a sulfonic acid group (SO 3 H) or a carboxylic acid group (COOH-) for transporting the cations. In the illustrated embodiment, the first and second ionic polymers 15, 16 each comprise a first and a second polyelectrolyte solution. The first polyelectrolyte solution may comprise a poly(diallyldimethylammonium chloride) (PDDA) solution, and the second polyelectrolyte solution may comprise a polystyrene sulfate (PSS) solution. PSS can also be referred to as sodium sulfonated polystyrene. Furthermore, the plasma support 15, 16 can be an ionic polymer, such as a macromolecular ampholyte such as a polyphosphate, for facilitating the transport of the anions and cations in the electrolyte 20 to the electrodes 13, 14.

在裝配該超電容10之該等元件時,將聚電解質溶液設置在該等各別電極13、14上,或將該等電極13、14浸入該等聚電解質溶液中一段時間,例如2小時或2天,然後各自將該等保持層17、18壓於經處理之電極13、14上可形成該超電容10之結構。When assembling the components of the ultracapacitor 10, the polyelectrolyte solution is disposed on the respective electrodes 13, 14 or the electrodes 13, 14 are immersed in the polyelectrolyte solution for a period of time, such as 2 hours or After 2 days, each of the holding layers 17, 18 is then pressed against the treated electrodes 13, 14 to form the structure of the ultracapacitor 10.

在充電或放電時,該等保持層17或18可阻止在PSS或PDDA溶液中的該等高分子離子洩漏出,以使PSS或PDDA被限定於該等電極13或14與該等保持層17或18之間而促進該電解質20之陰離子及陽離子之傳輸及減少能耗。The holding layer 17 or 18 prevents leakage of the polymer ions in the PSS or PDDA solution during charging or discharging, so that the PSS or PDDA is limited to the electrodes 13 or 14 and the holding layers 17 Or between 18 promotes the transport of anions and cations of the electrolyte 20 and reduces energy consumption.

在一實施例中,該等離子聚合物15或16係呈除溶液形式之外的形式,例如凝膠或半硬化形式。該等聚電解質凝膠15或16可藉由原位聚合聚電解質單體,或藉由添加諸如N,N'-亞甲基雙丙烯醯胺或二乙烯基苯的交聯劑以交聯聚電解質分子而形成於該等電極13或14之表面上及內側,此可由熟悉技術人士所完成。在一些實施例中,當該等離子聚合物15、16係呈凝膠形式時,可不需要該等保持層17、18。對於特定實施例,該等保持層17、18係被用以防止脆弱的聚電解質凝膠層碎裂並因此失效。此外,亦可使用該隔離物100。In one embodiment, the plasma polymer 15 or 16 is in a form other than a solution, such as a gel or semi-hardened form. The polyelectrolyte gels 15 or 16 may be cross-linked by in-situ polymerization of polyelectrolyte monomers or by addition of a crosslinking agent such as N,N'-methylenebisacrylamide or divinylbenzene. Electrolyte molecules are formed on the surface and inside of the electrodes 13 or 14, as will be accomplished by those skilled in the art. In some embodiments, the retention layers 17, 18 may not be required when the plasma polymer 15, 16 is in the form of a gel. For certain embodiments, the retaining layers 17, 18 are used to prevent the fragile polyelectrolyte gel layer from fragmenting and thus failing. In addition, the spacer 100 can also be used.

在一些實施例中,該等保持層17、18為薄膜並係由諸如聚乙烯、聚氯乙烯、聚丙烯、鐵氟龍(Teflon)、耐綸(nylon)或其任何組合之電絕緣、離子導電聚合物製成。此外,該等保持層17、18可為一網狀物或一薄片之形式。In some embodiments, the retention layers 17, 18 are thin films and are electrically insulated, ionized by, for example, polyethylene, polyvinyl chloride, polypropylene, Teflon, nylon, or any combination thereof. Made of conductive polymer. Furthermore, the retaining layers 17, 18 can be in the form of a mesh or a sheet.

此外,該等集電器11、12可經配置為一板狀物、一網狀物、一箔或一薄片且由一金屬或金屬合金形成。該金屬可包含鈦、鉑、銥或銠。該等金屬合金可包含不銹鋼。在一實施例中,該等集電器11、12包括石墨。或者,該等集電器11、12包括一塑膠材料,例如一聚烯烴,其可包含聚乙烯。該等塑膠集電極11、12可與導電碳黑或金屬顆粒混合以達到所要求的必要導電程度。Furthermore, the current collectors 11, 12 may be configured as a plate, a mesh, a foil or a foil and formed of a metal or metal alloy. The metal may comprise titanium, platinum, rhodium or ruthenium. The metal alloys may comprise stainless steel. In an embodiment, the current collectors 11, 12 comprise graphite. Alternatively, the current collectors 11, 12 comprise a plastic material, such as a polyolefin, which may comprise polyethylene. The plastic collectors 11, 12 can be mixed with conductive carbon black or metal particles to achieve the required degree of electrical conductivity required.

如在所示的實施例中,該等電極13、14係呈板狀物形式,其係彼此平行配置以形成一堆疊結構。在一些實施例中,該第一及第二電極13、14可具有不同形狀,例如薄片、塊狀或柱狀。此外,這些電極可以不同構形配置。舉例而言,該第一及第二電極可同心設置,而於其間具有一螺旋且連續的空間。As in the illustrated embodiment, the electrodes 13, 14 are in the form of plates that are arranged parallel to each other to form a stacked structure. In some embodiments, the first and second electrodes 13, 14 can have different shapes, such as a sheet, a block, or a column. Furthermore, these electrodes can be configured in different configurations. For example, the first and second electrodes can be concentrically disposed with a spiral and continuous space therebetween.

該第一及第二電極13、14可包含導電材料,其可為或可不為導熱性。在一實施例中,該等導電材料可包含碳或碳基材料。此外,該等碳基材料可包含活性碳顆粒、多孔碳顆粒、碳纖維或其組合。此外,該等導電材料可包含一導電複合物,例如錳、或鐵、或其兩者之氧化物、或鈦、鋯、釩、鎢之碳化物、或其組合。The first and second electrodes 13, 14 may comprise a conductive material that may or may not be thermally conductive. In an embodiment, the electrically conductive materials may comprise carbon or carbon based materials. Further, the carbon-based materials may comprise activated carbon particles, porous carbon particles, carbon fibers, or a combination thereof. In addition, the electrically conductive materials may comprise an electrically conductive composite such as manganese, or iron, or an oxide thereof, or a carbide of titanium, zirconium, vanadium, tungsten, or a combination thereof.

該等導電材料可包含具有較小尺寸及較大表面積的顆粒。如將瞭解,由於較大的表面積,此等導電材料可導致該超電容10的高吸附容量、高能量密度及高電容。在本發明之實施例中,該等電極13、14之導電材料可藉由利用一或多種諸如濺鍍、噴塗、旋塗、壓延或印刷的沉積技術而沉積於該等集電器11、12上。The electrically conductive materials may comprise particles having a smaller size and a larger surface area. As will be appreciated, such conductive materials can result in high adsorption capacity, high energy density, and high capacitance of the ultracapacitor 10 due to the large surface area. In an embodiment of the invention, the electrically conductive material of the electrodes 13, 14 may be deposited on the current collectors 11, 12 by one or more deposition techniques such as sputtering, spraying, spin coating, calendering or printing. .

如圖2所示,提供一種根據本發明之另一實施例的超電容21。圖1-2所顯示之該等實施例中的相同元件符號可表示相同的元件。在此實施例中,該超電容21包括該第一集電器11、該第二集電器12、耦合至該第一集電器11的該第一電極13、耦合至該第二集電器12的該第二電極14、一位於該第一電極13與該第二電極14之間的離子載體22及一耦合至該離子載體22的保持層23,該保持層23將該離子載體22固持於該第一電極13與其之間。該等集電器11、12可各自連接至該電源19(示於圖1)之正及負端子。該電解質20(示於圖1)可分散於該超電容21中。As shown in FIG. 2, an ultracapacitor 21 in accordance with another embodiment of the present invention is provided. The same component symbols in the embodiments shown in Figures 1-2 may represent the same components. In this embodiment, the supercapacitor 21 includes the first current collector 11 , the second current collector 12 , the first electrode 13 coupled to the first current collector 11 , and the second collector 12 coupled to the second current collector 12 . a second electrode 14, an ion carrier 22 between the first electrode 13 and the second electrode 14, and a holding layer 23 coupled to the ion carrier 22, the holding layer 23 holding the ion carrier 22 on the first electrode An electrode 13 is interposed therebetween. The current collectors 11, 12 can each be connected to the positive and negative terminals of the power source 19 (shown in Figure 1). The electrolyte 20 (shown in Figure 1) can be dispersed in the ultracapacitor 21.

在一實施例中,該離子載體22亦可為一離子聚合物,例如包含聚磷酸鹽或聚矽酸鹽的大分子兩性電解質,用於促進該電解質20之該等陰離子及陽離子之傳送。或者,該離子載體22可僅用於在一些情況下進行陰離子或陽離子交換,例如以加速諸如液體中之離子雜質之特定離子種類的吸附。在圖2所示之實施例中,該離子載體22可呈一凝膠或一溶液形式。特定言之,可使用該隔離物100(圖1所示)於隔離該保持層23及該電極14。In one embodiment, the ionophore 22 can also be an ionic polymer, such as a macromolecular ampholyte comprising a polyphosphate or a polyphthalate for promoting the transport of the anions and cations of the electrolyte 20. Alternatively, the ionophore 22 can be used only for anion or cation exchange in some cases, for example to accelerate adsorption of specific ion species such as ionic impurities in a liquid. In the embodiment shown in Figure 2, the ionophore 22 can be in the form of a gel or a solution. In particular, the spacer 100 (shown in FIG. 1) can be used to isolate the retention layer 23 and the electrode 14.

在本發明之實施例中,該等超電容可用作為一能量儲存裝置。或者,該等超電容亦可用作為一超電容脫鹽(SCD)裝置。該SCD裝置係指一用於海水之脫鹽或其他鹼水之去離子化,以將鹽分降低到允許用於家庭及工業用之程度的超電容。此外,該SCD裝置可從諸如來自農業、工業或都市處理之廢水或流出物之液體中移除或減少其他帶電或離子雜質。In embodiments of the invention, the supercapacitors can be used as an energy storage device. Alternatively, the supercapacitors can also be used as a supercapacitor desalination (SCD) device. The SCD device refers to a deionization of seawater or other alkaline water deionization to reduce the salt to a supercapacitor that is acceptable for domestic and industrial use. In addition, the SCD device can remove or reduce other charged or ionic impurities from liquids such as wastewater or effluent from agricultural, industrial, or municipal processes.

圖3顯示一超電容脫鹽(SCD)裝置之透視圖。舉該超電容10為例,該SCD裝置3包括該SCD單元10。提供該電源(電源/轉換器)19以為該第一及第二電極13、14供能至相反電極性。在充電狀態下,當一來自一液體源30的具有帶電種類之輸入液體,例如氯化鈉,通過該等電極13、14之間時,陽離子31向該陰極14移動,且陰離子32向該陽極13移動。由於在該SCD單元10內之此電荷累積之結果,一輸出流33(其為從該SCD單元10出來之稀釋液體)與該輸入液體相比具有較低濃度的帶電物種。在一些實施例中,該稀釋液體33可藉由供應通過另一SCD單元而再次接受去離子化。在一實施例中,使用該隔離物100於其上界定一流道(未顯示),使得在該第一與第二保持層17、18之間之距離小時該輸入液體可通過。Figure 3 shows a perspective view of a supercapacitor desalination (SCD) device. Taking the supercapacitor 10 as an example, the SCD device 3 includes the SCD unit 10. The power source (power/converter) 19 is provided to energize the first and second electrodes 13, 14 to opposite polarity. In the state of charge, when an input liquid having a charged species from a liquid source 30, such as sodium chloride, passes between the electrodes 13, 14, the cation 31 moves toward the cathode 14, and the anion 32 is directed to the anode. 13 moves. As a result of this accumulation of charge within the SCD unit 10, an output stream 33, which is the dilute liquid from the SCD unit 10, has a lower concentration of charged species than the input liquid. In some embodiments, the dilution liquid 33 can again be deionized by being supplied through another SCD unit. In one embodiment, the spacer 100 is used to define a flow path (not shown) thereon such that the input liquid can pass when the distance between the first and second retention layers 17, 18 is small.

在放電狀態下,經吸附之該等離子從該第一及第二電極13、14之表面脫離。在一實施例中,在該SCD單元10之放電狀態期間,該第一及第二電極13及14可保持相同極性,可於該兩電極之間施加一短路,以使該等陰離子32及陽離子31從該第一及第二電極13、14脫附。在另一實施例中,可使該等第一及第二電極13、14之極性反轉。因此,聚積於該第二電極14上的該等陽離子31向該第一電極13移動,且聚積於該第一電極13上的該等陰離子32向該第二電極14移動。因此,該輸出流33與該輸入液體相比可具有較高濃度的帶電物種。In the discharged state, the adsorbed plasma is detached from the surfaces of the first and second electrodes 13, 14. In an embodiment, during the discharge state of the SCD unit 10, the first and second electrodes 13 and 14 can maintain the same polarity, and a short circuit can be applied between the two electrodes to make the anions 32 and cations 31 is detached from the first and second electrodes 13, 14. In another embodiment, the polarities of the first and second electrodes 13, 14 can be reversed. Therefore, the cations 31 accumulated on the second electrode 14 move toward the first electrode 13, and the anions 32 accumulated on the first electrode 13 move toward the second electrode 14. Thus, the output stream 33 can have a higher concentration of charged species than the input liquid.

圖4顯示一不具有離子載體之超電容脫鹽單元的實驗曲線圖。圖5顯示一具有PSS及PDDA之超電容脫鹽單元的實驗曲線圖。在圖4中,當向有一液體流過的不具有離子載體之超電容脫鹽單元施加80毫安之電流時,其電壓跳變VAC 為約0.4伏特,及其斷路電壓(OCV)VAB 為約0.1伏特,因此,其單元電阻可表為(0.4伏特-0.1伏特)/0.08安培=3.75歐姆。在圖5中,當向有該相同液體流過的具有PSS及PDDA之該超電容脫鹽單元施加相同的80毫安電流時,其電壓跳變VDE 為約0.2伏特,及其OCV極小而可不計算,因此,其單元電阻可表為0.2伏特/0.08安=2.5歐姆。顯然地,具有PSS及PDDA之該超電容脫鹽單元之內電阻與不具有離子載體之該超電容脫鹽單元的內電阻相比降低30%。因此,該等離子載體15、16可降低該SCD單元10之內電阻。因此可節省大量的能量,特別係在處理大量的輸入液體時。Figure 4 shows an experimental graph of a supercapacitor desalination unit without an ionophore. Figure 5 shows an experimental graph of a supercapacitor desalination unit with PSS and PDDA. In Fig. 4, when a current of 80 mA is applied to a supercapacitor desalination unit having no ion carrier flowing through it, its voltage jump V AC is about 0.4 volt, and its open circuit voltage (OCV) V AB is about 0.1 volts, therefore, its cell resistance can be expressed as (0.4 volts - 0.1 volts) / 0.08 amps = 3.75 ohms. In FIG. 5, when the same 80 mA current is applied to the ultracapacitor desalination unit having the PSS and PDDA flowing through the same liquid, the voltage jump V DE is about 0.2 volt, and the OCV is extremely small. Calculated, therefore, its cell resistance can be expressed as 0.2 volts / 0.08 amps = 2.5 ohms. Obviously, the internal resistance of the ultracapacitor desalination unit with PSS and PDDA is reduced by 30% compared to the internal resistance of the ultracapacitor desalination unit without the ionophore. Therefore, the plasma carriers 15, 16 can reduce the internal resistance of the SCD unit 10. This saves a lot of energy, especially when dealing with a large amount of input liquid.

如圖6所示,當本發明所提供之包括PSS及PDDA的該超電容脫鹽單元經顯示為在操作上耐用超過600個週期時,其單元電阻保持於2.0-2.6歐姆之範圍內。圖6中給出之數據顯示具有PSS及PDDA之該超電容脫鹽單元10之效率可相當穩定。As shown in FIG. 6, when the ultracapacitor desalination unit including PSS and PDDA provided by the present invention is shown to be operationally durable for more than 600 cycles, its cell resistance is maintained in the range of 2.0-2.6 ohms. The data presented in Figure 6 shows that the efficiency of the ultracapacitor desalination unit 10 with PSS and PDDA can be quite stable.

圖7顯示複數個超電容脫鹽單元之一裝配示意平面圖。該超電容脫鹽總成利用一容器71。該等超電容脫鹽單元72係並列地配置於該容器71中,且各個單元72可連接至一類似於該電源19的各別電源(未顯示)。此外,該總成70具有設置於每兩個相鄰單元72之間以電絕緣該兩個相鄰單元72的絕緣隔離器73。或者,該等超電容脫鹽單元72可連接至一個電源,且所有該等單元72可串聯連接。該容器71界定一入口74及一出口75,其各自用於流進及流出的該輸入液體及該輸出流33(示於圖3)。在所示之實例中,該超電容脫鹽單元72可與單元10或21相同,或與上述其他實施例相同。如將瞭解,該輸入液體可藉由使用外力(例如抽吸)而導入該容器71中。此外,該等單元72亦可以將來自一單元之輸出流用作另一單元之輸入液體的構形配置。Figure 7 shows a schematic plan view of one of a plurality of supercapacitor desalination units. The ultracapacitor desalination assembly utilizes a container 71. The supercapacitor desalination units 72 are arranged side by side in the container 71, and each unit 72 can be connected to a respective power source (not shown) similar to the power source 19. Additionally, the assembly 70 has an insulating spacer 73 disposed between every two adjacent cells 72 to electrically insulate the two adjacent cells 72. Alternatively, the ultracapacitor desalination units 72 can be connected to a power source and all of the units 72 can be connected in series. The container 71 defines an inlet 74 and an outlet 75, each for the input liquid flowing in and out and the output stream 33 (shown in Figure 3). In the illustrated example, the ultracapacitor desalination unit 72 can be the same as unit 10 or 21, or the same as the other embodiments described above. As will be appreciated, the input liquid can be introduced into the container 71 by the use of an external force, such as suction. In addition, the units 72 can also use the output stream from one unit as the configuration of the input liquid for the other unit.

雖然本揭示案已就典型實施例作說明及描述,但其不欲受限於所示之該等細節,因可不以任何方式脫離本揭示案之精神而進行多種修改及替換。如此,熟悉技術人士可僅利用常規實驗而做出揭示於此之本揭示案的進一步修改及等效物,咸信所有這些修改及等效物係屬於由以下請求項所界定的本揭示案之精神及範圍內。While the present invention has been described and described with respect to the exemplary embodiments, it is not intended to Thus, the skilled person will be able to make a further modification and equivalents of the present disclosure by using the routine experiment, and all such modifications and equivalents belong to the present disclosure as defined by the following claims. Spirit and scope.

3...超電容脫鹽裝置3. . . Ultracapacitor desalination device

10...超電容10. . . Super capacitor

11...第一集電器11. . . First collector

12...第二集電器12. . . Second collector

13...第一電極13. . . First electrode

14...第二電極14. . . Second electrode

15...第一離子載體15. . . First ion carrier

16...第二離子載體16. . . Second ion carrier

17...第一保持層17. . . First retention layer

18...第二保持層18. . . Second retention layer

19...電源19. . . power supply

20...電解質溶液20. . . a

21...超電容twenty one. . . Super capacitor

22...離子載體twenty two. . . Ion carrier

23...保持層twenty three. . . Retention layer

30...液體源30. . . Liquid source

31...陽離子31. . . cation

32...陰離子32. . . Anion

33...輸出流33. . . Output stream

71...容器71. . . container

72...超電容脫鹽單元72. . . Ultracapacitor desalination unit

73...隔離器73. . . Isolator

74...入口74. . . Entrance

75...出口75. . . Export

100...隔離物100. . . Spacer

圖1為一根據本發明一實施例之超電容的示意橫截面圖;1 is a schematic cross-sectional view of an ultracapacitor in accordance with an embodiment of the present invention;

圖2為根據本發明另一實施例之超電容的示意橫截面圖;2 is a schematic cross-sectional view of an ultracapacitor in accordance with another embodiment of the present invention;

圖3為一根據本發明一實施例之超電容脫鹽單元的透視圖;3 is a perspective view of an ultracapacitor desalination unit in accordance with an embodiment of the present invention;

圖4為一不具有離子載體之超電容脫鹽單元的實驗曲線圖;4 is an experimental graph of a supercapacitor desalination unit without an ion carrier;

圖5為一具有PSS及PDDA之超電容脫鹽單元的實驗曲線圖;5 is an experimental graph of a supercapacitor desalination unit having PSS and PDDA;

圖6為顯示具有PSS及PDDA之該超電容脫鹽單元之穩定性的實驗圖;及6 is an experimental diagram showing the stability of the ultracapacitor desalination unit having PSS and PDDA; and

圖7為複數個超電容脫鹽單元之裝配示意平面圖。Figure 7 is a schematic plan view showing the assembly of a plurality of supercapacitor desalination units.

10...超電容10. . . Super capacitor

11...第一集電器11. . . First collector

12...第二集電器12. . . Second collector

13...第一電極13. . . First electrode

14...第二電極14. . . Second electrode

15...第一離子載體15. . . First ion carrier

16...第二離子載體16. . . Second ion carrier

17...第一保持層17. . . First retention layer

18...第二保持層18. . . Second retention layer

19...電源19. . . power supply

20...電解質溶液20. . . a

100...隔離物100. . . Spacer

Claims (29)

一種超電容,其包括:一第一電極;一第二電極;一第一離子載體,其係經配置成接觸該第一電極以提供一用於輸送離子至該第一電極及從該第一電極輸出離子的第一離子導電通路;一第一保持層,其係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間;一電解質,其係分散於該第一與第二電極之間以提供該等離子;一第一集電器,其係經配置成接觸該第一電極;及一第二集電器,其係經配置成接觸該第二電極。 An ultracapacitor comprising: a first electrode; a second electrode; a first ion carrier configured to contact the first electrode to provide a source for transporting ions to the first electrode and from the first a first ion conductive path of the electrode outputting ions; a first holding layer configured to hold the first ion carrier between the first electrode and the first holding layer; an electrolyte dispersed in the Between the first and second electrodes to provide the plasma; a first current collector configured to contact the first electrode; and a second current collector configured to contact the second electrode. 如請求項1之超電容,其包括一第二離子載體及一第二保持層,該第二離子載體係經配置成接觸該第二電極以提供一用於輸送離子至該第二電極及從該第二電極輸出離子之第二離子導電通路,且該第二保持層係經配置成將該第二離子載體保持於該第二電極與該第二保持層之間。 The supercapacitor of claim 1, comprising a second ion carrier and a second retention layer, the second ion carrier configured to contact the second electrode to provide a source for transporting ions to the second electrode The second electrode outputs a second ion conductive path of ions, and the second retention layer is configured to hold the second ion carrier between the second electrode and the second retention layer. 如請求項2之超電容,其中該第一離子載體包括一第一聚電解質及該第二離子載體包括一第二聚電解質。 The supercapacitor of claim 2, wherein the first ionophore comprises a first polyelectrolyte and the second ionophore comprises a second polyelectrolyte. 如請求項3之超電容,其中該第一離子載體包括聚(氯化二烯丙基二甲基銨)溶液,且該第二離子載體包括聚苯乙烯硫酸鈉溶液。 The supercapacitor of claim 3, wherein the first ionophore comprises a poly(diallyldimethylammonium chloride) solution, and the second ionophore comprises a sodium polysulfate solution. 如請求項2之超電容,其中該第一及該第二保持層包括離子交換薄膜且係經配置成保護該等各別的第一及第二離子載體免於失效。 The supercapacitor of claim 2, wherein the first and second retention layers comprise an ion exchange membrane and are configured to protect the respective first and second ion carriers from failure. 如請求項5之超電容,其中該第一及該第二離子導電通路係經配置成降低在該等各別電極與該等保持層之間的電阻。 The supercapacitor of claim 5, wherein the first and second ion conducting paths are configured to reduce electrical resistance between the respective electrodes and the holding layers. 如請求項5之超電容,其中該第一保持層僅可使陰離子通過,及該第二保持層僅可使陽離子通過。 The supercapacitance of claim 5, wherein the first retention layer only allows anion to pass, and the second retention layer only allows passage of cations. 如請求項2之超電容,其進一步包括一設置於該第一與第二保持層之間的隔離物。 The ultracapacitance of claim 2, further comprising a spacer disposed between the first and second retention layers. 一種超電容脫鹽單元,其包括:一第一電極,其係經配置成在該單元之充電狀態下吸附離子及在該單元之放電狀態下脫附離子;一第二電極,其係經配置成在該單元之充電狀態下吸附離子及在該單元之放電狀態下脫附離子;一第一離子載體,其係經配置成接觸該第一電極以提供一用於輸送離子至該第一電極及從該第一電極輸出離子之第一離子導電通路;一第一保持層,其係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間;一第一集電器,其係經配置成接觸該第一電極;及一第二集電器,其係經配置成接觸該第二電極。 An ultracapacitor desalination unit comprising: a first electrode configured to adsorb ions in a charged state of the unit and desorb ions in a discharged state of the unit; a second electrode configured to Absorbing ions in a charged state of the unit and desorbing ions in a discharged state of the unit; a first ion carrier configured to contact the first electrode to provide a source for transporting ions to the first electrode a first ion conductive path for outputting ions from the first electrode; a first retention layer configured to hold the first ion carrier between the first electrode and the first retention layer; An electrical device configured to contact the first electrode; and a second current collector configured to contact the second electrode. 如請求項9之超電容脫鹽單元,其中該第一離子載體包括大分子兩性電解質。 The ultracapacitor desalination unit of claim 9, wherein the first ionophore comprises a macromolecular ampholyte. 如請求項9之超電容脫鹽單元,其包括一第二離子載體 及一第二保持層,該第二離子載體係經配置成接觸該第二電極以提供一用於輸送離子至該第二電極及從該第二電極輸出離子之第二離子導電通路,該第二保持層係經配置成將該第二離子載體保持於該第二電極與該第二保持層之間。 An ultracapacitor desalination unit according to claim 9 comprising a second ionophore And a second holding layer, the second ion carrier is configured to contact the second electrode to provide a second ion conductive path for transporting ions to and outputting ions from the second electrode. The second retention layer is configured to hold the second ionophore between the second electrode and the second retention layer. 如請求項11之超電容脫鹽單元,其中該第一及該第二離子導電通路係用來降低在該等各別電極與該等保持層之間的電阻。 The ultracapacitor desalination unit of claim 11, wherein the first and second ion conducting paths are used to reduce electrical resistance between the respective electrodes and the holding layers. 如請求項11之超電容脫鹽單元,其進一步包括一設置於該第一與該第二保持層之間的隔離物。 The ultracapacitance desalination unit of claim 11 further comprising a spacer disposed between the first and second retention layers. 如請求項11之超電容脫鹽單元,其中該第一離子載體包括一第一聚電解質及該第二離子載體包括一第二聚電解質。 The ultracapacitor desalination unit of claim 11, wherein the first ionophore comprises a first polyelectrolyte and the second ionophore comprises a second polyelectrolyte. 如請求項14之超電容脫鹽單元,其中該第一聚電解質包括陽離子基團及該第二聚電解質包括陰離子基團。 The ultracapacitor desalination unit of claim 14, wherein the first polyelectrolyte comprises a cationic group and the second polyelectrolyte comprises an anionic group. 如請求項15之超電容脫鹽單元,其中該第一聚電解質包括聚(氯化二烯丙基二甲基銨),及該第二聚電解質包括聚苯乙烯硫酸鈉。 The ultracapacitor desalination unit of claim 15, wherein the first polyelectrolyte comprises poly(diallyldimethylammonium chloride), and the second polyelectrolyte comprises sodium polystyrene sulfate. 如請求項11之超電容脫鹽單元,其中該第一及該第二保持層包括離子交換薄膜且係經配置成保護該等各別的第一及第二離子載體免於失效。 The ultracapacitor desalination unit of claim 11, wherein the first and second retention layers comprise an ion exchange membrane and are configured to protect the respective first and second ion carriers from failure. 如請求項17之超電容脫鹽單元,其中該第一保持層僅可使陰離子通過,及該第二保持層僅可使陽離子通過。 The ultracapacitor desalination unit of claim 17, wherein the first retention layer only allows anion to pass, and the second retention layer only allows passage of cations. 如請求項11之超電容脫鹽單元,其中該第一及該第二離子載體係呈一溶液形式。The ultracapacitor desalination unit of claim 11, wherein the first and second ion carriers are in the form of a solution. 如請求項11之超電容脫鹽單元,其中該第一及該第二離子載體係呈一凝膠形式。The ultracapacitor desalination unit of claim 11, wherein the first and second ion carriers are in the form of a gel. 一種超電容脫鹽裝置,其包括:一超電容脫鹽單元,該單元包括一第一電極及一第二電極,兩者係經配置成在該單元之充電狀態下吸附離子及在該單元之放電狀態下脫附離子;一第一離子載體,其係經配置成接觸該第一電極以提供一用於輸送離子至該第一電極及從該第一電極輸出離子之第一離子導電通路;一第一保持層,其係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間;一第一集電器及一第二集電器,其係經配置成各別接觸該第一電極及該第二電極;一電源,其係經配置成對該第一及該第二電極供能至相反電極性;及一液體源,其係經配置成傳遞一液體通過該單元以用於脫鹽。An ultracapacitor desalination device comprising: an ultracapacitor desalination unit, the unit comprising a first electrode and a second electrode, the two being configured to adsorb ions and discharge state in the unit under the state of charge of the unit Desorbing ions; a first ion carrier configured to contact the first electrode to provide a first ion conductive path for transporting ions to and outputting ions from the first electrode; a retention layer configured to hold the first ionophore between the first electrode and the first retention layer; a first current collector and a second current collector configured to be in contact with each other The first electrode and the second electrode; a power source configured to energize the first and second electrodes to opposite polarity; and a liquid source configured to deliver a liquid through the unit For desalination. 如請求項21之超電容脫鹽裝置,其中該超電容脫鹽單元進一步包括一第二離子載體及一第二保持層,該第二離子載體係經配置成接觸該第二電極以提供一用於輸送離子至該第二電極及從該第二電極輸出離子之第二離子導電通路,該第二保持層係經配置成將該第二離子載體保持於該第二電極與該第二保持層之間。The ultracapacitor desalination device of claim 21, wherein the ultracapacitor desalination unit further comprises a second ion carrier and a second retention layer, the second ion carrier configured to contact the second electrode to provide a transport An ion to the second electrode and a second ion conductive path for outputting ions from the second electrode, the second retention layer being configured to hold the second ion carrier between the second electrode and the second retention layer . 如請求項22之超電容脫鹽裝置,其中該超電容脫鹽單元進一步包括一配置於該第一與該第二保持層之間的隔離物。 The ultracapacitor desalination device of claim 22, wherein the ultracapacitor desalination unit further comprises a spacer disposed between the first and second retention layers. 如請求項22之超電容脫鹽裝置,其中該第一離子載體包括一第一聚電解質溶液,及該第二離子載體包括一第二聚電解質溶液。 The ultracapacitor desalination device of claim 22, wherein the first ionophore comprises a first polyelectrolyte solution and the second ionophore comprises a second polyelectrolyte solution. 如請求項24之超電容脫鹽裝置,其中該第一離子載體包括聚(氯化二烯丙基二甲基銨),及該第二離子載體包括聚苯乙烯硫酸鈉。 The ultracapacitor desalination apparatus of claim 24, wherein the first ionophore comprises poly(diallyldimethylammonium chloride), and the second ionophore comprises sodium polysulfate. 一種製造超電容之方法,其包括:提供一第一電極及一第二電極;提供一第一離子載體,其係經配置成接觸該第一電極以提供一用於輸送離子至該第一電極及從該第一電極輸出離子之第一離子導電通路;提供一第一保持層,該保持層係經配置成將該第一離子載體保持於該第一電極與該第一保持層之間;提供一經配置成接觸該第一電極的第一集電器;及提供一經配置成接觸該第二電極的第二集電器。 A method of fabricating an ultracapacitor, comprising: providing a first electrode and a second electrode; providing a first ion carrier configured to contact the first electrode to provide a source for transporting ions to the first electrode And a first ion conductive path for outputting ions from the first electrode; providing a first holding layer configured to hold the first ion carrier between the first electrode and the first holding layer; Providing a first current collector configured to contact the first electrode; and providing a second current collector configured to contact the second electrode. 如請求項26之方法,其包括提供一經配置成接觸該第二電極以提供一用於輸送離子至該第二電極及從該第二電極輸出離子之第二離子導電通路的第二離子載體,及一經配置成將該第二離子載體保持於該第二電極與該第二保持層之間的第二保持層。 The method of claim 26, comprising providing a second ionophore configured to contact the second electrode to provide a second ion conducting pathway for transporting ions to and outputting ions from the second electrode, And a second retention layer configured to hold the second ionophore between the second electrode and the second retention layer. 如請求項27之方法,其進一步包括提供一配置於該第一與該第二保持層之間的隔離物。 The method of claim 27, further comprising providing a spacer disposed between the first and second retention layers. 如請求項28之方法,其中該第一離子載體包括聚(氯化二烯丙基二甲基銨)溶液,及該第二離子載體包括聚苯乙烯硫酸鈉溶液。The method of claim 28, wherein the first ionophore comprises a poly(diallyldimethylammonium chloride) solution, and the second ionophore comprises a sodium polysulfate solution.
TW98101268A 2009-01-14 2009-01-14 Supercapacitor and method for making the same TWI445031B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98101268A TWI445031B (en) 2009-01-14 2009-01-14 Supercapacitor and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98101268A TWI445031B (en) 2009-01-14 2009-01-14 Supercapacitor and method for making the same

Publications (2)

Publication Number Publication Date
TW201027579A TW201027579A (en) 2010-07-16
TWI445031B true TWI445031B (en) 2014-07-11

Family

ID=44853258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98101268A TWI445031B (en) 2009-01-14 2009-01-14 Supercapacitor and method for making the same

Country Status (1)

Country Link
TW (1) TWI445031B (en)

Also Published As

Publication number Publication date
TW201027579A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
JP6006493B2 (en) Supercapacitor and manufacturing method thereof
EP2459491B1 (en) Method of manufacturing a functional electrode
US6462935B1 (en) Replaceable flow-through capacitors for removing charged species from liquids
US20080198531A1 (en) Capacitive deionization system for water treatment
CN102249380B (en) Efficient liquid flow type membrane capacitance desalter
US20100078327A1 (en) Deionization apparatus, electrode module for the same and method for manufacturing the same
TWI547446B (en) Supercapacitor desalination cells, devices and methods
US6798639B2 (en) Fluid deionization flow through capacitor systems
US12030795B2 (en) Desalination device and method of manufacturing such a device
US20180123145A1 (en) Electrochemical cell comprising channel-type flowable electrode units
TWI445031B (en) Supercapacitor and method for making the same
KR20150003094A (en) Flow-electrode capacitive deionizaion apparatus using ion exchange membranes
JP2008161846A (en) Capacitive deionization (cdi) using bipolar electrode system
US7903388B2 (en) Electrical isolator for capacitive device
KR102237038B1 (en) Carbon electrode filter for household water purifier
KR20110068466A (en) Device for capacitive deionization
JP2003039070A (en) Device and method for producing desalted water
WO2004019354A2 (en) Fluid deionization flow through capacitor systems