JPH01253154A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH01253154A
JPH01253154A JP63079582A JP7958288A JPH01253154A JP H01253154 A JPH01253154 A JP H01253154A JP 63079582 A JP63079582 A JP 63079582A JP 7958288 A JP7958288 A JP 7958288A JP H01253154 A JPH01253154 A JP H01253154A
Authority
JP
Japan
Prior art keywords
electrolyte
acid
glass fibers
sealed lead
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63079582A
Other languages
Japanese (ja)
Other versions
JP2918204B2 (en
Inventor
Asahiko Miura
三浦 朝比古
Koji Higashimoto
晃二 東本
Mamoru Nishijima
西島 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63079582A priority Critical patent/JP2918204B2/en
Publication of JPH01253154A publication Critical patent/JPH01253154A/en
Application granted granted Critical
Publication of JP2918204B2 publication Critical patent/JP2918204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress the stratification of an electrolyte and reduce the cost by using a porous body containing a specific quantity of acid-resistant inorganic powder in glass fibers with a specific diameter as an electrolyte holder. CONSTITUTION:A porous body containing acid-resistant inorganic powder 40-70wt.% in glass fibers with the average diameter of less than 10mum is used as an electrolyte holder. The type of glass fibers is simplified by limiting the average diameter, the cost for the material and production is reduced by using a large quantity of inorganic powder, and the stratification of an electrolyte can be suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術 負極吸収式の密閉形鉛蓄電池は、電解液の希硫酸を実質
的に非流動化し、充電時に正極から発生する酸素ガスを
負極活物質で吸収することを特徴とする電池である。そ
して電池外部へのガス排出がほとんどなく、補水等の保
守が不易テ 要となり、メインナナンスフリーであり、液もれしない
ことによるポジションフリーに加え、さらにコンパクト
タイプである。このためOA機器のバックアップ電源と
して急速に拡大し、従来の液式鉛蓄電池に比べて安全性
や信頼性を大幅に向上したものである。
BACKGROUND ART A negative electrode absorption type sealed lead acid battery is a battery characterized by making the dilute sulfuric acid of the electrolyte substantially non-fluidized and absorbing the oxygen gas generated from the positive electrode during charging by the negative electrode active material. In addition, there is almost no gas discharge to the outside of the battery, maintenance such as water replenishment is not required, there is no main maintenance, and there is no positioning due to no leakage, and it is also a compact type. For this reason, they have rapidly expanded as a backup power source for office automation equipment, and have significantly improved safety and reliability compared to conventional liquid lead-acid batteries.

この密閉形鉛蓄電池に使用される電解液保持体及び隔離
体は、正極と負極との電導性を確保し、電池容量に必要
な硫酸を保持すると共に充放電の際に両極との間に硫酸
の供給、吸収をスムーズに行なう特性を備えていること
が必要である。さらに充電中暢正極で発生する酸素が負
極まで移動可能な空間を保有していること、そして負極
板上での吸収反応が十分に行われることが必要である。
The electrolyte holder and separator used in this sealed lead-acid battery ensure conductivity between the positive and negative electrodes, retain the sulfuric acid necessary for battery capacity, and maintain the sulfuric acid between the two electrodes during charging and discharging. It is necessary to have characteristics that allow for smooth supply and absorption of water. Furthermore, it is necessary that there is a space in which oxygen generated at the positive electrode can move to the negative electrode during charging, and that the absorption reaction on the negative electrode plate is sufficiently carried out.

現在、これらの機能を持つ密閉形鉛蓄電池とするため、
一般に次の電解液保持方法をとっている。
Currently, in order to make a sealed lead-acid battery with these functions,
Generally, the following electrolyte retention method is used.

(1)ガラス繊維等を混抄して不織布とし、これに電解
液を吸収、保持させる方法(以下「リテーナ式」と称す
)。
(1) A method in which a nonwoven fabric is made by mixing glass fiber or the like, and the electrolyte is absorbed and retained in this fabric (hereinafter referred to as the "retainer type").

(2)  シリカ等の無機酸化物よりなるゲル状物で電
解液を保持させる方法(以下「ゲル式」と称す)。
(2) A method in which the electrolyte is held in a gel-like material made of an inorganic oxide such as silica (hereinafter referred to as "gel method").

(3)耐酸性の無機粉体をガラス繊維や合成繊維に含有
させる方法(以下「粉体式」と称す)リテーナ式の電解
液保持体は微細なガラス繊維、合成繊維そしてバインダ
ーなどの混抄された不織布である。電解液保持体の構成
は、例えば70〜80 Vo1%の電解液、5〜10V
o1%のガラス繊維そして15〜20 Vo1%の空間
から成っている。従って、液の移動も容易であり電池特
性も良く、かつ負極での酸素ガス吸収も十分におこなわ
れており、現在の負極吸収式鉛蓄電池の多くがこのリテ
ーナ式となっている。
(3) Method of incorporating acid-resistant inorganic powder into glass fibers or synthetic fibers (hereinafter referred to as "powder method") The retainer-type electrolyte holder is a mixture of fine glass fibers, synthetic fibers, binders, etc. It is a non-woven fabric. The structure of the electrolyte holder is, for example, 70-80 Vo1% electrolyte, 5-10V
It consists of 1% glass fiber and 15-20 1% void. Therefore, liquid movement is easy, battery characteristics are good, and oxygen gas absorption at the negative electrode is sufficiently performed, and many of the current negative electrode absorption type lead-acid batteries are of this retainer type.

一方、ゲル式では、シリカ粒子を希硫酸と混合してゲル
化させているため、酸素ガスの移動と負極でのガス吸収
を阻害しがちであり、さらに振動によるゾル化によって
極板からゲルが離れてしまうなど電池特性に悪影響を与
えがちである。また製造する工程が複雑となりコストア
ップにつながる。
On the other hand, in the gel type, silica particles are mixed with dilute sulfuric acid to form a gel, which tends to inhibit the movement of oxygen gas and gas absorption at the negative electrode, and furthermore, the gel is removed from the electrode plate due to sol formation due to vibration. This tends to have an adverse effect on battery characteristics, such as causing them to become separated from each other. Furthermore, the manufacturing process becomes complicated, leading to increased costs.

ところで、リテーナ式の密閉形鉛蓄電池においては、特
に大容量仕様では極板が大きくなり、充電・放電によっ
て電池の上部の電解液濃度が低くそして底部の電解液濃
度が高くなる、いわゆる成層化現象が生じる。この解消
はむづかしく、電池性能を低下させ、短寿命とする大き
な原因となっている。このためゲル式の大容量電池が考
えられているが、上記のごとく特性上と製造上の問題の
ため、高性能な電池になっていない。
By the way, in cage-type sealed lead-acid batteries, especially in high-capacity specifications, the electrode plates become large, and due to charging and discharging, the electrolyte concentration at the top of the battery becomes low and the electrolyte concentration at the bottom becomes high, which is a so-called stratification phenomenon. occurs. This problem is difficult to resolve and is a major cause of deterioration in battery performance and shortened lifespan. For this reason, gel-type large-capacity batteries have been considered, but due to the characteristics and manufacturing problems described above, high-performance batteries have not been achieved.

これに対して、粉体式の電解液保持体は電解液の成層化
を抑制でき、そして密閉形鉛蓄電池として十分な特性を
示す電池になることが判っており、種々使用される条件
に合致する密閉形鉛蓄電池として、急速に研究が進み製
品化への展開がなされている。
On the other hand, it has been found that the powder-type electrolyte holder can suppress stratification of the electrolyte and exhibit sufficient characteristics as a sealed lead-acid battery, meeting various usage conditions. As a sealed lead-acid battery, research is progressing rapidly and it is being commercialized.

発明が解決しようとする課題 無機粉体と種々繊維を主体とする電解液保持体では、成
層化を防止するため各々の含有量子種類を検討し、電池
に適した仕様を決めている。
Problems to be Solved by the Invention In order to prevent stratification in electrolyte holders mainly composed of inorganic powder and various fibers, the types of quantum contained in each are studied to determine specifications suitable for batteries.

従来はリテーナ式の電解液保持体が高価であったため、
無機粉体を含有させることでコストダウンを主眼に置い
て検討されていた。さらにガラス繊維を太くすることで
、コストダウンをねらっていた。
Previously, retainer-type electrolyte holders were expensive;
Studies have focused on cost reduction by including inorganic powder. They also aimed to reduce costs by making the glass fiber thicker.

ところが、取扱い上の問題として、電解液保持体の割れ
や粉体の脱落が起こり、その対策としてフィブリル状の
合成繊維の添加や合成繊維自体の増加が行われてきた。
However, handling problems include cracking of the electrolyte holder and falling of the powder, and as a countermeasure to this problem, fibrillar synthetic fibers have been added or synthetic fibers themselves have been increased.

このことはコストアップと硫酸と新和性の低い素材の増
加による曵 電池性能の低下となって行われてきている。
This has resulted in increased costs and decreased battery performance due to increased use of sulfuric acid and less compatible materials.

また粉体量をさらに多くすることで、コストダウンをお
こなっているが、電解液保持体自体が硬くなりまた粉体
も脱落すること、そして保持体内部の粉体が大きな塊と
して存在するようになり、電解液の保持と供給が低下す
ること等の問題が起こった。
In addition, by increasing the amount of powder, costs are reduced, but the electrolyte holder itself becomes hard and the powder falls off, and the powder inside the holder tends to exist as large lumps. This caused problems such as a decrease in electrolyte retention and supply.

このように種々問題を解決して安い電解液保持体を作ろ
うとしているが、組成が複雑になり予想された効果が表
われにくく、逆に製造仕様の複雑化によりコストアップ
さえなっている。
Attempts have been made to solve these various problems in order to produce an inexpensive electrolyte holder, but the composition has become complicated, making it difficult to achieve the expected effects, and conversely, the complexity of manufacturing specifications has even increased costs.

課題を解決するための手段 本発明は上記の課題を解決するためになされたもので、
平均直径が1.0μm未満のガラス繊維に、耐酸性の無
機粉体を40〜70重量%含有した多孔体を電解液保持
体として使用したことを特徴とするものである。
Means for Solving the Problems The present invention has been made to solve the above problems.
It is characterized in that a porous body containing 40 to 70% by weight of acid-resistant inorganic powder in glass fibers having an average diameter of less than 1.0 μm is used as an electrolyte holder.

作用 本発明は上記の特徴を有することにより、ガ還 ラス繊維の種類を平均直径1.0μm末端に限定するこ
とで単純化し、かつ40〜70重量%と多量の無機粉体
を使用することで、材料の面さらに製造上よりコストダ
ウンすると共に、電解液の成層化問題を改善できる電解
液保持体を備えた密閉形鉛蓄電池を提供するものである
Operation The present invention has the above-mentioned characteristics, and is simplified by limiting the type of glass-reduced glass fibers to those with an average diameter of 1.0 μm at the ends, and by using a large amount of inorganic powder of 40 to 70% by weight. It is an object of the present invention to provide a sealed lead-acid battery equipped with an electrolyte holder that can reduce costs in terms of materials and manufacturing, and improve the problem of stratification of the electrolyte.

実施例 本発明の一実施例を説明する。Example An embodiment of the present invention will be described.

第1表の電解液保持体の組成のように、ガラス繊維とし
て平均直径0.7μm、4μm、16μm、無機粉体と
して珪酸粉体と珪藻土を原料として、純水にて撹拌混合
し、抄造後乾燥して厚さ2.4miの多孔体からなる電
解液保持体を作成した。
As shown in the composition of the electrolyte holder in Table 1, glass fibers with average diameters of 0.7 μm, 4 μm, and 16 μm, and inorganic powders of silicic acid powder and diatomaceous earth are used as raw materials, stirred and mixed with pure water, and after papermaking. After drying, an electrolyte holder made of a porous material having a thickness of 2.4 mm was prepared.

また、これらの電解液保持体と高さ250mm極板とを
用いて200Ah密閉形鉛蓄電池を製作した。比重1 
、300の電解液を注入し、電池容量を確認した後、「
放電40A (0,2CA)、8時間;充電60A (
0,3CA)、充電電圧2.45V/セル、8時間;温
度20°CJの条件でサイクル試験した。そしで10サ
イクル後に解体し、電池の極板上部と下部の比重を測定
し、その比重差を測定した。
Furthermore, a 200 Ah sealed lead acid battery was manufactured using these electrolyte holders and electrode plates with a height of 250 mm. Specific gravity 1
, after injecting 300 ml of electrolyte and checking the battery capacity,
Discharge 40A (0.2CA), 8 hours; Charge 60A (
0.3 CA), charging voltage 2.45 V/cell, 8 hours; temperature 20°CJ. After 10 cycles, the battery was disassembled, the specific gravity of the upper and lower electrode plates of the battery was measured, and the difference in specific gravity was measured.

第1表で示した結果により、平均直径が1.0μm未満
のガラス繊維の場合、無機粉体量が40〜70重量%の
時に電解液の成層化が抑制されている。−船釣に成層化
として問題になるのは、比重差が0.05以上め時であ
り、0.03から0.05の間は注意するレベルと考え
ている。
According to the results shown in Table 1, in the case of glass fibers having an average diameter of less than 1.0 μm, stratification of the electrolytic solution is suppressed when the amount of inorganic powder is 40 to 70% by weight. - Stratification becomes a problem in boat fishing when the difference in specific gravity is 0.05 or more, and I believe that anything between 0.03 and 0.05 is a level to be careful about.

ガラス繊維の太さについては、例えば平均直径4.0μ
mを混抄すると、比重差がおおきくなり電池の機種によ
っては注意すべきレベルとなる。また1、011m未満
のガラス繊維が含まれない場合は、明らかに比重差が大
きくなる。このように、平均直径1.0μm以上のガラ
ス繊維を含むと、成層化を大きくすることが判った。
Regarding the thickness of glass fiber, for example, the average diameter is 4.0μ
If M is mixed, the difference in specific gravity will become large, and depending on the type of battery, it will be at a level that requires caution. Moreover, when glass fibers of less than 1,011 m are not included, the difference in specific gravity becomes clearly large. Thus, it has been found that inclusion of glass fibers with an average diameter of 1.0 μm or more increases stratification.

発明の効果 上述したように、本発明によれば、平均直径が1.0μ
m未満のガラス繊維に耐酸性の無機粉体を40〜70重
量%含有した多孔体を電解液保持体として用いたため、
密閉形鉛蓄電池の電解液成層化を抑制できると共に、無
機粉体を多く使うことによるコストダウンが可能となる
効果がある。
Effects of the Invention As described above, according to the present invention, the average diameter is 1.0μ.
Since a porous body containing 40 to 70% by weight of acid-resistant inorganic powder in glass fibers of less than m was used as an electrolyte holder,
This has the effect of suppressing electrolyte stratification in sealed lead-acid batteries and reducing costs by using a large amount of inorganic powder.

Claims (1)

【特許請求の範囲】[Claims] 平均直径が1.0μm未満のガラス繊維に、耐酸性の無
機粉体を40〜70重量パーセント含有してなる多孔体
を電解液保持体として用いたことを特徴とする密閉形鉛
蓄電池。
A sealed lead-acid battery characterized in that a porous body made of glass fibers having an average diameter of less than 1.0 μm and containing 40 to 70 weight percent of acid-resistant inorganic powder is used as an electrolyte holder.
JP63079582A 1988-03-31 1988-03-31 Sealed lead-acid battery Expired - Lifetime JP2918204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079582A JP2918204B2 (en) 1988-03-31 1988-03-31 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079582A JP2918204B2 (en) 1988-03-31 1988-03-31 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH01253154A true JPH01253154A (en) 1989-10-09
JP2918204B2 JP2918204B2 (en) 1999-07-12

Family

ID=13693979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079582A Expired - Lifetime JP2918204B2 (en) 1988-03-31 1988-03-31 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2918204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224483A (en) * 2016-06-15 2017-12-21 日立化成株式会社 Lead storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221954A (en) * 1984-04-09 1985-11-06 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS6180750A (en) * 1984-09-28 1986-04-24 Nippon Muki Kk Separator for sealed type lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221954A (en) * 1984-04-09 1985-11-06 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS6180750A (en) * 1984-09-28 1986-04-24 Nippon Muki Kk Separator for sealed type lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224483A (en) * 2016-06-15 2017-12-21 日立化成株式会社 Lead storage battery

Also Published As

Publication number Publication date
JP2918204B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP5190562B1 (en) Lead-acid battery for energy storage
JPH01253154A (en) Sealed lead-acid battery
JPS6237882A (en) Closed type lead storage battery
JP2004055323A (en) Control valve type lead-acid battery
JP2001102027A (en) Enclosed lead battery
US3716412A (en) Electric storage batteries
JPS63152868A (en) Lead-acid battery
JPS6319772A (en) Lead-acid battery
JPH01248458A (en) Sealed lead-acid battery
JPH01253153A (en) Sealed lead-acid battery
JPH01248459A (en) Sealed lead-acid battery
JPH01253155A (en) Sealed lead-acid battery
JPH01124958A (en) Sealed lead-acid battery
JPS62170173A (en) Sealed lead-acid battery
JP3114419B2 (en) Sealed storage battery
JP2591975B2 (en) Sealed clad type lead battery
JP2855706B2 (en) Sealed lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH06283191A (en) Sealed lead-acid battery
JPS6319764A (en) Lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPH01248457A (en) Sealed lead-acid battery
JPS6319765A (en) Lead-acid battery
JPS63237364A (en) Enclosed type lead storage battery
JPH02210766A (en) Sealed clad type lead-acid battery